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Abstract. We study periodic torus orbits on spaces of lattices. Using the
action of the group of adelic points of the underlying tori, we define a natural

equivalence relation on these orbits, and show that the equivalence classes

become uniformly distributed. This is a cubic analogue of Duke’s theorem
about the distribution of closed geodesics on the modular surface: suitably

interpreted, the ideal classes of a cubic totally real field are equidistributed in

the modular 5-fold SL3(Z)\SL3(R)/SO3. In particular, this proves (a stronger
form of) the folklore conjecture that the collection of maximal compact flats

in SL3(Z)\SL3(R)/SO3 of volume ≤ V becomes equidistributed as V →∞.

The proof combines subconvexity estimates, measure classification, and
local harmonic analysis.
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1. Introduction

1.1. Historical perspective. In the preface to his book “Ergodic properties of
algebraic fields,” Linnik [32] writes

. . . In the present book other applications of the ergodic concepts
are presented. Constructing “flows” of integral points on certain
algebraic manifolds given by systems of integral polynomials, we
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are able to prove individual ergodic theorems and mixing theorems
in certain cases. These theorems permit asymptotic calculations of
the distribution of integral points on such manifolds and we arrive
at results inaccessible up to now by the usual methods of analytic
number theory. Typical in this respect is this theorem concerning the
asymptotic distribution and ergodic behavior of the set of integral
points on the sphere

(∗) x2 + y2 + z2 = m

for increasing m.

This presents what Linnik called “the ergodic method”; it enabled Linnik to show
that solutions to (∗) become equidistributed upon projection to the unit sphere –
at least, for the m satisfying an explicit congruence condition. Subsequently, using
that method, Skubenko solved the related problem for the solutions of the equation

(∗∗) y2 − xz = m

also under similar congruence conditions on m.
Both of these problems are related to the distribution of ideal classes of orders in

quadratic fields: in the case of points on the sphere (∗), one deals with imaginary
quadratic fields, while (∗∗) corresponds either to real or imaginary quadratic fields
depending on the sign of m. The latter problem for m > 0 is also equivalent to the
problem of the distribution of closed geodesics on the modular surface SL(2,Z)\H.

Since the time of Linnik’s work, the tools of analytic number theory have devel-
oped tremendously. In particular W. Duke [12], using a breakthrough of H. Iwaniec,
proved that the integer solutions of (∗) as well as (∗∗) become equidistributed as
m→∞.

In [32, Chp. VI-VII], Linnik considers in detail the corresponding questions for
number fields of higher degree, particularly cubic fields. However, he was able to
prove comparatively little compared to the quadratic case. In modern terms, he
established, by a remarkable elementary calculation, a special case of the equidis-
tribution of Hecke points.

In this paper, we revisit Linnik’s problems for cubic (and higher degree) fields,
settling them for totally real cubic fields (among other cases).

We give precise statements later in the introduction; for now, we note that just
as (∗∗) relates to the ideal class group of quadratic fields and to closed geodesics on
the modular surface, the higher rank analogues will pertain to ideal class groups of
higher degree fields and to periodic orbits of maximal tori in the space of lattices
Xn = PGLn(Z)\PGLn(R). We will, in fact, explain our main result in this language
in the Introduction; there is also an interpretation analogous to (∗∗), which we
postpone to Corollary 3.3 in §3.

Interestingly, we do not know how to prove our main equidistribution result using
purely analytic techniques, nor using purely ergodic theoretic techniques, though
each of these methods does give some partial information in this direction. Our
proof works by combining these two very different techniques; to handle the case
of non-maximal orders we also have to prove new estimates involving local Fourier
analysis.1

1It is also conceivable that an ergodic approach to these estimates may exist.
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This paper is part of a series of papers we have been writing on the distribution
properties of compact torus orbits on homogeneous spaces. In [17], we present a
general setup for the study of the periodic orbits and prove results regarding the
distribution of individual orbits as well as fairly arbitrary collections of periodic
orbits. In [18], we give a modern reincarnation of Linnik’s original argument, giving
in particular a purely dynamical proof of equidistribution in the problem (∗∗)m>0;
without an auxiliary congruence condition. We still do not know how to give a
purely dynamic proof of Duke’s theorems regarding the equidistribution of the
solutions to (∗) or to (∗∗)m<0. Each of these papers is self-contained and can be
read independently; related discussions can also be found in [16,36].

1.2. Geometric perspective. For clarity, we shall continue to focus on the “R-
split case” of our main questions (i.e. problem (∗∗)m>0, totally real fields, orbits
of R-split tori, etc.). We introduce our main result in geometric terms. Later, in
§3, we discuss interpreting it in “arithmetic” terms (akin to the interpretations (∗)
and (∗∗)).

Let M = Γ\H be a compact hyperbolic Riemann surface, and

X := S1M = Γ\PSL2(R)

the unit tangent bundle of M . Bowen and Margulis, independently [4, 33], proved
that the set of geodesics of length ≤ L, considered as closed orbits of the geodesic
flow on X, are equidistributed w.r.t. Liouville measure as L→ +∞.

On the other hand, for a Riemann surface, if the latter is “arithmetic” in a
suitable sense (see §4.5 below) the results of Bowen/Margulis are valid in a much
stronger form. The most basic instance of an arithmetic surface is the modular
surface,

M = M2 = PSL2(Z)\H.

The equidistribution theorem of Duke already mentioned implies2 that the collec-
tion of geodesics of fixed length ` becomes equidistributed in X = X2 as ` → ∞.
Note that the lengths of closed geodesics can have high multiplicity; indeed, the
lengths are of the form log(d+

√
d2 − 1), for d ∈ N>0, and the set of geodesics of this

length is parameterized by the class group of the quadratic order of discriminant d.
Our main result establishes the analogues of both of these equidistribution the-

orems to the setting of the rank two Riemannian manifold

M3 = PGL3(Z)\PGL3(R)/PO3.

The role of “closed geodesics” is replaced by “maximal compact flats”, and the role
of “quadratic order” is replaced by “cubic order”.

At least with our present understanding, the rank two case seems to be much
more difficult than the rank one case. This difficulty manifests itself from all the
perspectives; crudely, the smaller the acting group, relative to the ambient group,
the more difficult the question.

2Strictly speaking, Duke’s theorem establishes equidistribution on the modular surface; equidis-
tribution at the level of the unit tangent bundle was established in the unpublished PhD thesis of

R. Chelluri, [7].



4 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, AND A. VENKATESH

1.3. Statement of results. Now let us give a precise statement of our main result,
at least in the “R-split, cubic field” case. (Our most general theorem is stated in
Theorem 4.9; what follows is a specialization of this.)

Let H be the diagonal subgroup of PGL3(R). In [17], we attached to each closed
orbit xH on

X3 = PGL3(Z)\PGL3(R)

a discriminant disc(xH) as a way to measure the “arithmetic complexity” of that
orbit; let us briefly recall how it is obtained. Writing xH into the form Γ\ΓgH,

we set T = Γ ∩ gHg−1
Zar

; T is a maximal (anisotropic) Q-torus. The discriminant
is then closely related to the “denominator” of the Q-point T inside the variety of
maximal tori of PGL3. In Section 4, we will review this construction in the adelic
setting. We prove:

1.4. Theorem. The periodic orbits of H on X3 are grouped into equivalence classes,
equivalent orbits having the same volume and discriminant. For each periodic orbit
xH, let YxH be the union of all compact orbits equivalent to xH.

If {xiH}i is a sequence of compact orbits, with disc(xiH)→ +∞ then:

(1) vol(YxiH) = disc(xiH)1/2+o(1),
(2) the YxiH become uniformly distributed in X3.

In particular, for V > 0, let Y (V ) denotes the collection of all H-orbits with volume
V ; as Vi → ∞ through any sequence for which Y (Vi) 6= ∅, then the Y (Vi) become
uniformly distributed in X3.

Noting that the projection of Y (V ) toM3 is the collection of all maximal compact
flats on M3 of volume V , Theorem 1.4 implies (a stronger form of) the rank two
analogue of the Bowen/Margulis theorem, indicated above.

1.5. About the proof; adelization. Viewed from the classical point of view,
the grouping of periodic torus orbits into packets is rather mysterious and can be
quite tricky to define in the non-maximal case. It turns out that the adeles give
a powerful and concise language to describe these equidistribution results, and we
have written the bulk of this paper consistently in the adelic language.

In particular, as we shall see in §5 the full equivalence class YxiH of a periodic
H-orbit (H being a maximal split torus) is essentially the projection to the infinite
place of a single periodic orbit of an adelic torus. The precise connection between
packets and adelic tori is contained in Theorem 5.2; Theorem 1.4 is then immediate
from the adelic results Theorem 4.8 and Theorem 4.9.

We will, indeed, go to some length to set equidistribution questions in a genuinely
adelic framework, which has the pleasing side effect that we are able to address
simultaneously many different equidistribution questions (cf. §4).

To aid the reader, we give an outline of the main ideas that enter into its proof in
purely classical terms §2. For the moment, we only observe an important contrast
between X3 and X2: while for X2, the analogue of our main Theorem is “purely”
a result about L-functions, for X3 this is not so. To fill this gap, we will need to
combine results from measure rigidity, L-functions, and harmonic analysis on Lie
groups.

1.6. Scope of the method. We shall discuss certain natural generalizations of
Theorem 1.4 and interesting questions associated to them.
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1.6.1. S-arithmetic variants. Theorem 1.4 is derived from the underlying adelic
result – Theorem 4.9 – and there is therefore no difficulty in replacing PGL3(Z)
by a congruence subgroup, or Q by a number field, or passing to an S-arithmetic
context.

However, although this is not apparent from the statement of Theorem 1.4, the
general statement Theorem 4.9 is not as satisfactory as the corresponding statement
for PGL2 (given in Theorem 4.6). Indeed, our general PGL3-theorem imposes local
conditions, akin to a Linnik-type condition, which happen to be automatically
satisfied in the setting of Theorem 1.4.

To dispense with these local conditions seems to be a very interesting and fun-
damental question.

1.6.2. Sparse equidistribution. Assuming a suitable subconvex estimate on L-func-
tions3 one can obtain the following “sparse equidistribution” result by our methods:

Notations as in Theorem 1.4, there is α < 1/2 so that, if vol(xiH) > disc(xiH)α

then the xiH become uniformly distributed on X3.
Presumably assuming the full force of GRH would yield α = 1/4, although to

prove this requires more careful local analysis than we have done.
Conjecturally, however, a much stronger statement should hold: we conjecture

([17]) that this equidistribution statement for single H-orbits remains true for any
α > 0. We refer to [17] for discussion of this conjecture, some partial results towards
it, and counterexamples to more optimistic conjectures.

1.6.3. Spaces of higher dimensional lattices. Much of our analysis carries through
from X3 to

Xn = PGLn(Z)\PGLn(R).

There are two obstacles, however, to obtaining a complete generalization of Theo-
rem 1.4:

(1) the lack of available subconvex bounds,
(2) the lack of suitable technology to rule out “intermediate limit measures.”

At the moment we have little to offer concerning the second point. In the case
when n is prime, the issue of intermediate measures does not occur; if we suppose
Hypothesis A.1 (i.e., a subconvex bound for Dedekind ζ-functions of degree n num-
ber fields), then the analog of Theorem 1.4 holds, i.e. packets of periodic torus
orbits become equidistributed on Xn.

1.6.4. An almost-subconvexity bound for class group L-functions of cubic fields. Let
K be a real cubic field, and let ψ be a nontrivial character of the class group of K.

We have an associated L-function

L(K,ψ, s) =
∑
a

ψ(a)NK/Q(a)−s,

the sum being extended over all integral ideals a, and NK/Q(a) denoting the norm
of a. This L-function has conductor DK , the discriminant of K.

One corollary to our main result is that, for any fixed δ > 0,

(1)

∣∣∣∑NK/Q(a)≤δ
√
DK

ψ(a)
∣∣∣∣∣∣∑NK/Q(a)≤δ

√
DK

1
∣∣∣ = o(1).

3The specific case of subconvexity needed is subconvexity in the level aspect, on GL(3).
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To put this in perspective, a subconvex bound for the degree 3 L-function
L(K,ψ, s) would guarantee that the same is true if we replace δ

√
DK by D0.499

K .
The result (1) could therefore be considered as a “non-quantitative” form of sub-
convexity for this degree 3 L-function.

Since this paper was submitted, K. Soundararajan [41] proved a very general
weak subconvex bound, valid for a wide class of L-functions. His result does not
imply (1) with currently known bounds: what is needed is any improvement of
Stark’s result [42]:

ress=1ζK(s)� log(disc(K))−1.

e.g. any larger exponent would suffice.

1.6.5. The cocompact case. If one considers the quotient of PGLn(R) by a lattice
associated to a R-split division algebra, one obtains a compact quotient. One cer-
tainly believes the analogue of Theorem 1.4 to be valid, but in this case the methods
of the present paper which use Eisenstein series in an essential way do not apply.

This is an instance in which the cocompact case seems harder that the non-
compact case. We refer to [17] where we obtain (weaker) results in the cocompact
case by different methods.

1.7. Connection to existing work. In the rank one case of PGL2, the analogs
of the questions we consider have been intensively studied from many perspectives,
both from the perspective of the work of Linnik and that of Iwaniec and Duke.

Concerning PGLn for n ≥ 3, the direct ancestor of our work is that of Linnik,
who devotes several chapters of his book [32] to the question of distribution of the
packets YxiH . The paper of Oh and Benoist [2] considers problems similar to those
we consider. Both [32] and [2] give results about the problem in the special case
when the Q-torus attached to xiH remains constant.

1.8. Organization of the paper. In §2, we present an outline of the proof of
Theorem 1.4 in entirely classical language.

In §3, we discuss some of the arithmetic manifestations of our result.
In §4, we present a systematic framework for thinking about adelic equidistri-

bution problems. We then explain, in this context, our main results: Theorem 4.8
and Theorem 4.9. These imply the first and second assertions of Theorem 1.4.

In §5, we explain the grouping of periodic orbits into packets. This uses the
setup of §4.

In §6, we specialize to the case of the group G = PGLn and explain the param-
eterization of packets of periodic orbits.

In §7, we give a brief recollection of properties of the building of PGLn, over a
local field.

In §9, we explain the local harmonic analysis that will be needed.
In §8, we set up notational conventions about number fields, ideles and adeles

(especially: normalizations of measures).
In §10, we set up general notation about Eisenstein series (these are the gener-

alization of the functions “Ef” discussed in §2).
In §11, we prove, in adelic language, the estimates for the integral of an Eisenstein

series over a torus orbit (this is the adelic version of (5) from §2).
In §12, we translate the results of §11 from the adelic to the S-arithmetic context,

obtaining Proposition 12.5 (this is the S-arithmetic form of (5) from §2).
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In §13, we complete the proofs of Proposition 4.8 and Theorem 4.9, and therefore
also of Theorem 1.4.

In §A, we briefly recall basic facts about the subconvexity problem for L-functions.
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2. An overview of the proof for PGL3(Z)\PGL3(R)

The majority of this paper is presented in an “adelized” framework, and the
results presented are substantially more general than Theorem 1.4. Nonetheless,
in this section, we would like to explain the ideas that go into Theorem 1.4 in as
classical a setting as possible.

2.1. Parameterizing compact orbits of maximal tori. Let us briefly recall
how, to a number field K with [K : Q] = n, we may associate a compact orbit of
a maximal torus inside PGLn(R), on the space PGLn(Z)\PGLn(R). If the field
K is totally real, the torus will be R-split, we will be in the situation described
in Theorem 1.4, and the construction will specialize to that discussed in our prior
paper [17, Corollary 4.4].

Fix a subalgebra Ar,s ⊂ Mn(R) isomorphic to Rr ⊕ Cs. Then Hr,s := A×r,s/R×
is a maximal torus in PGLn(R); as (r, s) vary through pairs satisfying r + 2s = n,
they exhaust maximal tori, up to conjugacy. In the case (r, s) = (n, 0), Hn,0 is
conjugate to the diagonal subgroup H.

Let [K : Q] = n. Let r and s be the number of real and complex embeddings of
K, respectively. We shall say K has signature (r, s).

Suppose given data (K,L, θ), where K has signature (r, s), θ : K ⊗ R→ Ar,s is
an algebra isomorphism, and L is a “K-equivalence class of lattices” in K, i.e. a
free Z-submodule of rank [K : Q], up to multiplication by K×.

We associate to this data the Hr,s-orbit ι(L)Hr,s; here ι is any map K⊗R→ Rn
satisfying (ab)ι = aι.θ(b). The resulting orbit is independent of choice of ι. The
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stabilizer in Hr,s of any point in the orbit is θ(O×L ) where OL = {λ ∈ K : λL ⊂ L},
and the volume of the orbit is reg(OL), the regulator of OL.

As explained in [17, Corollary 4.4], in the totally real case (r, s) = (n, 0), all
compact H-orbits in Xn are obtained in that way. This does not hold for the other
signature (think of an imaginary quadratic field); to recover a form of this property,
one has to consider more general S-arithmetic quotients of PGLn.

For clarity, we specialize in the remainder of this section to the case (r, s) = (n, 0)
and H = Hn,0 a maximal R-split torus. Interpreted in an appropriate S-arithmetic
context (cf. §12), most of the discussion carries over to general signature so long
as the field K admits a fixed split place, and this is how our main result is proven
in general.

2.2. Packets for PGLn. Consider an order O inside a totally real field K; assume
we have fixed an identification θ as above.

Let us denote by ỸO the set of H-orbits associated to data (K,L, θ) such that

OL = O. Varying K, O and θ, the collections ỸO define a partition of the set of
compact H-orbits. As it turns out, these form a slightly coarser partition of the
compact H-orbits than the one alluded to in Theorem 1.4; i.e., there is a further
natural equivalence relation on the set of lattices with OL = O, which is not trivial
in general4. This equivalence is discussed and explicated in more detail in §5.5,
and we use the term packets to refer to its equivalence classes, or to the associated
collections of H-orbits.

Assuming this for now, let YO be any packet of compact H-orbits contained in
ỸO , and let µO the corresponding measure.

It is not difficult to verify that reg(O) goes to infinity with disc(O). In the totally
real case, the equidistribution statement of Theorem 1.4 is thereby equivalent to
the statement, in the n = 3 case:

(2) As disc(O)→ +∞, µO approaches Haar measure on X3.

2.3. Overview of proof for X2 via analytic number theory. To put things
in perspective, it will be useful to recall the principle of Duke’s proof for X2.

Duke verifies Weyl’s equidistribution criterion, i.e. for a suitable basis {ϕ} for
the functions in L2(PGL2(Z)\PGL2(R))with integral zero, he shows:

(3) µO(ϕ) :=

∫
X2

ϕ(g)dµO(g)→ 0, disc(O)→ +∞.

The basis is chosen to consist of automorphic forms – either cusp forms or Eisenstein
series. Duke proved (3) by interpreting the period integral µO(ϕ) in terms of the
disc(O)-th Fourier coefficient of an half-integral weight form ϕ̃, proving non-trivial
bounds for such coefficients by generalizing a method of Iwaniec [26]. In its most
general form, the formula relating the period integral to Fourier coefficients is due
to Waldspurger [47].

Soon thereafter, another proof emerged that turned out to work in greater gen-
erality. Namely, by a result of Waldspurger [48], one has the relation

|µO(ϕ)|2 = IO(ϕ)
L(π, 1/2)L(π ⊗ χK , 1/2)

disc(O)1/2

4However, when O is a Gorenstein ring - e.g. when n = 2, or O is the maximal order, or O is
monogenic – this further equivalence is trivial, i.e. ỸO is a single packet in the sense of Theorem 1.4.
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where

(1) π is the automorphic representation to which ϕ belongs;
(2) L(π, s) and L(π ⊗ χK , s) are, respectively, the Hecke L-function of π and

the Hecke L-function of the twist of π by the quadratic character associated
with K;

(3) IO(ϕ) is a product of local integrals supported at the place at ∞ and at
the primes dividing disc(O).

Then (3) is a consequence of the estimates

(4) L(π ⊗ χK , 1/2)� disc(OK)1/2−η, IO(ϕ)�
( disc(O)

disc(OK)

)1/2−η
for some absolute η > 0; here OK denote the maximal order of K.

The first bound in (4) is called a subconvex bound and is due to Duke, Friedlander
and Iwaniec [13]; it is a special instance of the so-called subconvexity problem for
automorphic L-functions (see [27] for a discussion of that problem).

The second bound in greater generality is due to Clozel and Ullmo [8] and we
will call it a local subconvex bound. It is somewhat easier that the first, but it
addresses the issue of O non-maximal.

It is tempting to try to generalize this approach to the space Xn of lattices of
higher rank. However this does not seem within reach of the current technology.
In particular, it is not expected that the corresponding “Weyl sums” are related
to (GLn) L-functions. Even were this the case, we do not know how to solve the
corresponding subconvexity problems.5 There is however an exception to this which
will turn out to be crucial for our coming argument.

2.4. Overview of the proof for X3. In summary, our strategy is to check Weyl’s
equidistribution criterion against test functions taken from a tiny portion of L2(X3),
by using/proving global and local subconvex bounds, and to bootstrap this informa-
tion to a full equidistribution statement using results on measures invariant under
higher rank torus actions.

The input we use from ergodic theory is the following measure classification
result regarding invariant measures in rank ≥ 2 — as well as a p-adic variant of it
– by the first two authors and A. Katok [15]:

2.5. Theorem. Let n ≥ 3 and let µ be an ergodic H-invariant probability measure
on Xn where H denotes a maximal R-split torus in PGLn(R). Assume that for
at least one a ∈ H the ergodic theoretic entropy hµ(a) is positive. Then µ is
homogeneous: there exists a reductive group H ( L ⊂ PGLn(R) such that µ is the
L invariant probability measure on a single periodic L-orbit. In particular, if n is
prime, µ is Haar measure on Xn.

The main content of this paper will be to show that assumptions of this theorem
are satisfied when n = 3.

It is conjectured that the following substantially stronger statement holds:

5 Another possibility, more in line with Duke’s original proof would be to use results of Gan,

Gross and Savin [23] which relate the Weyl’s sums to Fourier coefficient to automorphic forms
on G2; unfortunately our state of knowledge concerning bounds for these Fourier coefficients is

rather limited.
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2.6. Conjecture (Furstenberg, Katok-Spatzier [29], Margulis [34]). Let n ≥ 3 and
let µ be an ergodic H-invariant probability measure on Xn, H as above. Then µ
is homogeneous.

Note that in Conjecture 2.6, the measure µ can certainly be the natural measure
on a periodic H-orbit, a possibility that is ruled out in Theorem 2.5. We refer the
interested reader to [16] or to the original paper [15] for a historical background
and for an exposition of some of the ideas that enter into the proof.

Let µ∞ denote a weak∗ limit6 of the {µO}O . There are two main issues to verify:

(A) The measure µ∞ is a probability measure (i.e. the sequence of measures
{µO}O is tight).

(B) Almost every ergodic component of µ∞ has positive entropy w.r.t some
a ∈ H.

Even assuming the stronger conjectured measure classification given by Conjec-
ture 2.6 one needs to overcome pretty much the same obstructions; in that case the
following weaker form of (B) would suffice:

(B′) µ∞(xH) = 0 for any periodic H-orbit xH.

In the context of this paper (B′) does not seem to be much easier to verify than
the weaker statement in (B).

2.7. Weyl’s equidistribution criterion. Our method for verifying both (A) and
(B) is by checking Weyl’s equidistribution criterion for a special class of functions
from which follows a priori bounds for the µ∞-volumes of certain sets. We shall be
able to obtain such bounds on the mass of neighborhoods of the cusp in X3 (which
addresses (A)) or of ε-balls around any x ∈ X3 (which addresses (B)).

2.7.1. The Siegel-Eisenstein series. Let us recall that we can identify X3 with the
space of lattices in R3 of co-volume 1. We shall make use of this identificaition
throughout what follows. Let f be any continuous, compactly supported function
on R3 and let Ef be the Siegel-Eisenstein series

Ef (L) =
∑

λ∈L−{0}

f(λ);

we shall prove

(5) µ∞(Ef ) := lim
disc(O)→+∞

µO(Ef ) =

∫
R3

f(x)dx.

Observe that, by Siegel’s formula, (see eg. [49]),
∫
R3 f(x)dx = µHaar(Ef ); in par-

ticular (5) is consistent with (2).
By taking suitable choices of f , (5) yields the necessary a priori bounds. Indeed,

take v ∈ R3. Take f to be a smooth non-negative function supported in the 2ε-
ball B(v, 2ε), which takes value 1 on B(v, ε). When v = 0, E(f) dominates a
neighborhood of the cusp (in fact approaches infinity near the cusp); when v 6= 0,
E(f) dominates the characteristic function of an ε-neighborhood of any lattice class
x that contains v. In the latter case, we deduce that for, ε small enough

µ∞(B(x, ε))� ε3.

6recall that a sequence of probability measures {µi}i weak∗ converge to some measure µ∞ if,
for any compactly supported function f , µi(f)→ µ∞(f) as i→ +∞.
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This improves over the trivial bound µ∞(B(x, ε))� ε2, arising from the fact that
µ∞ is invariant by the two parameter group H.

This improvement7 from 2 to 3 already shows that µ∞ cannot be supported
along a compact H-orbit. More importantly, this implies that for a generic a ∈ H,
almost every ergodic component of µ∞ has positive entropy with respect to the
action of a from which we deduce the full equidistribution by Theorem 2.5. To
finish this section, we remark that the principle of testing Weyl’s criterion against
Einsenstein series appears in other contexts, for example, [20, 44].

2.7.2. Connection to L-functions. The key point, for establishing (5), is that the
µO(Ef ) is indeed related to L-functions. One has the following formula, which goes
back to Hecke [25]8

(6) µO(Ef ) =

∫
<s�1

f̂(s)
IO(f, s)ζK(s)

disc(O)1−s ds,

where f̂(s) is a certain Mellin-like transform of f , ζK(s) is the Dedekind zeta
function of K and IO(f, s) is a product of local integrals supported at the place ∞
and at the primes dividing disc(O).

Shifting the contour to <s = 1/2, we pick up a residue at s = 1 which equals
µHaar(Ef ); the fact that the remaining integral goes to 0 as disc(O)→ +∞ follows
from the global and local subconvex bounds

(7) ζK(s)�s disc(OK)1/2−η,

(8) IO(f, s)�s

( disc(O)

disc(OK)

)1/2−η
for some absolute η > 0 and <s = 1/2.

For n = 3 the bound (7) follows from the work of Burgess [6] if K is abelian and
(essentially) from the deep work of Duke, Friedlander and Iwaniec if K is cubic not
abelian ([3, 14,37]).

The local bound (8) is new and occupies a good part of the present paper;
moreover, it is valid for any n. Let us describe how it is proved.

2.7.3. The local estimates: harmonic analysis on p-adic homogeneous spaces. Our
approach to bounding the local integrals IO is based on 9 , first of all, relating
IO to integrals of matrix coefficients (inspired by ideas of Waldspurger and Ichino-
Ikeda) and then bounding the integrals of matrix coefficients using the local building
(inspired by ideas of Clozel and Ullmo).

Let us make a remark in representation theory to explain this. Let V be an
irreducible, unitary representation of a group G, and let H ⊂ G be a subgroup.
Suppose that there exists a unique scaling class of invariant functionals L : V → C
invariant by H.

7In passing, we note that the test functions “Ef” considered are not invariant under the

maximal compact K = PO3(R), in general (unlike many problems using the classical theory of
modular forms). This feature is essential to improve the trivial bound µ∞(B(x, ε)) = O(ε2) to
O(ε3).

8Hecke proved that way the analytic continuation and the functional equation of
Grössencharacter L-functions.

9In fact, the estimates needed can be proved in a direct and elementary way; this was the
original approach of the paper. However, the approach carried out, although requiring more

input, has the advantage of being very general.
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It is sometimes possible to understand something about functionals L simply by
studying matrix coefficients. Indeed, if convergent,

∫
h∈H〈hv1, v2〉 defines a func-

tional (on v1) invariant by H and a conjugate-linear functional (on v2) invariant by
H. We conclude by the uniqueness assumption that:

(9)

∫
h∈H
〈hv1, v2〉dh = cV L(v1)L(v2)

for some constant cV . Thereby, L can be studied through matrix coefficients.
It turns out that computing IO amounts to computing with such functionals L,

when G = GL(n, k) and H is a maximal torus inside G; the representations V we
are concerned with are those that occur inside L2(kn). Thereby, (9) allows us to
reduce understanding IO to computations with matrix coefficients.

3. Number theoretic interpretation

We discuss how our main result can be interpreted in terms of integral points on
varieties, generalizing the equations (∗) and (∗∗) from the introduction.

3.1. Integral points on homogeneous varieties. In this section, we interpret
our results in terms of distribution of algebraically defined sets of integral matrices,
which was one of Linnik’s original motivations. This is part of a more general
problem of studying the structure of the set of integral points V(Z) on an algebraic
variety V.

A particularly structured situation occurs when V is homogeneous, i.e. V(C)
possesses a transitive action of a linear algebraic group G. In that case, it is
expected that there are many points which are rather well distributed. Similar
results are found in [19,21,22,32,40].

3.2. Solving polynomial equations in matrices. To motivate what follows,
note that for (x, y1, y2, z) ∈ Z4 and m not a perfect square,(

y1 z
x y2

)2

= m Id⇐⇒ y1 = −y2, y
2
1 + xz = m.

Thereby, (∗∗) is a statement concerning 2 × 2 integral matrices satisfying a pre-
scribed quadratic equation.

Given P a monic integral irreducible polynomial of degree n with integral coef-
ficients, we let

ZP = {M ∈Mn, P (λ) = det(M − λI)}.
Thus integral points ZP (Z) can be identified simply with integral solutions to P = 0
in n× n matrices.

The signature (r, s) of such a polynomial will be the number of real roots, resp.
conjugate pairs of complex roots; thus r + 2s = n. Let Zr,s be the space of all
splittings of Rn into r real lines and s complex planes.

If P has signature (r, s), the space ZP (R) is identified with Zr,s by, first, fixing
an ordering of the real and complex roots of P ; and then associating to a matrix
M ∈ ZP (R) its eigenspaces.10

The spaces Zr,s carry a PGLn(R)-invariant measure, unique up to scaling (in-
deed, Zr,s ∼= PGLn(R)/Hr,s), which we denote by vol(·).

10For a complex eigenvalue, we take the eigenspaces corresponding to that eigenvalue and its
complex conjugate, and intersect their sum with Rn.
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3.3. Corollary. Let {Pi}i be a sequence of cubic, monic, integral, irreducible poly-
nomials of signature (r, s) and of discriminant satisfying disc(Pi)→ +∞.

(1) If (r, s) = (3, 0), then ZPi(Z) becomes uniformly distributed on Z3,0.
(2) If (r, s) = (1, 1), and there exists a fixed prime number p so that Pi has

three p-adic roots, then ZPi(Z) becomes uniformly distributed on Z1,1.

Here, we say, a sequence of discrete sets Zi ⊂ Zr,s ∼= G/Hr,s becomes equidis-
tributed on Zr,s if, for any compact sets Ω1,Ω2 ⊂ Zr,s with boundary measure zero
and vol(Ω2) > 0, one has

|Zi ∩ Ω1|
|Zi ∩ Ω2|

→ vol(Ω1)

vol(Ω2)
, as i→∞.

Implicit in this statement is the fact that |Zi ∩Ω2| is non-zero if i is large enough:
for instance, in Corollary 3.3, one can show that for any ε > 0 and i sufficiently
large (depending on Ω2)

|ZPi(Z) ∩ Ω2| �ε disc(Pi)
1/2−εvol(Ω2).

3.4. Cube roots of integers in 3×3 matrices. Let us specialize further, to make
this even more concrete. For d > 0 not a perfect cube, consider the polynomials
Pd(X) = X3 − d and set Zd(Z) = ZPd(Z).

Here, it is convenient to explicitly interpret Z1,1
∼= G/H1,1 as the space of ”matrix

cube roots of unity”:

Z1,1 = {M ∈M3(R), M3 = Id,M 6= Id}.
This being so, our previous Corollary can be stated in terms of the “radial projec-
tions” to the latter space:

3.5. Corollary. Let p > 3 be a fixed prime. As d → +∞ amongst the integers
which are not perfect cubes and such that

p is totally split in the field Q( 3
√
d)

then the sequence of sets 1
d1/3

.{M ∈M3(Z),M3 = d} becomes equidistributed in the

space {M ∈M3(R), M3 = Id}.

3.6. Translations. Let us explain how the above corollaries follow, indeed, from
our main theorems. Set G = PGLn(R) and Γ = PGLn(Z).

Let P have signature (r, s); let OP be the ring Z[t]/P and KP = OP ⊗ Q. By
a coarse ideal class for OP , we understand a lattice L ⊂ KP so that OP .L ⊂ L,
considered up to multiplication by K×P . With this convention, there are maps:
(10)
Γ-orbits on ZP (Z) ↔ coarse ideal classes for OP → compact Hr,s-orbits on Xn.

The first map is a bijection. The composite of the two arrows amounts to the
identification between Γ-orbits on G/Hr,s, and Hr,s-orbits on Γ\G.

In arithmetic terms, we can understand the maps as follows:

(1) If we fix M ∈ ZP (Z), the map t 7→ M makes Zn into a OP -module; there
is a unique coarse ideal class L so that L and Zn are isomorphic as OP -
modules. (This is very classical; see, e.g. [31]).

(2) The second injection associates to the class of L ⊂ KP the compact orbit
associated to (KP , L, θ), in the notation of §2.2. Here θ : KP → Ar,s is the
identification arising from the chosen ordering of the roots of P .
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The composite map associates to the set of Γ-orbits on ZP (Z) a set of Hr,s-orbits
on Xn; in the notation of §2.2, this set is:

(11) YP =
⋃

OP⊂O⊂OKP

ỸO ,

corresponding to all packets whose associated order in KP contains OP . The possi-
bility of intermediate orders corresponds to the fact that the ideals that arise need
not be proper OP -ideals.

Under these bijections, the equidistribution assertion about ZP translates to an
equidistribution assertion about YP , as we now recall.

3.7. Integral-points interpretations. As is well known (cf. [2, §8]) the (tauto-
logical) equivalences

Γ\ΓgHr,s ←→ ΓgHr,s ←→ ΓgHr,s/Hr,s

can be used to transfer equidistribution results about periodic Hr,s-orbits on Γ\G,
to equidistribution of the corresponding Γ-orbits on G/Hr,s. Taking into account
(10), the first assertion of Corollary 3.3 reduces to the following:

3.8. Corollary. Let {Pi}i be a sequence of cubic, monic, integral, irreducible, R-
split polynomials of discriminant disc(Pi)→ +∞. Then the set of compact H-orbits
defined by (11) becomes equidistributed on X3 (here H = H3,0).

This is indeed a corollary to Theorem 1.4, taking into account the fact that the
total number of compact H-orbits on X3 with bounded volume is finite.

Similarly, the other assertion of Corollary 3.3 follows from the more general adelic
Theorem 4.9.

4. Homogeneous subsets in the adelic context

This paper has been written consistently in the adelic framework. It is therefore
appropriate for us to discuss adelic equidistribution problems. We confine ourselves
to equidistribution problems associated to tori, although much of the discussion
applies in greater generality.

Let us emphasize that the adeles are simply a linguistic tool: all statements
and results could be readily stated in the S-arithmetic context. The advantage
of the adeles, rather, is that they provide a unified approach to broad classes of
questions. For instance, consider the following equidistribution questions on the
modular surface:

(1) Equidistribution of CM points;
(2) Equidistribution of large hyperbolic circles, centered at the point i ∈ H;
(3) Equidistribution of closed geodesics (see §1.2).
(4) On PGL2(Z)\PGL2(R), equidistribution of the translate of a fixed closed

H-orbit by a “large” group element in PGL2(R).11

These situations are all closely related, although they are often treated sepa-
rately, and our aim is to discuss them as specializiations of a single adelic context.

Similarly, in [8], two classes of equidistribution problems are considered: “equidis-
tribution on the group”, and “equidistribution on the symmetric space;” these two
problems again become unified in our presentation.

11See [19] for very general theorems concerning this setting, and also [2] for related results.
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Explicitly, the goals of this section are as follows. We define “homogeneous toral
sets”; roughly, as will be clarified in Theorem 5.2, these generalize the groupings
YxiH of compact orbits discussed in Theorem 1.4. We then define two important
invariants (“volume” and “discriminant”) for homogeneous toral sets, formulate
the main question about their distribution (§4.4) and state our main theorems –
Theorem 4.8 and Theorem 4.9 – in these terms. These theorems imply immediately
Theorem 1.4, and their proofs comprise most of this paper.

4.1. Homogeneous sets: definitions. Let F be a number field with adele ring
A. Let G be a F -group with Lie algebra g. Set X = G(F )\G(A).

A homogeneous toral subset of XA will be, by definition, one of the form

Y = T(F )\T(A).gA,

when gA ∈ G(A) and T ⊂ G is a maximal torus. We shall consider only the case
where the torus T is anisotropic over F .

Then Y supports a natural probability measure µY : the pushforward of the Haar
probability measure on T(F )\T(A) by h 7→ hgA.

We shall associate to Y two additional invariants: a discriminant disc(Y ), mea-
suring its arithmetic complexity, and a volume vol(Y ), measuring how “large” it
is.

4.2. Discriminant. Let r = dim T. Let V be the affine space (∧rg)⊗2. We fix a
compatible system of norms ‖ · ‖v on V ⊗F Fv, for each place v (for a discussion
of norms, see §7; “compatible” means that, for almost all v, the unit balls of the
norms coincide with the closure inside V ⊗ Fv of a fixed OF -lattice within V ).

To the Lie algebra t of T, we associate a point in the affine space (∧rg)⊗2:

(12) ι(t) = (e1 ∧ · · · ∧ er)⊗2(detB(ei, ej))
−1.

where e1, . . . , er is a basis for t, and B the Killing form. We set

discv(Y ) = ‖Ad(g−1
v )ι(t)‖v.

The discriminant disc(Y ) is defined to be the product∏
v

discv(Y ).

4.3. Volume. The definition of “volume,” for a homogeneous toral subset, will
depend on the choice of a compact neighborhood Ω0 ⊂ G(A) of the identity. This
notion depends on Ω0, but the notions arising from two different choices of Ω0 are
comparable to each other, in the sense that their ratio is bounded above and below.
We define

(13) vol(Y ) := vol
(
{t ∈ T(A) : g−1

A tgA ∈ Ω0}
)−1

,

where we endow T(A) with the measure that assigns the quotient T(F )\T(A) total
mass 1.
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4.4. Desideratum. We shall say that a measure on X is homogeneous if it is
supported on a single orbit of its stabilizer.

The kind of problem we are interested in is the following:
When disc(Yi) →∞ (equivalently vol(Yi) →∞), show that µYi converges to an

homogeneous measure.
There are certain cases of this problem which are easier. For instance (the

“depth” aspect) we might consider a sequence of homogeneous toral sets for which
there exists a fixed place v with discv(Yi) → ∞. In this case, a limit of the µYis
will be invariant under a unipotent subgroup. This special case is interesting from
the point of view of many applications, as for instance in the work of Vatsal [45].
Eskin, Mozes and Shah, [19], and also Benoist and Oh [2] study this aspect.

4.5. The case of a quaternion algebra. The current state of knowledge con-
cerning quaternion algebras implies the following theorem:

4.6. Theorem. Let G be the projectivized group of units in a quaternion algebra
over a number field F . Let {Yi}i be a sequence of homogeneous toral sets whose
discriminant approaches ∞ with i→ +∞. Then

vol(Yi) = disc(Yi)
1/2+o(1), i→ +∞.

Moreover, any weak∗ limit of the measures µYi is a homogeneous probability measure

on G(F )\G(A), invariant under the image of G̃(A) 7→ G(A).

Here, G̃ denotes the simply-connected covering-group of G. Indeed, one even
knows this in a quantitative form: if f ∈ C∞(G(F )\G(A)) generates an irre-
ducible, infinite-dimensional G(A)-representation, then |µYi(f)− µ(f)| is bounded
by Of (disc(Yi)

−δ) for a positive δ.
The reason that we cannot simply assert that µYi converge to the Haar measure

has to do with “connected component issues.”
Theorem 4.6 is a consequence of works by several authors:

(1) Siegel’s lower bounds (for the statement concerning volumes);
(2) Iwaniec [26], Duke [12], Duke–Friedlander–Iwaniec [13], Cogdell–Piatetski-

Shapiro–Sarnak [9], and the fourth-named author [46] (for the pertinent
subconvexity bounds).

(3) Waldspurger [48] (see also [28]), Clozel–Ullmo [8], Popa [38], S.-W. Zhang
[51] and P. Cohen [10].

It conceals a unified statement of a large number of “instances” of that theorem,
corresponding to varying the parameter disc in different ways: e.g. [7, 8, 37]. For
instance, if the quaternion algebra is defined over a totally real field and the quater-
nion algebra is ramified at one place, one obtains in that way, equidistribution re-
sults for closed geodesics on an arithmetic Riemannian surface. Another example:
it implies the solution (outlined by Cogdell–Piatetsky-Shapiro–Sarnak in [9]) to the
representability question for ternary quadratic forms over number fields.

4.7. Results for G = PGLn. Let {Yi}i be any sequence of homogeneous (maxi-
mal) toral sets on X = PGLn(F )\PGLn(A) whose discriminant approaches∞ with
i→ +∞. Let Ti be the associated tori; then

Ti = ResKi/FGm,Ki/Gm,F ,

for a field extension Ki/F of degree n, unique up to isomorphism. We show:
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4.8. Theorem. For {Yi}i as above, one has

vol(Yi) = disc(Yi)
1/2+o(1), as i→ +∞

This result is easy given well-known (but difficult) bounds on class numbers. It
shows that the definitions of adelic volume and discriminant proposed are compat-
ible.

Now let us describe our result on the distribution of homogeneous toral sets.
First suppose there exists a fixed place v with one of the following properties:

(1) The local discriminant discv(Yi)→∞.
(2) Every Ti is split at v and a sub-convexity result in the discriminant aspect

is known for values, along the critical line, of the Dedekind-ζ-functions
associated to the fields Ki. (See (71) for the precise requirement.)

Then our results establish that any weak∗ limit of the measures µYi is a convex
combination of homogeneous probability measures. However, the precise shape of
such a homogeneous probability measure appears to be somewhat complicated in
the adelic setting.

Rather than attempt a precise statement of the above, let us simply give the
result in the simple case n = 3. It is simple for two reasons: first of all, the
necessary subconvexity is known; secondly, the fact that n is prime forces there to
be very few intermediate measures. We prove:12

4.9. Theorem. Suppose n = 3 and let {Yi}i be a sequence of homogeneous toral sets
such that disc(Yi)→ +∞ with i; suppose there exists a place v so that discv(Yi)→
∞ or so that each Ti is split at v. Then any weak∗ limit of the µYi , as i → +∞,
is a homogeneous probability measure on X, invariant by the image of SL3(A).

The equidistribution assertion of Theorem 1.4 is a consequence of Theorem 4.9,
applied with F = Q, v =∞; translation from Theorem 4.9 is provided in the next
section.

We conclude this section by observing that it remains a very interesting problem
to remove the usage of the place v in Theorem 4.9, i.e., obtaining for PGL3 a result
as strong as Theorem 4.6 (even without a rate).

5. Packets

In this section we will clarify the relationship between the adelic perspective of
§4, and the classical perspective of [17].

We will therefore exhibit a natural equivalence relation on the set of compact
H-orbits on Γ\G for which the equivalence classes are (almost) finite abelian groups.

The equivalence classes will be called packets, and the union of compact torus
orbits in a packet corresponds, roughly speaking, to an adelic torus orbit.

5.1. Notation. We recall the data prescribed in [17]. Let G be a semisimple group
over Q that is R-split; G = G(R),Γ ⊂ G a congruence lattice, and H a Cartan
subgroup of G. To simplify notations we will write ΓgH for the right H-orbit
Γ\ΓgH ⊂ Γ\G.

12It should be observed that this relies on an extension of [14] that has been announced by
the latter two authors [36], and a theorem announced in [16], but neither of the proofs have yet

appeared. With F = Q, the proofs exist in print and are contained in [3, 14,15].
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We fix a lattice gZ ⊂ g that is stable by the (adjoint) action of Γ, as well as a G-
invariant bilinear form B(·, ·) on g with B(gZ, gZ) ⊂ Z. Finally, we fix a Euclidean
norm on gR.

Let r be the rank of G. Take V = ∧rg. For all finite p, we endow V ⊗Qp with

the norm which has as unit ball the closure of
(
∧rgZ

)⊗2 ⊗ Zp. For p = ∞, we
give V ⊗R the Euclidean norm derived from that on g. These choices allow one to
define the notion of discriminant of a homogeneous toral set, as in §4.

In addition to this, we shall take as given one further piece of data. Let Af be
the ring of finite adeles. Choose a compact open subgroup Kf ⊂ G(Af ) so that
Kf ∩G(Q) = Γ and so that gZ is stable under the (adjoint) action of Kf .

Let XA denote the double quotient XA := G(Q)\G(A)/Kf . Clearly G acts on
XA and we shall refer to its G-orbits as the components of XA and to the orbit of
the identity double coset as the identity component (these need not be topologically
connected); the identity component is identified with Γ\G. The set of components
is finite and is parametrized by the double quotient G(Q)\G(Af )/Kf .

5.2. Theorem. (1) Each compact H-orbit ΓgH ⊂ Γ\G ⊂ XA is contained in
the projection to XA of a homogeneous toral set Y ⊂ G(Q)\G(A). The set
Y is unique up to translation by Kf ; in particular, all such Y s have the
same projection to XA. Moreover, the discriminant of ΓgH, in the sense of
[17], and the discriminant of Y , in the sense of §4, coincide up to a positive
multiplicative factor; the latter factor depending only on H, on the choice
of B(·, ·) and on the Euclidean norm on gR.

(2) Declare two compact H-orbits to be equivalent if they both are contained in
the projection to XA of a homogeneous toral set Y .

An equivalence class of compact H-orbits we refer to as a packet. Packets
are finite; indeed, the packet of ΓgH is parameterized by the fiber of the map

T(Q)\T(Af )/(Kf ∩T(Af ))→ G(Q)\G(Af )/Kf

above the identity double coset; here T is the unique Q-torus so that T(R) =
gHg−1.

In particular, if G(Q)\G(A)/Kf has a single component, every packet
naturally has the structure of a principal homogeneous space for a finite
abelian group.

(3) Compact orbits in the same packet have the same stabilizer and the same
discriminant.

The proof of this theorem is straightforward. However, its content is quite beau-
tiful: the collection of compact Cartan orbits on Γ\G group themselves into equiv-
alence classes, each (almost – see assertion (2) of the Theorem) parameterized by
finite abelian groups, and the latter are themselves closely related to ideal class
groups in number fields.

As such, this is a natural generalization of the situation described in the introduc-
tion to our paper: the set of geodesics of fixed length on SL2(Z)\H is parameterized
by the class group of a real quadratic field.

5.3. Proofs. In order to keep notation minimal, for g ∈ G(A) we shall write [g] =
G(Q).g.Kf ∈ XA for the associated double coset. If S ⊂ G(A) is a subset, we
often write simply [S] for [g] : g ∈ S.

Let us recall from [17]:
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5.4. Proposition (Basic correspondence). There is a canonical bijection between

(1) periodic H-orbits ΓgH on Γ\G
(2) Γ-orbits on pairs (T, g) where T is an anisotropic torus defined over Q and

g ∈ G/H is so that gHg−1 = T(R).

The bijection associates to ΓgH the pair (T, g), where T is the unique Q-torus
whose real points are gHg−1.

Proof of the first statement of the theorem. Given (T, g), clearly ΓgH is contained
in the projection to XA of the homogeneous toral set Y0 := (T(Q)\T(A)).(g, 1).
(Here (g, 1) ∈ G(A) is the element that equals g at the real place, and is the
identity elsewhere; in what follows we abbreviate it simply to g.)

Now let us show that Y0 is the only such homogeneous toral set, up to Kf . Take
any homogeneous toral set Y = (T′(Q)\T′(A))g′A whose projection to XA contains
ΓgH = ΓT(R)g. Therefore,

T(R) ⊂
⋃

δ∈G(Q)

δT′(A)g′AKfg
−1.

It follows that there exists δ ∈ G(Q) so that

T(R)(0) ⊂ δT′(A)g′AKfg
−1,

Therefore there exists t′ ∈ T′(A) and k ∈ Kf so that δt′g′Akg
−1 = 1 and T = δT′δ−1

and, moreover,. We conclude that

(T′(Q)\T′(A))g′A = δ−1(T(Q)\T(A))δt′g′A = (T(Q)\T(A))gk−1

where we treated these as subsets of G(Q)\G(A).
It follows that any homogeneous toral set Y , whose projection to XA contains

ΓgH, is necessarily of the form (T(Q)\T(A)).(g, 1), up to modification by Kf .
The equality of discriminants asserted in the Theorem is a direct consequence

of the definitions of the discriminant (see [17, (2.2)] for the definition for compact
Cartan orbits). For this note that the p-adic discriminant measures the power of
p in the denominator of ι(t), while the discriminant at ∞ equals the norm of ι(h)
and so is constant.

Proof of the second assertion of the theorem. Now let us observe that the
packet of the compact orbit ΓgH consists of all compact orbits ΓδgH with δ ∈
G(Q) ∩KfT(Af ) (where the intersection is taken in G(Af )). Here T is the torus
corresponding to ΓgH. We shall verify that the packet of ΓgH is parameterized by
the fiber of the map

T(Q)\T(Af )/Kf ∩T(Af )→ G(Q)\G(Af )/Kf

above the identity double coset. The finiteness assertion is then an immediate
consequence of the finiteness of class numbers for algebraic groups over number
fields.

Notations being as above, two δ, δ′ ∈ G(Q) ∩ KfT(Af ) define the same com-
pact orbit ΓδgH if and only if ΓδT(Q) = Γδ′T(Q); therefore compact orbits are
parameterized by the double quotient

G(Q) ∩Kf\(G(Q) ∩KfT(Af ))/T(Q) = Kf\(KfG(Q) ∩KfT(Af ))/T(Q)

but this is (after inverting) precisely what is described by the theorem.
Proof of the final assertion of the theorem. Let ΓgH,ΓδgH be in the same packet.

We have already verified the equality of discriminants. To verify the equality of
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stabilizers, we check that T(R)∩Γ = T(R)∩δ−1Γδ. By assumption, Γ = G(Q)∩Kf .

Thus T(R) ∩ Γ = G(Q) ∩T(R)Kf and T(R) ∩ δ−1Γδ = G(Q) ∩T(R)(δ−1
f Kfδf ),

where δf is the image of δ under G(Q) ↪→ G(Af ). There exists tf ∈ T(Af ), kf ∈ Kf

so that δf = kf tf ; therefore, we need to prove

G(Q) ∩T(R)Kf = G(Q) ∩T(R)(t−1
f Kf tf ).

An element on the left-hand side belongs to T(Q), so automatically commutes with
tf , and so belongs to the right-hand side also. Reversing this reasoning shows the
equality. �

5.5. Example: packets for GLn. Let us explain, by way of illustration, the
equivalence relation explicitly in the case of PGLn(Z)\PGLn(R).

More precisely, we take G = PGLn, Γ = PGLn(Z), H the diagonal subgroup,
and Kf the closure of Γ in PGLn(Af ). We may identify the Lie algebra pgln
with the quotient of n× n matrices by diagonal matrices; for gZ, we take then the
projection of Mn(Z) to pgln. For B we take simply the Killing form, and we take
the Euclidean norm on pgln,R to be that derived from the Hilbert-Schmidt norm
on Mn(R). (This differs by a factor of 2 from that chosen in [17, §4].)

As discussed in [17], and recalled previously, compact H-orbits are parameterized
by data (K,L, θ).

The equivalence corresponding to packets can be described in elementary terms
as follows: Declare (K,L, θ) ∼ (K,L′, θ) whenever L,L′ are locally homothetic;
here, we say that two lattices L,L′ ⊂ K are locally homothetic for every prime
number p, there exists λp ∈ (K⊗Qp)× so that Lp = λpL

′
p; here Lp, L

′
p denote their

respective closures in K ⊗Qp.
Observe that L ∼loc L′ implies that OL = OL′ . However, the converse is a

priori not true (unless OL is Gorenstein, see e.g. [1, (6.2),(7.3)]: for instance if
OL is the maximal order). Thus, the grouping into packet refines several plausible
cruder groupings, e.g., grouping compact orbits with the same volume, or grouping
compact orbits for which the order OL is fixed.

Moreover, one can see at a heuristic level why the “packet” grouping has better
formal properties than the “fixed order” grouping. Namely the set of proper OL
ideals up to homothety (ie. up to multiplication by K×) is not a priori a group,
nor a principal homogeneous space under a group. By contrast, the set of lattices
up to homothety, within the local-homothety class of L, does form a principal
homogeneous space for a certain abelian group, the Picard group Pic(OL), ie. the
group of homothety classes of ideals locally homothetic to OL. Of course, if OL
happens to be Gorenstein, the packet is parameterized simply by Pic(OL).

6. Homogeneous toral sets for GLn

We shall now consider explicitly the case of G = PGLn over a global field F ,
introducing data D which parameterizes homogeneous toral sets, which we term
global torus data.

By localization, such data will give rise to certain local data over each place of v,
which we term local torus data. We shall explain how to compute the discriminant
of the homogeneous toral set – in the sense of §4 – very explicitly in terms of the
local torus data.
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6.1. The local data. Local torus data D , over a local field k, consists simply of
an étale k-algebra A ⊂ Mn(k) of dimension n: i.e. a direct sum A = ⊕iKi where
the Ki are field extensions of k.

Set g = Mn(k)/k identified as the Lie algebra of PGLn. Let V be the affine
space

V = (∧n−1g)⊗2

To the data D/k, we associate a point in x ∈ V via:

(14) xD = [(f1 ∧ · · · ∧ fn−1)⊗2(detB(fi, fj))
−1]

where f1, . . . , fn−1 is a basis for A/k ⊂Mn(k)/k, and B is the Killing form on g.
We set disc(D/k) := ‖xD‖V . Here ‖ · ‖V is (see §7)

- the norm on V whose unit ball is the closure of ∧rMn(Ok)/Ok, for k non-
archimedean;

- the norm on V which descends from the Hilbert-Schmidt norm on Mn(k)
for k archimedean.

Explicitely: let f0, f1, . . . , fn−1 be a k-basis of for A with f0 ∈ k and which
span Λ = A ∩Mn(Ok) as an Ok-module (when k is nonarchimedean) or which is
orthonormal w.r.t. the Hilbert-Schmidt norm on Mn(k) (when k is archimedean).
If this is so, one may compute disc(D/k) by the rule:

(15) disc(D/k) := |(2n)1−n det(tr(fifj))
−1|.

In particular, for k nonarchimedean, the discriminant of D/k differs, by a constant,
from the discriminant of the ring Λ.

6.2. Proof of equivalence between (15) and (14). This is, in essence, proved
in [17]. Let us reprise it here. Let fi be a basis for A, as chosen above. Let f̄i, for
1 ≤ i ≤ n− 1, be the projection of fi to g. Norms as above,

‖(f̄1 ∧ · · · ∧ f̄n−1)⊗2‖V = 1.

In fact, in the nonarchimedean case, we may extend f̄i (1 ≤ i ≤ n − 1) to an Ok-
basis for Mn(Ok)/Ok, which makes the result obvious. In the archimedean case,
the claim is an immediate consequence of the fact that f0, . . . , fn are orthonormal
w.r.t. the Hilbert-Schmidt norm.

The Killing form on g evaluates to: B(f̄i, f̄j) = 2(ntr(fifj)−tr(fi)tr(fj)). There-
fore, the determinant detB(f̄i, f̄j)1≤i,j≤n−1 equals (2n)n−1 det(tr(fifj)0≤i,j≤n−1.
The discussion of §4.2 associates to t = A/k ⊂ g the point

ι(t) = (2n)1−n det(tr(fifj)0≤i≤n−1)−1(f̄1 ∧ . . . f̄n−1)⊗2

The required compatibility follows.

6.3. Global data. Let F be a global field. We define global torus data D to consist
of a subfield K ⊂Mn(F ) and an element gA = (g∞, gf ) ∈ A×K\GLn(A).

To the global data we may associate (cf. §4):

(1) A homogeneous toral set YD = (TK(F )\TK(A))g, and the probability
measure µD on YD . Here TK is the unique subtorus of PGLn with Lie
algebra K/F .

(2) A (global) discriminant disc(D) := disc(YD), depending on K, gA.
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The global discriminant disc(D) can be computed in terms of our discussion
above. Indeed, the global torus data D = (K, g) also gives rise to a collection of
local torus data (Dv)v: for every place v, Dv consists of the subalgebra

Av = g−1
v (K ⊗ Fv)gv ⊂Mn(Fv)

and it follows from the definitions that

disc(D) =
∏
v

disc(Dv).

7. The local building

In this section, we are going to recall the basic theory of the building attached
to the general linear group, over a local field k. We will follow the beautiful old
ideas of Goldman and Iwahori, [24], interpreting this by norms on a k-vector space.

7.1. Notation concerning local fields. We denote by k a local field. Let us
normalize once and for all an absolute value on it. If k = R or C, | · | denote the
usual absolute value and if k is non-archimedean, we normalize | · | to be the module
of k: | · | = q−vπ(·), where q is the cardinality of the residue field and π ∈ k any
uniformizer, and vπ(·), the corresponding valuation.

7.2. Definition of the building by norms. Let k be a local field and V vector
space over k of finite dimension. A norm on V is a function N : V → R+ into the
non-negative reals that satisfies

N(v) = 0⇔ v = 0V , N(λx) = |λ|N(x), λ ∈ k

N(x+ y) ≤

{
N(x) +N(y) (if k is archimedean)

max(N(x), N(y)) (if k is nonarchimedean).

For N a norm, we denote its homothety class by [N ]:

[N ] = {µN, µ ∈ R>0}

If k is real (respectively complex), we call a norm on V good if it is quadratic
(respectively Hermitian). If k is nonarchimedean, we shall refer to any norm as
good.

We let B(V ) and B̄(V ) be the building of GL(V ) and PGL(V ) respectively;
specifically B(V ) is the set of good norms on V , and B̄(V ) the set of such norms
up to homothety.

7.3. Action of the group. The group GL(V ) acts transitively on B(V ) via the
rule

g.N(x) = N(xg).

This induces a transtive action of PGL(V ) on B̄(V ).
If k is archimedean, the stabilizer of a good norm is a maximal compact subgroup,

and any (good) norm is determined by its unit ball.
If k is nonarchimedean, neither of these are true: consider, for instance, the norm

on Q2
p given by (x, y) 7→ max(|x|, p−1/2|y|). We say that a norm is standard if is

satisfies

N(x) = inf{|λ| : λ ∈ k,N(x) ≤ |λ|}.
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A standard norm is determined by its unit ball, and its stabilizer is a maximal
compact subgroup of GL(V ). Standard norms, are, equivalently (q the cardinality
of the residue field of k):

(1) Those which take values in qZ;
(2) Those which look like x = (x1, . . . , xn) 7→ maxi |xi| in suitable coordinates;
(3) Those that correspond to (special) vertices of the building.

The action of GL(V ) preserves standard norms.

7.4. Direct sums. Apartments. Given norms NV on V and NW on W , they
determine a norm NV ⊕NW on V ⊕W , defined by

√
N2
V +N2

W if k is archimedean,
and max(NV (v), NW (w)) if k is nonarchimedean.

Any splitting of V into one-dimensional subspaces determines an apartment.
This consists of all norms that are direct sums of norms on the one-dimensional sub-
spaces. Any two norms belong to an apartment. Apartments are in bijection with
split tori within GL(V ): a splitting of V into one-dimensional spaces determines
a split torus, namely, those automorphisms of V preserving each one-dimensional
space.

If H is a split torus with co-character lattice X?(H), then the vector space
h := X?(H)⊗ R acts simply transitively on the apartment. It suffices to explicate
this when V is one-dimensional; in that case, the action of the tautological character
Gm → GL(V ) = H on the set of norms is multiplication by cardinality of the
residue field if k is nonarchimedean, and multiplication by (e.g.) e = 2.718, when
k is archimedean.

In explicit terms, we can phrase this as follows: the apartment in the building
of kn, corresponding to the diagonal torus in GL(n, k), consists of all norms of the
following form, :

N(x1, . . . , xn) =

{
maxi q

ti |xi|,nonarchimedean, q := size of residue field.(∑
i e

2ti |xi|2
)1/2

, archimedean.,

for some (t1, . . . , tn) ∈ Rn. Therefore, this apartment is parameterized by the affine
space Rn.

7.5. The canonical norm on an algebra. Let A be a (finite dimensional) étale
algebra over k, i.e. A = ⊕iKi is a direct sum of field extensions of k, we equip it
with a norm which we shall call the canonical norm.

- If k is nonarchimedean: let OA = ⊕iOKi denote the maximal compact
subring of A:

(16) NA(t) = inf{|λ|, λ ∈ k : t ∈ λOA.}

That norm is standard and has unit ball OA. Moreover, for t decomposing
as t = (t1, . . . , ti, . . . ), ti ∈ Ki, one has

(17) NA(t) = max
i
NKi(ti).

Here NKi denote again the standard norm of the k-algebra Ki.
- If k is non-archimedean, A = ⊕Ki, for certain subfield Ki ⊂ C. We define

NA(
∑
i

xi) =

(∑
i

|xi|2
)1/2

.
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To keep our notations consistent with the non-archimedean case, we define
OA to be the unit ball of NA:

(18) OA = {x ∈ A, NA(x) ≤ 1}.
When A = kn, we denote the canonical norm by N0.

7.6. The metric and operator norms. We may equip B(V ) with a GL(V )-
invariant metric by using the notion of operator norm:

If N1, N2 are any two norms, we let exp(dist(N1, N2)) be the smallest constant
α ≥ 1 such that N2 satisfies α−1N1 ≤ N2 ≤ αN1.

Given any two norms N1, N2, there exists an apartment that contains them both;
thus, to understand dist, it suffices to understand it on each apartment. In §7.4,
we explicitly parameterized each apartment by an affine space (t1, . . . , tn) ∈ Rn. In
terms of that parameterization,

dist((t1, . . . , tn), (t′1, . . . , t
′
n)) := log(q) max

i
|ti − t′i|

Here we understand q = e for k archimedean. Therefore, this amounts to an L∞-
metric on each apartment.

We equip B̄(V ) with the quotient metric13. In particular, if N1, N2 are two norms
and [N1], [N2] the corresponding elements in B̄(V ), then, for any v1, v2 ∈ V :

(19) dist([N1], [N2]) ≥ 1

2
log

N1(v1)N2(v2)

N2(v1)N1(v2)
.

Indeed, one may define dist as the supremum of the quantities appearing on the
right-hand side.

7.7. Harish-Chandra spherical function. We shall make use of the Harish-
Chandra spherical function on GL(V ). It is defined with reference to a maximal
compact subgroup K ⊂ GL(V ), which we take to be the stabilizer of a standard
norm N .

Fix an apartment containing N , and let H ⊂ GL(V ) be the split torus corre-
sponding to this apartment. Let B ⊃ H be Borel containingH, with unipotent radi-
cal U corresponding to all positive roots. We have a decomposition GL(V ) = UHK.
Let H : GL(V ) → H be the projection according to this decomposition and let
ρ : H → R+ be defined by

ρ : a 7→
∏
α∈Φ+

|α(a)|1/2

be the “half-sum of positive roots” character w.r.t B.
The Harish-Chandra spherical function is defined as:

Ξ(g) :=

∫
k∈K

H(kg)ρdk,

where the measure on K is the Haar measure with total volume 1. We will be
needing the following bound: for any α < 1,

(20) Ξ(g)�α exp(−α.dist([gN ], [N ]))

Indeed, it suffices to prove (20) when gN belongs to a fixed apartment containing
N . Identifying this with an affine space, with N as origin, the point gN has

13Recall that if X is a metric space and G acts by isometries on X, we may define the metric
on X/G via d(x1, x2) = infg∈G d(x1g, x2).
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coordinates (t1, . . . , tn); without loss of generality, we may assume that t1 ≤ t2 ≤
. . . tn, and (cf. [30, Proposition 7.15] for real semisimple Lie groups)

Ξ(g)�α

(
q−

1
2

∑
i<j ti−tj

)−α
for any α < 1. On the other hand, by (19)

dist([gN ], [N ]) =
1

2
log q.(tn − t1),

whence our conclusion.

7.8. Action of invertible linear maps. If ι : V → W is an invertible map
between vector spaces, which we understand as acting on the right (i.e. v.i or
vι ∈ W ), and N is a norm on W , we denote by ιN the norm v 7→ N(v.ι), a norm
on V .

8. Notation

In this section, we set up some fairly standard notation concerning number fields.
We set up local notation first, and then global notation. In §9 we shall use only the
local notation; in the rest of the paper, we make use of the global notation.

8.1. Local notation and normalizations. Let k be a local field and A ⊂Mn(k)
local torus data, with [A : k] = n. The absolute value on k is normalized as in §7.1.

We denote by | · |A the “module” of A, i.e., the factor by which the map y 7→ yx
multiplies Haar measure on A if x ∈ A× and |x|A = 0 if x ∈ A−A×. Consequently,
writing A = ⊕iKi,

|x|A =
∏
i

|xi|Ki , x = (. . . , xi, . . . ), xi ∈ Ki;

in particular, for14 x ∈ k ⊂ A, |x|A = |x|nk . Observe also that the module |x|A
coincide with |det(x)| when we view x as an element of Mn(k).

We fix an additive character e : k → C; it induces the additive character on A

a→ eA(a) := e(trA/k(a)) = e(tr(a)), a ∈ A.

Observe that for a ∈ A, the A/k-trace coincide with the restriction to A ⊂ Mn(k)
to the matrix trace, thus there is no ambiguity in refereing to the trace.

We fix Haar measure dx, da on k,A; for definiteness, we normalize them to be
self-dual w.r.t the characters e(·) and e(tr(·)) respectively. Sometimes we will write
dkx and dAx to emphasize the measures on k and A respectively. We will often
write volk or volA for volume of a set with respect to these measures.

Even though we have normalized volk and volA to be self-dual, it is occasionally
more conceptually clear and helpful – for instance, when working with Fourier
transforms – to introduce a separate notation for the dual measures. Thus,we shall

denote by v̂olA the Haar measure dual to volA, w.r.t. the character eA; v̂olk is

defined similarly . Our normalizations are so that v̂ol = vol, but we try to keep the
notions conceptually separate.

14At this point we must observe a small ugliness of notation: for x ∈ k, the “module” |x|k
coincides with our normalization of |x| from §7.1 if k 6= C. If k = C, however, |x|C = |x|2. This
unfortunate notational clash seems somewhat unavoidable, for the module of C does not coincide

with what is usually termed the absolute value.
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We normalize multiplicative Haar measure d×k x, d
×
Ax on k× and A×, respectively,

by the rules

d×k x = ζk(1)|x|−1
k dkx, d

×
Aa = ζA(1)|x|−1

A dAa.

(See §8.2 below, for a recollection of the definition of ζ).
These normalizations have the following effect: for k nonarchimedean,

(21) volA×(O×A ) = volA(OA), volk×(O×k ) = vol(Ok).

For k archimedean, we shall not define O×A or O×k ; however, it will be conve-

nient (to uniformize notations) to define their volumes volA(O×A ) := volA(OA) and

volk(O×k ) := volk(Ok) so that the equality (21) remains valid. Recall that OA,Ok
in the archimedean case are defined by the convention (18).

8.2. Local ζ-functions. The local ζ-function of the field k and of A are denoted
ζk(s), ζA(s) (s ∈ C): for A = ⊕iKi,

ζA(s) =
∏
i

ζKi(s).

We recall that the local ζ-function of a local field k is defined by ζk(s) = π−s/2Γ(s/2)
if k = R, 2(2π)−sΓ(s) if k = C, and finally ζk(s) = (1− q−s)−1, where q is the size
of the residue field, if k is nonarchimedean.

More generally for ψ a character of A× (ψ = (. . . , ψi, . . . ), ψi a character of
K×i ), we denote by L(A,ψ) the local L-function of ψ:

L(A,ψ) =
∏
i

L(Ki, ψi).

See [5, Chapter 3] for definition and discussion.
For s ∈ C, we will also write

L(A,ψ, s) := L(A,ψ| · |sA).

In particular ζA(s) = L(A, | · |sA).
If k is nonarchimedean, we attach to ψ a discriminant disc(ψ). This may be

defined directly as follows: we write A = ⊕Ki and ψ = (. . . , ψi, . . . ); for each i, let
ti be the largest integer so that ψi is trivial on 1 + qtiKi ; here qv is the prime ideal

of the ring of integers in Ki. Then disc(ψ) :=
∏
i q
ti
i , where qi is the residue field

size of Ki.
For k archimedean, we set by definition disc(ψ) ≡ 1.

8.3. Number fields. We now pass to a global setting.
Let F be a number field. We denote by A and AF,f the ring of adeles and of

finite adeles, respectively.
We will work with global data D , as in §6.3, which will consist of: K ⊂Mn(F )

and gD ∈ A×K\GLn(A). We shall fix an identification ι : K → Fn of right K-
modules; this means that (ab)ι = aι.b, where, on the right hand side, we understand
b ∈Mn(F ).

We obtain from this data an embedding of the F -torus

TK := ResK/FGm/Gm ↪→ PGLn,F

Here PGLn,F denotes the algebraic group PGLn over the field F .
We will use the letter v for a place of F and w for a place of K. If v is a place

of F , we denote by Fv the completion of F at v, and Kv := K ⊗F Fv.
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By localization, the global data D gives rise to local data Dv (in the sense of
§6.1) for each place v of F , i.e. we take Av = g−1

D,vKvgD,v ⊂Mn(Fv). We will write
A instead of Av when the dependence on v is clear.

Let us note that the map

(22) ιv : a ∈ Av 7→ (gD,vag
−1
D,v)

ι.gD,v

from Av to Fnv is then an identification for the Av-module structures.

8.4. Adeles, ideles and their characters. There is a natural norm map, the

module, A× |·|→ R>0. We write it |x|A or sometimes simply |x|; this will cause no
confusion so long as it is clear that the variable x belongs to A×. We denote by
A(1) the kernel of the norm map, and similarly for AK .

Let Ω(CF ) resp. Ω(CK) denote the group of homomorphisms from A×/F× resp.
A×K/K× to C×. For ψ ∈ Ω(CK) we shall denote by ψ|F the restriction of ψ to
A×/F×.

The group C is identified with the connected component of Ω(CF ), via identifying
s ∈ C with the character x 7→ |x|sA. Given χ ∈ Ω(CF ), we set χs(x) := χ(x)|x|sA.
This C-action on Ω(CF ) gives Ω(CF ) the structure of a complex manifold.

For any χ ∈ Ω(CF ), there exists unique s ∈ R so that |χ(x)| = |x|sA. We shall
denote this s by <χ, the “real part” of χ. Thus <χ = 0 if and only if χ is unitary.

Finally, there is a natural map R>0 → CQ (inclusion at the infinite place). Thus
there is also a map R>0 → CK , CF . We say that a character of CK or CF is
normalized if its pullback to R>0 is trivial.

If ω : F×v → C× is a multiplicative character, we denote by L(Fv, ω, s) the
corresponding L-factor, and by L(Fv, ω) its value when s = 0. In particular, when
ω = |x|sv, we get the local ζ-factor: L(Fv, ω) = ζFv (s). Corresponding definitions
also hold for K. If v is a place of F , we will write ζK,v :=

∏
w|v ζK,w.

8.5. Discriminants. Suppose ψ ∈ Ω(CK). For v any place of F , we have discrim-
inants:

discv(F ),discv(K/F ),discv(K),discv(Dv),discv(ψ|Kv )

Namely, discv(F ) is the discriminant of Fv/Qp (where p is the prime of Q below
v) and discv(K) the discriminant of Kv/Qp. We set

discv(K/F ) = discv(K)discv(F )−[K:F ].

By convention, we shall understand discv(F ) = discw(K) = 1 if v or w are
archimedean. discv(Dv) is as in §6 and discv(ψ|Kv ) is defined in §8.2.

For any of the objects above, we set disc(. . . ) =
∏
v discv(. . . ). We note that

disc(D)�F,n disc(K); this will follow from Lemma 9.5 and the fact that discv(D)
is bounded from below at each archimedean place.

8.6. Measure normalizations. Let eQ : AQ/Q → C be the unique character
whose restriction to R is x 7→ e2πix. Set eF = eQ ◦ trF/Q. We then normalize local
measures according to the prescription of §8.1 with k = Fv, A = Kv.

Let us explicate this to be precise.
We choose for each v the measure on Fv that is self-dual w.r.t. eF . The product

of these measures, then, assigns volume 1 to A/F . We define a measure on F×v
by d×x := ζF,v(1) dx

|x|v . We make the corresponding definitions for K, replacing

the character eF by the character eK := eF ◦ trK/F . Taking the product of these
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measures yields measures on A,AK ,A×,A×K . This fixes, in particular, a quotient

measure on TK(A) = A×K/A×.

We obtain a measure on Av through the identification x 7→ g−1
D,vxgD,v from Kv

to Av.
We will often denote by dKx the measure on Kv and by dFx the measure on Fv

or Fnv .
With these definitions, it is not difficult to verify that for finite places v, w:∫

O×K,w

d×Kx = discw(K)−1/2,

∫
O×F,v

d×Fx = discv(F )−1/2(23) ∫
OK,w

dKx = discw(K)−1/2,

∫
OF,v

dFx = discv(F )−1/2(24)

Moreover, (24) remains valid for v archimedean, if we replace equality by �, and
we interpret OK,w resp. OF,v as the unit balls for the canonical norms associated
to Kw resp. Fv.

9. Local theory of torus orbits

In this section, we are going to explicate certain estimates over a local field,
which are what are needed for “local subconvexity” discussed in §2. Indeed, the
main result of this section, Proposition 9.9, is designed precisely to bound the
(general version of the) quantities “IO” that occur in (6) and (8).

Our methodology is quite general (i.e., would apply to estimates for more general
period integrals of automorphic forms) and is inspired, in part, by the paper of
Clozel and Ullmo [8].

9.1. Explanation in classical terms. A simple case of our estimates is the fol-
lowing result:

Let Q be a positive definite quadratic form on R3. Consider:

(25) I(Q) =

∫
Q(x,y,z)≤1

|xyz|−1/2dx dy dz.

vol(x ∈ R3 : Q(x) ≤ 1)1/2

It will transpire – this will follow from Lemma 10.4 that we prove later – that
the quantity IO , defined in (6), will be be bounded by products of integrals like
(25) and nonarchimedean analogues. (More precisely, in the notation of (6): if the
function f is invariant by the rotation group of Q, then we will be able to bound
IO(f, s) in terms of (25); the general case will reduce to this). Our goal will be to
get good bounds for I(Q). Evidently, the function I is invariant under coordinate
dilations, and thus our bounds should also be so.

9.2. The generalization to local fields. The general setting we consider will be:
we replace R,R3 by a local field k and an etale k-algebra A of dimension n (say).

For an arbitrary norm N on A, we consider the integral

(26) I(N) :=

∫
x∈A:N(x)≤1

|x|−1/2
A dAx

vol(x ∈ A : N(x) ≤ 1)1/2

where dAx denote a Haar measure on A and |x|A denote the “module” of A (the
factor by which dAx is transformed under y 7→ xy). We consider the variation of
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I(N) with N . Again, I(N) is invariant by scaling and so defines a function on the
building of PGL(A).15 We shall show that:

(1) I(N) decays exponentially fast with the distance of N to a certain subspace
in the building, viz. the A×-orbit of the norm NA;

(2) The distance to this subspace measures the discriminant of local torus data:
Choose an identification ι : A→ kn which carries the unit ball for N(x),

to the unit ball of the standard norm on kn. The identification ι, together
with the action of A on itself by multiplication, can be used to embed
A ⊂ Mn(k). Thus, we have specified local torus data. Roughly speaking
(Lemma 9.12), the discriminant of this local torus orbit, is a measure of the
distance of N to our distinguished subspace of the building.

Our final result is presented in Proposition 9.9; the reader may find it helpful to
interpret it in terms of the language above, in order to better absorb its content.

9.3. Local torus data. In the rest of this section, we fix local torus data D con-
sisting of A ⊂Mn(k); we shall follow the notations of §8. Throughout this section,
we allow the notation � and O(·) to indicate an implicit constant that remains
bounded, if k is restricted to be of bounded degree over R or Qp.

By the inclusion, A ⊂Mn(k), kn is a right A-module. For the rest of this section,
we fix an identification of right A-modules ι : A→ kn; in other words,

(27) (ab)ι = aι.b, a ∈ A, b ∈ A
where, on the right hand side, we regard b ∈Mn(k). The identification ι is unique
up to multiplication by elements of A×. We write ι on the right to be as consistent
as possible with our other notations.

In this setting, we have described (cf. §7.5) two norms: the canonical norm on
the algebra A, to be denoted NA, and the canonical norm on the algebra kn, to be
denoted N0. We have denoted their unit balls by OA and Okn respectively. These
unit balls coincide with the maximal compact subgroups of these algebras in the
non-archimedean case.

We are going to introduce an element h ∈ GLn(k) with quantifies the relation
between these norms. Choose h ∈ GLn(k) so that:

(28) hN0(x)(:= N0(xh)) = NA(xι
−1

), x ∈ kn.
This is possible because, by choice, the norm NA corresponds to a vertex of the
building of GL(A), i.e. takes values in qZ in the nonarchimedean case. Observe
that choice of h depends on the choice of ι; given ι, the quantity |deth| is uniquely
determined.

This definition implies that OA
ι = Oknh−1; thus

volA((Okn)ι
−1

) = volA(OA)|deth|,
or:

(29)
ι∗volA
volkn

=
volA(OA)

volkn(Okn)
|deth|.

Similarly, we define hA ∈ GL(A) by the following rule:

(yhA)ι = yιh, y ∈ A.

15Throughout this paper, we use GL(A) to denote k-linear automorphisms of A, thought of as
a k-vector space; similarly, PGL(A).
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This means that

(30) hAιN0 = NA = ιhN0,

and so |dethA|k = |deth|k.
With these conventions, and those of §7.8,

(31) tι−1NA = ι−1tNA, (t ∈ A×)

Let us be completely explicit, because t is acting in two different ways on the
two sides of this equation. According to the conventions set out in §7.8, the left-
hand side is the norm on kn defined by x 7→ NA(xtι−1); in particular, t is acting
as an endomorphism of kn. The right-hand side is the norm on kn defined by
x 7→ NA(xι−1t); here t is acting by right multiplication on A. The coincidence of
the two sides follows from (27).

9.4. Discriminant vs. discriminant. We have two notions of “discriminant”
attached to the local data A ⊂Mn(k):

On the one hand, we have the absolute discriminant, disc(A), of the k-algebra
A:

- If k is non-archimedean, it is given by

disc(A) = [O∗A : OA] =
volA(O∗A)

volA(OA)
,

Here O∗A denote the dual lattice of OA in A

O∗A := {a ∈ A : |trA/k(aOA)| ≤ 1} ⊃ OA.

- If k is archimedean, we set disc(A) = 1.

In particular in either case, we have

(32) disc(A) �n
volA(O∗A)

volA(OA)
.

On the other hand, in our previous discussion §6, we have defined a notion of
discriminant disc(D) which is relative to the embedding A ⊂ Mn(k). We shall
presently compare the two notions and for this we shall interpret disc(D) in more
geometric terms.

Let Λ be the set of x ∈ A with operator norm ≤ 1 with respect to the norm
N0; here we regard kn as an A-module via the right multiplication of A ⊂ Mn(k).
If k is nonarchimedean, Λ is an order (and thus is contained in OA); indeed, Λ =
A ∩Mn(Ok). Let Λ∗ be the dual to Λ,

(33) Λ∗ = {y ∈ A : |trA/k(yΛ)| ≤ 1}.

9.5. Lemma. We have (compare with (32))

disc(D) �n
volA(Λ∗)

volA(Λ)

Moreover, �n may be replaced by equality if k is nonarchimedean, of residue char-
acteristic exceeding n.

Proof. The definition of disc(D) is explicated in (14). Choose, first of all, a k-basis
f0 = 1, f1, f2, . . . , fn−1 for A so that the unit cube C on basis fi, i.e.

(34)
∑
i

λifi, |λi| ≤ 1,
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is equal to Λ (nonarchimedean case) and comparable to Λ as a convex body
(archimedean case).

If f̄i denotes the projection of fi to A/k, then detB(f̄i, f̄j) and det(tr(fifj))
differ by (2n)n−1 (see [17, 4.1.3] or §6.2). Let f∗0 , f

∗
1 , . . . , f

∗
n−1 ∈ A be the dual

basis to the fi, that is to say: tr(fif
∗
j ) = δij .

Then the unit cube C∗ on basis f∗i equals Λ∗ (nonarchimedean case) and is
comparable with Λ∗ as a convex body (archimedean case).

On the other hand, vol(C)/vol(C∗) = det tr(fifj). Our claimed conclusion fol-
lows. �

9.6. Lemma. Suppose k is non-archimedean, of the residue characteristic greater
than n and that disc(D) = 1. Then A is unramified (i.e. a sum of unramified field

extensions of k) and Okn is stable under OA. In particular, (Okn)ι
−1

= λOA, for
some λ ∈ A×.

Proof. Since k is non-archimedean, we have the chain of inclusions

(35) Λ ⊂ OA ⊂ O∗A ⊂ Λ∗;

our assumption and the prior Lemma shows that equality holds.
That is to say, OA is self-dual w.r.t. the trace form; this implies that A is

unramified over k.
As for the latter statement, Okn is stable by Λ by definition, and therefore by

OA since Λ = OA. It is equivalent to say that (Okn)ι
−1

is stable under OA; whence
the final statement. �

Therefore, the quantity disc(D) measures the distance of the data D from the
most pleasant situation.

9.7. Lemma. If k nonarchimedean, let Λ× be the units of the order Λ. Then

volA(Λ×)

volA(O×A )
≥ c(n) max(1− n/q, q−n)

(
disc(D)

disc(A)

)−1/2

.

Here c(n) = 1 if the residue characteristic of k exceeds n.

Proof. We have by (35)

[Λ∗ : O∗A] =
volA(Λ∗)

volA(O∗A)
= [OA : Λ] =

volA(OA)

volA(Λ)

hence

volA(Λ)

volA(OA)
�
(

disc(D)

disc(A)

)−1/2

,

where � may be replaced by equality when the residue characteristic is greater
than n. On the other hand, our normalizations of measure are so that volA(O×A ) =
volA(OA).

It remains (cf. (32)) to show

volA(Λ×) ≥ max(q−n, 1− n/q)volA(Λ).

That is effected by the following comments:

(1) Let π be any uniformizer of k. Then 1 + πΛ ⊂ Λ×;
(2) The fraction of elements in Λ which are invertible is ≥ 1− nq−1.
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Both of these statements would remain valid when Λ is replaced by any sub-order
of OA, containing Ok.

(1) follows, because one may use the Taylor series expansion of (1 + πλ)−1, for
λ ∈ Λ, to invert it.

Note that OA has at most n maximal ideals. If λ ∈ Λ does not belong to any of
these ideal, it is annihilated by a monic polynomial of degree ≤ n with coefficients in
Ok and constant term in O×k . Therefore λ−1 ∈ Λ also. The volume of each maximal
ideal is, as a fraction of the volume of OA, at most q−1. This shows (2). �

9.8. Local bounds. For any Schwartz function Ψ on kn, we shall write ΨA for the
function ιΨ on A, that is to say,

ΨA : x 7→ Ψ(xι).

Our final goal is to discuss bounds for integrals of the form
∫
x∈A× ΨA(x)ψ(x)d×Ax,

where ψ is a character of A× (we will eventually normalize it to make it independent
of ι). We wish to find useful bounds for this, when Ψ is fixed and the data D is
allowed to vary. We will do so in terms of the following norms: let Ψ̌ to be the
Fourier transform of Ψ, w.r.t. the character e, i.e. Ψ̌(y) =

∫
y∈kn Ψ(y)e(xy)dy. Put

‖Ψ‖ = max(

∫
kn
|Ψ(x)|dvolk(x),

∫
kn
|Ψ̌(x)|dv̂olk(x)).

The following proposition presents bounds. The reader should ignore the many
constants and focus on the fact that these bounds decay as disc(A) or disc(D)
increase. In our present language, this is the analogue of the discussion of (25).

9.9. Proposition. (Local bounds) Let ψ be a unitary character of A×, Ψ a Schwartz
function on kn. Set:

I(Ψ) = |deth|−1/2

∫
A×

Ψ(xι)|x|1/2A ψ(x)d×Ax,

(note that |I(Ψ)| is independent of the choice of ι). Then:

(1)

(36) |I(Ψ)| �n CΨ · CV ·
(

disc(D)

disc(A)

)− 1
16n2

where CV = vol(O×A ), and moreover, we may take CΨ = 1 when Ψ is the
characteristic function of Okn .

(2)

(37) |I(Ψ)| �e,n CV ‖Ψ‖(disc(ψ)disc(A))−1/4,

where CV =
(

vol(OA)
vol(Ok)n

)1/2

(the notion of disc(ψ) is defined in §8.2.)

In inequality (36) the implicit constant depends at most on n and the degree16

of k over R or Qp; in (37) it depends at most on these and on, in addition, the
additive character e of k.

16We have already remarked that the implicit constants in this section may depend on this
degree without explicit mention; thus this is not denoted explicitly in (36) or (37).
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9.10. Local harmonic analysis and the local discriminant. We now work on
the building of PGLn(k) and on PGL(A). In particular, to simplify notations, if
N1 and N2 are norms either on A or kn, dist(N1, N2) refers to the distance between
their respective homothety classes, dist([N1], [N2]), as defined in §7.

Let us recall that the norm N0, defined by N0(x1, . . . , xn) = max |xi|, defines a
point in the building of PGLn(k), and the norm NA defines a point in the building
of PGL(A).

9.11. Lemma. Write A = ⊕iKi as a direct sum of fields. Let ‖ · ‖i = ‖ · ‖Ki be the
absolute value on Ki extending | · | on k. 17 For t ∈ A×, set

‖t‖ := max
i
‖ti‖i/min

i
‖ti‖i,

where t = (t1, . . . , ti, . . . ) with ti ∈ K×i . Then, for any t ∈ A×, we have

dist(tNA, NA) ≥ 1

2
log ‖t‖.

Proof. It is a consequence of the definition of dist and (19).
Let K be any of the fields Ki let NK be the canonical norm attached to K. It

is easy to see that for any t ∈ K×,

(38) NK(t−1)−1 ≤ ‖t‖K ≤ NK(t).

Given t = (t1, . . . , ti, . . . ) ∈ A×, ti ∈ K×i . Let imax and imin be, respectively,
those values of i for which ‖t‖i is maximized and minimized. Let xmax ∈ A be the
element whose imax-th component is 1 and whose other components are 0 and let
xmin be the element whose imin-th component is t−1

imin
and whose other components

are 0. Then by (19) applied to v1 = xmax, v2 = xmin and by (17) and (38), one
has

dist(tNA, NA) ≥ 1

2
log
(NA(txmax)

NA(xmax)

NA(xmin)

NA(txmin)

)
=

1

2
log(NKimax (timax)NKimin (t−1

imin
))

≥ 1

2
log(
‖timax‖imax
‖timin‖imin

) =
1

2
log ‖t‖

�
The following Lemma shows that the discriminant of local torus data is related

to distance-measurements on the building.

9.12. Lemma. One has the lower bound

inf
t∈A×

dist(N0, tι
−1NA) ≥ 1

4n
log(

disc(D)

disc(A)
) +On(1);

here one may ignore the On(1) term when k is nonarchimedean and of residue
characteristic larger than n.

Proof. The action of PGLn(k) on the building is proper and so the infimum is
attained. Let t0 attain the infimum and put ∆ = dist(t0ι

−1NA, N0).
We are going to use the characterization of disc(D) from Lemma 9.5.

17Thus ‖ · ‖i = | · |1/[Ki:k]Ki
, in the case when k 6= C; when k = C we have simply Ki = C and

the absolute value on both k and Ki is the usual absolute value on C, according to §7.1.
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Adjusting t0 as necessary by an element of k×, we may assume:

(39) e−∆N0 ≤ t0ι−1NA ≤ e∆N0

Suppose that x ∈ k satisfies |x| = exp(−2∆). Such an x exists (cf. (19) and the
subsequent comment; ∆ is a half-integral multiple of log q in the non-archimedean
case). If y ∈ A has operator norm ≤ 1 with respect to N0, then (39) shows that xy
has operator norm ≤ 1 with respect to t0ι

−1NA, and vice versa.
The set of a ∈ A which have operator norm ≤ 1 w.r.t. N0 is exactly Λ.
The set of a ∈ A which have operator norm ≤ 1 w.r.t. t0ι

−1NA is by definition
the set of a such that for all x ∈ kn

t0ι
−1NA(xa) ≤ t0ι−1NA(x),

that is by (31)

NA(xι
−1

at0) ≤ NA(xι
−1

t0).

Using that xι
−1

at0 = xι
−1

t0a and changing xι
−1

t0 to t, we see that this set is the
set of a ∈ A satisfying for any t ∈ A

NA(ta) ≤ NA(t)

which is precisely OA.
We conclude:

xOA ⊂ Λ ⊂ OA, O∗A ⊂ Λ∗ ⊂ x−1O∗A.

The second equation is obtained by duality from the first; here Λ∗ and O∗A are dual
in the sense of (33). Thereby,

volA(Λ∗)

volA(Λ)
≤ exp(4n∆)

volA(O∗A)

volA(OA)
,

whence the result (cf. (32) and Lemma 9.5). �

9.13. Lemma. Let R ≥ 0. Then:

(40)
vol{t ∈ A×/k× : log ‖t‖ ∈ [R,R+ 1]}

volA(O×A )/volk(O×k )
�n (1 +R)n−1

Here, ‖t‖ is as in the statement of Lemma 9.11.

Proof. The archimedean case may be verified by direct computation.
Consider k nonarchimedean. We may write A = ⊕ri=1Ki as a sum of r fields.

The map

a = ⊕ai 7→
log ‖ai‖i
log(q)

gives an isomorphism of A×/O×A with a finite index sublattice Q of 1
n!Z

r. Moreover,

k×/O×k is identified with the sublattice Q′ ⊂ Q generated by (1, 1, 1, . . . , 1) ∈ Zr.
Finally, the norm log ‖t‖ on A×/k× descends to a function on Q/Q′ and is described
explicitly as:

(µ1, . . . , µr) ∈ Q 7→ log(q)
(

max
i
µi −min

i
µi

)
.

The LHS of (40) is thereby bounded by:

#{µ ∈ 1

n!
Zr/Z :

(
max
i
µi −min

i
µj

)
≤ R+ 1

log 2
},

which is bounded as indicated, since r ≤ n. �
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9.14. Lemma. For any α ∈ (0, 1),

(41)

∫
t∈A×/k× exp(−αdist(N0, tι

−1NA))

volA(O×A )/volk(O×k )
�α,n

(
disc(D)

disc(A)

)− α
8n

.

Proof. Let ∆, t0 be as in Lemma 9.12. Using it, (31), Lemma 9.11, and the triangle
inequality:

(42) dist(N0, tι
−1NA) ≥ dist(tι−1NA, t0ι

−1NA)− dist(t0ι
−1NA, N0)

≥ 1

2
log(‖t/t0‖)−∆.

To estimate (41), we split the t-integral into regions when log ‖t/t0‖ ≤ [4∆] and
log ‖t/t0‖ ∈ [R,R + 1], where R ranges through integers ≥ [4∆]. Here [4∆] is the
greatest integer ≤ 4∆. Thereby, the left-hand side of (41) is bounded by

C(n)

(1 + ∆)n exp(−α∆) +
∑

R≥[4∆]

exp(α(∆−R/2))(1 +R)n−1


To conclude, we bound ∆ from below using Lemma 9.12. �

9.15. The action of GL(A) on L2(A). Let V comprise −n/2-homogeneous func-
tions on A, i.e.

V = {f : A→ C : f(λx) = |λ|−n/2k f(x), λ ∈ k, x ∈ A.}
The group PGL(A) acts on V , via

gf(x) = f(xg)|det g|1/2k

The space V possesses a (unique up to scaling) natural GL(A)-invariant inner prod-

uct. We shall normalize it as follows: for any Schwartz function Φ on A, let Φ̃ be
its projection to V , defined as

Φ̃(x) =

∫
λ∈k×

Φ(λx)|λ|n/2k d×λ.

We normalize the inner product 〈·, ·〉 on V so that for any v ∈ V :

〈v, Φ̃〉 =

∫
x∈A

v(x)Φ(x)dAx.

In particular, let Φ1,Φ2 be Schwartz functions on A. We have:∫
t∈A×/k×

〈t · Φ̃1, Φ̃2〉 =

∫
t∈A×

∫
x∈A

Φ1(xt)|t|1/2A Φ2(x)dAxd
×
At(43)

= (

∫
y∈A×

Φ1(y)|y|1/2A d×Ay)(

∫
x∈A×

Φ2(x)|x|−1/2
A dAx)

= ζA(1)(

∫
y∈A

Φ1(y)|y|−1/2
A dAy)(

∫
x∈A

Φ2(x)|x|−1/2
A dAx)

Let us note that we use, in the above reasoning and at various other points in the
text, the evident fact that the measure of A−A× is zero.

Let K ⊂ GL(A) be a maximal compact subgroup, corresponding to the stabilizer

of ιN0, i.e. in the nonarchimedean case, the stabilizer of the lattice (Okn)ι
−1

. Let
Ξ0 : GL(A) → C be the Harish-Chandra spherical function with respect to K.
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For two vectors v1, v2 ∈ V , and σ ∈ GL(A), we have the bound (see [11] and also
equation (20)):

(44) 〈σv1, v2〉 ≤ (dimKv1)1/2(dimKv2)1/2Ξ0(σ)1/n‖v1‖2‖v2‖2
�α (dimKv1)1/2(dimKv2)1/2 exp(−αdist(σιN0, ιN0))‖v1‖2‖v2‖2.

for any α < 1/n. Here distances are measured between homothety classes of norms.

9.16. Proof of the first estimate in Proposition 9.9. Since ψ is a unitary
character, it is sufficient (by taking absolute values) to assume that ψ is trivial and
Ψ, non-negative.

Let Ψ be a non-negative Schwartz function on kn; put ΨA := Ψ ◦ ι, Φ the
characteristic function of the unit ball of ιN0, and Φ2 = 1OA .

These are all Schwartz functions on A. In the nonarchimedean case Φ is the
characteristic function of (Okn)ι

−1

. Also, the definition of hA (see (29)) shows that
Φ2 = hAΦ. Indeed, hAΦ is the characteristic function of

{x ∈ A : N0((xhA)ι) ≤ 1} = {x ∈ A : NA(x) ≤ 1} = OA.

Consequently, hAΦ̃ = |deth|1/2k h̃AΦ = |deth|1/2k Φ̃2.
We shall proceed in the case when k nonarchimedean, the archimedean case

being similar (the only difference: one needs to decompose Ψ as a sum of K-finite
functions in the archimedean case, and the implicit constant will be bounded by a
Sobolev norm of Ψ).

Let us observe that there is a constant CΨ ≥ 0, equal to 1 when Ψ = Φ, so that

〈Ψ̃A, Ψ̃A〉 ≤ C2
Ψ〈Φ̃, Φ̃〉.

Indeed for some λΨ ∈ k, one has Ψ(x) ≤ ‖Ψ‖∞1Okn (λΨx), x ∈ kn; this bounds
ΨA in terms of Φ and leads to the above-claimed bound.

For t ∈ A×/k×,

(45) |deth|1/2k 〈tΨ̃A, Φ̃2〉 = 〈tΨ̃A, hAΦ̃〉 = 〈h−1
A tΨ̃A, Φ̃〉

�α ‖Ψ̃A‖2‖Φ̃‖2 dim(KΨ̃A) exp(−αdist(h−1
A tιN0, ιN0)), α <

1

n
.

We have applied (44) with v1 = Ψ̃A, v2 = Φ̃, σ = h−1
A t; observe that our choice of

Φ means dim(KΦ̃) = 1.
We observe that, using the definitions (28), (29) and the compatibility (31), we

have dist(h−1
A tιN0, ιN0) = dist(N0, t

−1ι−1NA). To write out every step, this follows
from the chain of equalities

dist(h−1
A tιN0, ιN0) = dist(tιN0, hAιN0) = dist(tιN0, NA) = dist(N0, ι

−1t−1NA)

= dist(N0, t
−1ι−1NA) = dist(tN0, ι

−1NA) = dist(N0, t
−1ι−1NA).

We now integrate over t ∈ A×/k×. By (43) and (45) we have, for any α < 1
n ,

(46)

∣∣∣∣∫ Ψ(xι)|x|−1/2
A dAx

∣∣∣∣ ∣∣∣∣∫ Φ2(x)|x|−1/2
A dAx

∣∣∣∣ = ζA(1)−1

∫
A×/k×

〈tΨ̃, Φ̃〉

�n,α CΨ|deth|−1/2
k (dim GLn(Ok).Ψ)‖Φ̃‖22

∫
t∈A×/k×

e−αdist(N0,t
−1ι−1NA)
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We show below that

(47)
‖Φ̃‖22∫

x∈A Φ2(x)|x|−1/2
A dAx

�n |deth|kvolk(O×k ).

Combining (46) and (47) with Lemma 9.14, establish the first claim of Proposition
9.9.

To prove (47), proceed as follows: First of all,∫
y

Φ2(y)|y|−1/2
A dAy =

∫
OA

|y|−1/2
A dAy = volA(O×A )ζA(1/2).

Noting that Φ̃(x) = ιN0(x)−n/2
∫
|λ|k≤1

|λ|n/2k d×λ, we see:

‖Φ̃‖22 =

∫
|λ|k≤1

|λ|n/2k d×λ ·
∫
ιN0(x)≤1

ιN0(x)−n/2dAx

= volk(O×k )ζk(n/2)

∫
ιN0(x)≤1

ιN0(x)−n/2dAx

Noting that ιN0 = h−1
A NA, we have∫

ιN0(x)≤1

ιN0(x)−n/2dAx =

∫
NA(xh−1

A )≤1

NA(xh−1
A )−n/2dAx,

so that, making the change of variable x′ = xh−1
A , the previous integral equals

|dethA|k
∫
NA(x)≤1

NA(x)−n/2dAx = |deth|k
∫

OA

NA(x)−n/2dAx.

For k nonarchimedean, the last integral equals (π denote an uniformizer of k)∑
j≥0

|πj |−n/2k

∫
NA(x)=|πj |k

dAx =
∑
j≥0

|πj |−n/2k

∫
NA(xπ−j)=1

dAx

= vol({x, NA(x) = 1})
∑
j≥0

|πjk|
n/2

= vol({x, NA(x) = 1})ζk(n/2).

Combining these, the left-hand side of (47) is bounded by:

�n |deth|kvolk(O×k )
volA({x ∈ A : NA(x) = 1})

volA(O×A )

The last ratio is easily seen to be bounded above by (1 + n/(q − 1)); in particular,
it is bounded above in terms of n and the claim (47) follows. �

9.17. Proof of the second estimate in Proposition 9.9. For any character ψ
of A× we set ψs(x) = ψ(x)|x|sA. Let us comment that the notation ψ−1

s always
denotes the character x 7→ ψ−1(x)|x|sA. In other words, we apply the operation of
twisting by |x|sA after the operation of inverting ψ.

The following result is proved in Tate’s thesis. See [43, (3.2.1), (3.2.6.3), (3.4.7)].

9.18. Lemma. (Local functional equation) Let Φ be a Schwartz function on A, and
set

Φ̂(x) =

∫
y∈A

eA(xy)Φ(y)dAy.
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Then, for a unitary character ψ of A×,

(48) ε(A,ψ, s, eA)

∫
A×

Φ(x)ψs(x)d×Ax

L(A,ψ, s)
=

∫
A×

Φ̂(x)ψ−1
1−s(x)d×Ax

L(A,ψ−1, 1− s)
where s 7→ ε(A,ψ, s, eA) is a holomorphic function of exponential type. More pre-
cisely, both sides of (48) are holomorphic, and:

(1) If v̂olA denotes the Haar measure dual to volA under the Fourier trans-
form18, |ε(A,ψ, s, eA)|2 = volA

v̂olA
when <(s) = 1/2.

(2) |ε(A,ψ, s, eA)| = |ε(A,ψ, 0, eA)|(δ(e)ndisc(ψ)disc(A))−<(s), where δ(e) is a
positive constant depending on the additive character e of k.

We remark that one may take δ(e) = 1 in the unramified case, i.e. when k is
nonarchimedean and e is an unramified character of k.

We now proceed to the proof of the second estimate in Proposition 9.9. Recall
that ψ is unitary. To ease our notation, we suppose (as we may do, without loss of
generality) that ‖Ψ‖ = 1.

For <(s) = 1, we have:

(49)

∣∣∣∣∫
A×

ΨA(x)ψs(x)d×Ax

∣∣∣∣ ≤ ζA(1)
ι∗volA
volkn

�n
ι∗volA
volkn

For <(s) = 0 we apply (48) to reduce to (49), obtaining:

(50)

∣∣∣∣∣
∫
A×

ΨA(x)ψs(x)d×Ax

L(A,ψ, s)/L(A,ψ−1, 1− s)

∣∣∣∣∣�e,n (disc(ψ)disc(A))−1/2,

where the constant implied depend at most on the additive character e of k and on
n

We may now apply the maximum modulus principle to interpolate between (49)
and (50). The simplest thing to do would be to apply the maximum modulus
principle to the holomorphic quotients that occur in (48). This would be fine for
nonarchimedean places; however, for archimedean places, this would run into some
annoyances owing to the decay of Γ-factors. We proceed in a slightly different way.

Let F (s) be an analytic function in a neighbourhood of the strip 0 ≤ <(s) ≤ 1
so that F (s)L(A,ψ, s) is holomorphic. We shall choose F (s) momentarily. Let U
be the right-hand side of (49), and V the right-hand side of (50).

Take

h(s) := U−sV −(1−s)F (s)

∫
A×

ΨA(x)ψs(x)d×Ax,

Note that h(s) is holomorphic in 0 ≤ <(s) ≤ 1. We have

|h(s)| �e,n

{
|F (s)|,<(s) = 1.
|F (s)L(A,ψ,s)|
|L(A,ψ−1,1−s)| ,<(s) = 0.

(1) k nonarchimedean. We choose F (s) = L(A,ψ, s)−1. Then

sup
<(s)=1

|F (s)| �n 1

whereas sup<(s)=0
|F (s)L(A,ψ,s)|
|L(A,ψ−1,1−s)| is also bounded by ζA(1).

18With our choice of normalizations, v̂olA = volA, but we prefer to phrase the Lemma in a
fashion that is independent of choice of measures.
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Therefore, by the maximum modulus principle, one has for <(s) = 1/2,
|h(s)| �e,n 1. On the other hand, for <(s) = 1/2, |F (s)| ≥ ζA(1/2)−1.
Therefore, for <(s) = 1/2,∣∣∣∣∫

A×
ΨA(x)ψs(x)d×Ax

∣∣∣∣�n,e

√
UV .

(2) k archimedean. In explicit terms, L(A,ψs) is a product of a finite number
of Γ-factors ∏

i

ΓKi(s+ νi),

where <(νi) are non-negative integers, and

(51) ΓK(s) =

{
π−s/2Γ(s/2) = ΓR(s) if K = R
2(2π)−sΓ(s) = ΓR(s)ΓR(s+ 1) if K = C.

We take F (s) =
∏
<(νi)=0(s+ νi)(s+ νi− 100)−1. Then sup<(s)=1 |F (s)|

and sup<(s)=0
|F (s)L(A,ψ,s)|
|L(A,ψ̌,1−s)| are both bounded above by functions of [A :

R] ≤ 2n. The first is clear; for the second:

|F (s)L(A,ψ, s)|
|L(A, ψ̌, 1− s)|

=
∏

<(νi)=0

s+ νi
(s+ νi − 100)

ΓKi(s+ νi)

ΓKi(1− s+ νi)
.
∏

<(νi)6=0

ΓKi(s+ νi)

ΓKi(1− s+ νi)
.

It is not hard to see that the right-hand side is, indeed, bounded above
when <(s) = 0, by a function of [A : R].

We conclude that, for <(s) = 1/2, |h(s)| �e,n 1. But, for <(s) = 1/2,
we also see |F (s)| �n 1. We conclude that for <(s) = 1/2:∣∣∣∣∫ ΨA(x)ψs(x)d×Ax

∣∣∣∣�n,e

√
UV .

We have therefore shown that, for ‖Ψ‖ = 1,

|deth|−1/2

∣∣∣∣∫ ΨA(x)ψ(x)|x|1/2A d×A(x)

∣∣∣∣
�e,n |deth|−1/2

(
ι∗volA
volkn

)1/2

(disc(ψ)disc(A))−1/4

Taking into account (29), we see that the proof of the second assertion of Proposition
9.9 is complete.

10. Eisenstein series: definitions and torus integrals

In this section, we define the Eisenstein series on GLn and give a formula
(Lemma 10.4) for their integrals over tori. This formula will later be used to derive
(6). This section is included merely to make the paper self-contained. Indeed these
computations go back to Hecke (see also [50]).
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10.1. Eisenstein series – definition and meromorphic continuation. Through-
out this section, we follow the notation of §8.

For each place v of F , let Ψv be a Schwartz function19 on Fnv . We suppose that,
for almost all v, the function Ψv coincides with the characteristic function of On

F,v.

Let Ψ :=
∏
v Ψv be the corresponding Schwartz function on An.

Put, for g ∈ GLn(A) and χ ∈ Ω(CF ),

(52) EΨ(χ, g) =

∫
t∈A×/F×

∑
v∈Fn−{0}

Ψ(vtg)χ(t)d×t.

The integral is convergent when <χ is sufficiently large. Note that EΨ(χ, g) has
central character χ−1.

To avoid conflicting notations, we shall set occasionally, for s ∈ C

EΨ(χ, s, g) := EΨ(χs, g) = EΨ(χ| · |sA, g).

Let [·, ·] be a nondegenerate bilinear pairing on Fn. The pairing [·, ·] gives also
a nondegenerate bilinear pairing An × An → A.

Let g∗ be defined so that [v1g,v2g
∗] = [v1,v2]. Therefore |det g|A|det g∗|A = 1

for g ∈ GLn(A). The pairing defines a Fourier transform:

Ψ̂(v∗) =

∫
An

Ψ(v)e[v,v∗] dv;

in particular the Fourier transform of v 7→ Ψ(vtg) is

v 7→ |t|−nA |det g|−1
A Ψ̂(vt−1g∗).

Recall that Poisson summation formula shows that∑
v∈Fn

Ψ(v) =
∑
v∈Fn

Ψ̂(v).

10.2. Proposition. EΨ(χ, g) continues to a meromorphic function in the variable
χ, with simple poles when χ = 1 and χ = | · |nA. One has

resχ=1EΨ(χ, g) = −vol(A(1)/F×)Ψ(0)

resχ=|·|nAEΨ(χ, g) = |det g|−1
A vol(A(1)/F×)

∫
An

Ψ(x)dx.

Moreover,

|det g|AEΨ(χ, g) = EΨ̂(χ−1, n, g∗).

Proof. Split the defining integral EΨ(χ, g) into |t|A ≤ 1 and |t|A ≥ 1. Apply
Poisson summation to the former, and then substitute t ← t−1. The result, valid

19Recall that this has the usual meaning if v is archimedean, and means: locally constant of
compact support, otherwise.
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for <χ� 1, is:

(53)

∫
|t|A≥1

d×t

(∑
v∈Fn

Ψ(vtg)−Ψ(0)

)
χ(t)

+ |det g∗|A
∫
|t|A≥1

d×t

( ∑
v∈Fn

Ψ̂(vtg∗)− Ψ̂(0)

)
χ−1
n (t)

−Ψ(0)

∫
|t|A≥1

χ(t)d×t+ Ψ̂(0)

∫
|t|A≤1

χ−n(t)d×t

The last two terms can be explicitly evaluated. If χ is of the form |x|sA, they are equal

to −Ψ(0)
s vol(A(1)/F×) and |det g∗|A

∫
Ψ

s−nvol(A(1)/F×), respectively; otherwise, they
are identically zero. The former two terms define holomorphic functions of χ. �

10.3. Torus integrals of Eisenstein series. Put ΨK = Ψ(xιgD), a function on
AK . Let us recall we have fixed global torus data D = (K ⊂Mn(F ), gD ∈ GLn(A)).

10.4. Lemma. (Integration of Eisenstein series over a torus) .
Let ψ ∈ Ω(CK) be so that χ = ψ|F . Then:

(54)

∫
TK(F )\TK(A)

EΨ(χ, tgD)ψ(t)dt =

∫
A×K

ΨK(y)ψ(y)d×y

Let us observe that, owing to the restriction χ = ψ|F , the map t 7→ EΨ(χ, tg)ψ(t)
indeed defines a function on TK(F )\T(A).

The integral on the right-hand side can be expressed as a product over places of
K; for almost all places, the resulting (local) integral equals an L-function. This is
explicitly carried out in (62). Thus, the Lemma indeed gives the reduction of torus
integrals of Eisenstein series to L-functions, as discussed in §2.

Proof. We unfold.

(55)

∫
TK(F )\T(A)

ψ(t)EΨ(χ, tgD)dt

=

∫
u∈A×/F×

du

∫
t∈TK(F )\TK(A)

dtψ(t)
∑

x∈Fn−{0}

ΨgD (x.u.t)χ(u)

=

∫
t∈(A×K/K×)/(A×/F×)

∫
u∈A×/F×

∑
x∈K×

Ψ((x.u.t)ιgD)χ(u)ψ(t)dudt

=

∫
t∈A×K/K×

∑
x∈K×

ΨK(x.t)ψ(t)d×t =

∫
t∈A×K

ΨK(t)ψ(t)d×t

�

10.5. Lemma. (Class number formula) The measure of TK(F )\TK(A) equals

n
Ress=1ζK(s)

vol(A(1)/F×)
.

Proof. We set g = 1, ψ = | · |sAK , χ = | · |nsA and take residues in (54) as s→ 1.
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We first remark that, for almost all v, the local integral
∫
K×v

ΨK,v(t)|t|svd×t equals

the local zeta function ζK,v(s) :=
∏
w|v ζKw(s). Taking residues yields:

vol(TK(F )\TK(A)) · vol(A(1)/F×)

n
·
∫
An

Ψ = Ress=1ζK(s).
∏
v

∫
K×v

ΨK,v(t)|t|vd×t
ζK,v(1)

where almost all factors in the infinite product are identically 1. The result follows
from the choice of the measure. �

11. Eisenstein series: estimates

Let us explain by reference to §2.7.2 the contents of this section:
In §10 we have established the general form of (6). We are going to assume

known a subconvexity bound (57), which one can see as a generalization of the
bound (7)) from the introduction. The results of §9 in effect establish the analog
of (8).

Putting these together, we shall obtain in the present section – Proposition 11.3
– a slightly disguised form of (5). This disguised form is translated to a more
familiar S-arithmetic context in the next section.

11.1. Assumed subconvexity. Our result makes the assumption of a certain sub-
convexity estimate.

In order to state what this means, we need to recall the notion of archimedean
conductor. For a character ω of a archimedean local field k, we define the archimedean
conductor

(56) C(ω) =
∏
i

(1 + |νi|)

where the νi ∈ C are so that L(ω, s) =
∏
i ΓR(s+ νi), say. (See (51) for definitions

of ΓR.) If ω is unitary, then <(νi) ∈ 1
2N. For χ ∈ Ω(CF ), and v archimedean, we

put Cv(χ) to be the archimedean conductor of χ|Fv , and let C∞(χ) =
∏
v|∞ Cv(χ).

Similarly, one defines C∞(ψ) for ψ ∈ Ω(CK).
Given a unitary character ψ ∈ Ω(CK), we shall assume known the following

bound

(57) |L(K, s, ψ)| � C∞(ψs)
Ndisc(K)1/4−θdisc(ψ)1/4−θ,<(s) = 1/2

for some constants N , θ > 0 which depend only on F and n = [K : F ].
The validity of (57) is a consequence of the generalized Riemann hypothesis. The

generality in which (57) is known unconditionally is fairly slim, but it is enough
for some applications. For a recollection of what is known unconditionally, see
Appendix A.

11.2. The main estimate. In this section, we use notations as in §8. We regard
F, n as fixed throughout; thus we allow implicit constants � to depend both on n
and F . In particular, any discriminants depending only on F , e.g. discv(F ), will
often be incorporated into � notation.

For typographical simplicity, we writeDψ, DD , DK , DF in place of disc(ψ), disc(D),
etc. in the following Proposition.

11.3. Proposition. Let D be global torus data, given by K ⊂ Mn(F ) and gD ∈
A×K\GLn(A). Let Ψ be a Schwartz function on An and ψ ∈ Ω(CK) a normalized
unitary character, χ = ψ|F .
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Suppose known (57). There exists β > 0, depending on n and the exponent θ of
(57), so that: for <(s) = n/2 and any M ≥ 1, one has

(58)

∣∣∣∣∣ |det gD |s/nA
vol(TK(F )\TK(A))

∫
TK(F )\TK(A)

ψs/n(t)EΨ(χ, s, tg)dt

∣∣∣∣∣
�Ψ,M

C∞(ψs/n)N

C∞(χs)M
D−βψ D−βD

The main point of this is the decay in Dψ, DD ; the reader should ignore the
various factors of C∞, which are a technical matter. In words, (58) asserts that
varying sequence of homogeneous toral sets, on GLn, become equidistributed “as
far as Eisenstein series are concerned,” if we suppose the pertinent subconvexity
hypothesis.

In terms of the discussion of the introduction, it is (58) that proves (5). 20

Proof. Let us begin by clarifying volume normalizations. As in §8, we fix an iden-
tification ι : K → Fn which is an isomorphism for the right K-module structures
(see §8.3).

Define, for each v, local torus data Av and identifications ιv according to the
discussion around (22). It is important to keep in mind that Av is not (K ⊗ Fv)
but rather its conjugate by gv; similarly ιv is not simply “ι ⊗F Fv” but is rather
twisted by gv.

The discussion of (28) yields elements hv ∈ GLn(Fv); e.g. for v nonarchimedean,
we have: On

Fv
h−1
v = (OAv )ιv .

Observe that

(59)
∏
v

|dethv|v|det gD,v|v � (disc(K/F ))1/2.

To verify (59), note that ι : K → Fn induces

ιA : AK = K ⊗F A→ An

This identification is measure-preserving, because, with our choice of measures,
both A/F and AK/K have measure 1. In view of the definition (22) of ιv, this

remark implies
∏
v |det gD,v|v ιv∗volAv

volFnv
= 1. Therefore, taking product of (29) over

all places v, ∏
v

vol(OKv )

vol(On
Fv

)
=
∏
v

|det gD,v|−1
v |dethv|−1

v

which, in combination with (23), yields our claim. (Recall that OF,v and OK,v are
defined, at archimedean places, by the unit balls for suitable norms, cf. §9.3).

Without loss of generality Ψ = Ψ∞ ×
∏
v Ψv where, for each finite place v, Ψv

is the characteristic function of an Ov-lattice in Fnv . (In the general case, one may
express Ψ as a sum of such, the implicit cost being absorbed into the �Ψ.)

Let B be the union of the following sets of places:

(1) B∞: v is archimedean.
(2) Bram: discv(ψ)discv(D) > 1, or Fv is ramified over Q, or the residue field

at v has size ≤ n.
(3) BΨ: Ψv does not coincide with the characteristic function of On

F,v.

20 (58) also delivers uniformity in the ψ-variable; e.g. §1.6.2 would use this aspect.



44 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, AND A. VENKATESH

Let us note that

(60) exp(|B|)�F,Ψ (DψDD)ε,

this being a consequence of the fact that the number of prime factors of an integer
N is o(logN).

We denote by L(B) an L-function with the omission of those places inside B.

Suppose <(s) = n/2. In view of (54), |det g|1/2A

∣∣∣∫TK(F )\TK(A)
EΨ(χ, s, tg)ψs/n(t)

∣∣∣
factors as:

(61)
∏
v

|det gD,v|1/2v

∣∣∣∣∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣
= |L(B)(K,ψs/n)|·

∏
v/∈B

|det gD,v dethv|1/2v

∣∣∣∣∣∏
v∈B
|det gD,v|1/2v

∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣∣
= |L(B)(K,ψs/n)|·

∏
v

|det gD,v dethv|1/2v

∣∣∣∣∣∏
v∈B
|dethv|−1/2

v

∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣∣
Here ΨK,v(x) := Ψv(x

ιgD,v), so that
∏
v ΨK,v = ΨK . Moreover, we have used

the following evaluation for v /∈ B: For such v, Ψv is the characteristic function of

On
F,v, and Lemma 9.6 implies that (On

F,v)
ι−1
v = λ1OAv,v (some λ1 ∈ A×v ); because of

the definition (22) of ιv, this means that there is λ ∈ K×v with (λOK,v)ιgD,v = On
F,v.

Thus x 7→ Ψv(x
ιgD,v) coincides with the characteristic function of λOK,v. Because,

by assumption, both ψ and K/F are unramified at such v,

(62) |det gD,v|s/nv
∣∣∣∣∫ ΨK,v(t)ψs/n(t)d×t

∣∣∣∣ = |Lv(K,ψ, s/n)||λ det(gD,v)|s/nv

By (22) and the discussion preceding (29), (OK,v)ιgD,v = (OAv )ιv = On
Fv
h−1
v . Com-

paring this with (λOK,v)ιgD,v = On
F,v, we deduce that |λv|v = |det(hv)|v. The left-

hand side of (62) thereby has the same absolute value as |det gD,v dethv|s/nv Lv(K,ψs/n),
concluding our justification of (61).

From the assumed subconvexity bound (57), together with (60),

(63) |L(B)(K,ψs/n)| �Ψ C∞(ψs/n)N (DKDψ)1/4−θ, <(s) = n/2

Proposition 9.9, with our measure normalizations, and after identifying a Kv-
integral to an Av-integral in the obvious way, shows for arbitrary M ≥ 1:

(64)

∣∣∣∣∣∏
v∈B
|dethv|−1/2

v

∫
Kv

ΨK,v(t)ψs/n(t)d×t

∣∣∣∣∣
�M,Ψ,ε (DψDD)ε

{
C∞(χs)

−MD
−1/4
K (DψDK)−1/4,

D
−1/2
K (DD/DK)−

1
16n2 .

The factor C∞(χs)
−M we have interposed on the right-hand side amounts to

“integrating by parts” at archimedean places, before applying Proposition 9.9; it
will be useful for convergence purposes later. Indeed, suppose v is archimedean.
The integral of (64) is unchanged if we replace Ψv(x) by ψs/n(λ)Ψv(λx), for λ ∈ F×v .

On the other hand, ψ|F = χ, so ψs/n(λ) = χv(λ)|λ|sv (λ ∈ F×v ). Thus if ν is any
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probability measure on F×v , the integral of (64) is unchanged by the substitution:

Ψv 7→ Ψ′v,Ψ
′
v(x) =

∫
λ

Ψv(λx)χs(λ)dν(λ).

Now compare ‖Ψ′v‖ and ‖Ψv‖, the norm ‖ · ‖ being defined as in the the second
statement of Proposition 9.9. An elementary computation shows that, for a smooth
measure ν, we must have:

(65) ‖Ψ′v‖ �Ψv Condv(χs)
−M .

Let us note that the implicit constants here depend on higher derivatives of Ψv;
this is permissible.21

Combining (63), (64) and (59), we see that for <(s) = n/2:

(66)

∣∣∣∣∣|det gD |1/2A

∫
TK(F )\TK(A)

EΨ(χ, s, tg)ψs/n(t)d×t

∣∣∣∣∣
�M,Ψ,ε C∞(ψs/n)N (DψDD)ε

{
C∞(χs)

−MD−θK D−θψ ,

D
1/4
ψ D−θK (DD/DK)−

1
16n2

Pick 0 < p < 1. Using the obvious fact min(U, V ) ≤ UpV 1−p, we may replace
the right-hand side (ignoring ε-exponents) by:

(67) C∞(ψs/n)NC∞(χs)
−pMD−θK D

−θp+ 1−p
4

ψ (DD/DK)−
1−p
16n2

≤ C∞(ψs/n)NC∞(χs)
−pMD−aD D−bψ

where a = min( 1−p
16n2 , θ), b = θp − 1−p

4 . For p sufficiently close to 1; these are all
positive. Making M arbitrarily large, and using Lemma 10.5 together with bounds
for Dedekind ζ-functions, yields the desired conclusion.

12. The reaping: a priori bounds

In this section, we translate Proposition 11.3 into a form that very explicitly
generalizes (5).

The result is Proposition 12.5. The work has already been done; this section
simply translates between adelic and S-arithmetic.

We begin by explicating the connection of the Eisenstein series EΨ with the
classical “Siegel-Eisenstein” series, in the case when the base field is Q. We then
carry out the analogue in an S-arithmetic setting over an arbitrary base field F .

12.1. Explications over Q. The (Siegel)-Eisenstein series on PGLn(Z)\PGLn(R)
often appears in the following guise. Let f be a Schwartz function on Rn. To each
L ∈ PGLn(Z)\PGLn(R) thought of as a lattice L ⊂ Rn of covolume 1, we associate
the number

(68) Ef (L) :=
∑

v∈L−{0}

f(v).

21 In explicit terms, (65) for v real amounts to a bound of the type:∫
x∈R

∣∣∣∣∣
∫
1/2.λ.2

f(λx)|λ|itdλ

∣∣∣∣∣�f (1 + |t|)−M ,

for a Schwartz function f , which is easily verified by integration by parts.
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We shall explicate the connection of this construction with the Eisenstein series
that we defined previously.

Specialize to the case F = Q, χ = | · |sA. We take Ψv to coincide with the
characteristic function of Znv for all finite v, and Ψ∞ = f . Define fs on Rn via the
rule

fs(v) =

∫
t∈R×

|t|sf(vt)d×t.

Then fs satisfies the transformation property fs(λv) = |λ|−sfs(v). Taking into
account the fact that the natural map R>0×

∏
p Z×p → A×Q/Q× is a homeomorphism,

we see that for g∞ ∈ GLn(R),

|det g∞|s/nEΨ(| · |s, g∞) = |det g∞|s/n
∑

v∈Zn.g∞

fs(v)

Note that, by Mellin inversion, f =
∫
s
fsds, where the s-integration is taken over

a line of the form <(s) = σ � 1. Consequently, the Siegel-Eisenstein series (68)
corresponds to the function on PGLn(Q)\PGLn(A) defined by

g 7→
∫
<(s)=σ�1

|det g|s/nA EΨ(s, g)ds.

12.2. S-arithmetic setup. We revert to the general setting of a number field F .
We shall henceforth pass from an adelic setup, to an S-arithmetic setup.

Fix, therefore, a finite set of places S, containing all archimedean ones. Set
FS =

∏
v∈S Fv. We assume that S is chosen so large that

A× = F×F×S
∏
v/∈S

O×F,v.

Under these assumptions, we may identify A×/F×
∏
v/∈S O×F,v to F×S /O

×, where

O := F ∩
∏
v/∈S OF,v. By Dirichlet’s theorem, the quotient of O by roots of unity

comprises a free abelian group of rank |S| − 1.
Similarly, making use of the strong approximation theorem for the group SLn,

we can identify

PGLn(F )\PGLn(A)/
∏
v/∈S

PGLn(OF,v)

to the quotient

PGLn(O)\PGLn(FS).

If µ is a measure on PGLn(F )\PGLn(A), we shall often abuse notation and identify
µ with the projected measure on PGLn(O)\PGLn(FS).

12.3. The S-arithmetic Eisenstein series. It will take us a little work to unravel
the Eisenstein series into a form which we can easily use in the S-arithmetic case.
There will be some complications arising from the failure of strong approximation
for PGLn.

Let F
(1)
S consist of those elements of F×S with |x| = 1. Then F×S can be identified

with F
(1)
S × R>0. In this way, we can identify a character of the compact group

F
(1)
S /O×, to a character of F×S /O

×: by extending trivially on R>0. Thus the group
of all normalized characters of CF , unramified away from S, is identified to the

character group of F
(1)
S /O×.
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We have already normalized measures on F×S . We normalize the measure on F
(1)
S

by differentiating along fibers of the map F×S → R>0 given by x 7→ |x|; here we

equip R>0 with the measure dλ
λ . The measure of F

(1)
S /O× then equals the measure

of A(1)/F×.
We now construct the S-arithmetic version of the Eisenstein series. Let ΨS is

a Schwartz function on FS ; put Ψ = ΨS ×
∏
v/∈S 1Onv . Let χ be a character of

F
(1)
S /O×, identified, via the remarks above, with a character of A×/F×.

Set

ĒΨ(χ, g) =

∫
<(s)=2n

EΨ(χ, s, g)|det g|s/nA
ds

2πi
.

Then, for g ∈ GLn(FS), EΨ(χ, g) equals:

(69)

∫
t∈A×/F×:|t|nA =| det g|A

χ−1(t)
∑

v∈Fn−{0}

Ψ(vt−1g)

=

∫
t∈F×S /O×:|t|nFS=| det g|FS

χ−1(t)
∑

v∈On−{0}

ΨS(vt−1g)

In the first expression, the t-integral is taken w.r.t. the measure that is transported
from the measure on A(1)/F×; in the second expression, the t-integral here is taken
over a compact abelian Lie group of dimension |S|− 1, with respect to the measure
previously discussed.

Fix a ∈ F (1)
S and put, for g ∈ GLn(FS),

(70) ĒΨ,a(g) =
1

vol(F
(1)
S /O×)

∑
χ:F

(1)
S /O×→S1

χ(adet g)ĒΨ(χn, g)

=
∑

tn=a det g

t∈F×S /O×

∑
v∈On−{0}

ΨS(vt−1g)

Indeed, the χ-sum restricts to those t ∈ F×S /O× so that tn and a det g differ by an
element of R>0; however, since |tn|FS = |a det g|FS , this forces tn = a det g. The

t-sum is finite, for the quotient F
(1)
S /O× is a compact abelian Lie group.

The function ĒΨ,a(g) defines a function on PGLn(O)\PGLn(FS); it is the S-
arithmetic version of our degenerate Eisenstein series.

12.4. Bounding the mass of ĒΨ,a. In order to bound the µD -measures of func-
tions of the type ĒΨ,a, via Proposition 11.3, we require a subconvex bound for the
L-functions L(K,ψ), when ψ is pulled back from a fixed character of F via the
norm map, i.e. we require the following estimate for <(s) = 1/2:

(71) |L(K,χ ◦NK/F , s)| � (C∞(χs)Dχ)
N
D

1/4−η
K , χ ∈ Ω(CF ) unitary.

for some constants N, η > 0 which depend at most on F and n = [K : F ] . The
quantity C∞(χ) is defined as in (56). Notice that unlike (57), we do not require in
(71) a subconvex bound in the “Dχ-aspect”.

The bound (71) is known in more cases than (57). For instance, it is known22

when F = Q and [K : Q] ≤ 3 (cf. Appendix A).

22even in the Dχ-aspect
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12.5. Proposition. Suppose (71) is known. Then, for homogeneous toral data D ,

(72)

∣∣∣∣∣µD(ĒΨ,a)− δ
∫
AnF

Ψ

∣∣∣∣∣�Ψ disc(D)−β

for some β > 0 – depending on n and the exponent η of (71); and where δ = δa ∈ Q
belongs to a finite set of rational numbers, depending on S, F and n.

The δ arise from the “connected components.” We could be a little more precise
about their value, but there is no point. This result implies the generalization,
to an arbitrary base field F and an S-arithmetic setting, of (5), discussed in the
Introduction.

Proof. The data D is defined by a field K ⊂Mn(F ) and an element gD ∈ GLn(A).
Recall

(73) ĒΨ(χ, g) =

∫
<(s)�1

EΨ(χ, s, g)|det g|s/nA
ds

2πi
,

ĒΨ,a(g) =
1

vol(F
(1)
S /O×)

∑
χ:F

(1)
S /O×→S1

χ(a det g)ĒΨ(χn, g)

As we have already commented, we are going to identify µD with its projection
to PGLn(O)\PGLn(FS). This being so, let us consider µD(ĒΨ,a). Shift contours
to <(s) = n/2 in the defining integrals and apply the bounds of Proposition 11.3.
(There are no concerns with convergence; the support of µD is compact.) The
function EΨ(χn, s, g) has a pole (by Proposition 10.2) precisely when χn is the
trivial character and s ∈ {0, n}; moreover, Proposition 10.2 computes the residue
in those cases.

The result is:

(74) µD(ĒΨ,a) =
∑

χ:F
(1)
S

/O×→S1

χn=1

µD(χ(a det g))

∫
An

Ψ(x)dx+ Error,

(note that g 7→ χ(adet g) indeed defines a function on PGLn(O)\PGLn(FS)), and:

(75) |Error| � 1

vol(F
(1)
S /O×)

×∑
χ:F

(1)
S /O×→S1

max
<(s)=1/2

(1 + |s|)2
∣∣µD

(
EΨ(χn, s, ·)χs/n ◦ det

)∣∣ .
For χ as above, put ψ := χ ◦NK/F , a character of CK . We have

|µD

(
EΨ(χn, s, ·)χs/n ◦ det

)
| = |det gD |s/nA

∣∣∣∣∣
∫
TK(F )\TK(A)

ψs/n(t)EΨ(χn, s, tgD)dt

vol(TK(F )\TK(A))

∣∣∣∣∣ .
By (the proof of) Proposition 11.3, we have under (71) for any M > 1 and some
β,N > 0

|µD

(
EΨ(χn, s, ·)χs/n ◦ det

)
| �M,Ψ (C∞(χns ))−MDN

χ D
−β
D .

We have utilized the notation χns := (χn)s, the character x 7→ χ(x)n|x|s. We
have used the fact that, in the present context, C∞(χns ) and C∞(ψs/n) are bounded
within powers of each other.
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Taking M large enough, we obtain the following bound:23

Error�Ψ D−βD .

Let us now analyze the right-hand side of (74). The set of elements of CF of the
form NK/F (x).det gD (for some x ∈ CK) is a coset of a subgroup of CF of finite

index. It projects to a coset of a subgroup of F×S /O
× which contains the nth powers,

which we may identify with a coset of a subgroup of the finite group F×S /O
×(F×S )n.

Call this subgroup Q and the pertinent coset bQ. If χ : F×S /O
× → S1 is so that

χn = 1, then

µD(χ(adet g)) =
1

|Q|
∑
x∈Q

χ(abx).

Therefore, the coefficient of
∫

Ψ, on the right-hand side of (74), is given by:∑
χn=1

1

|Q|
∑
x∈Q

χ(abx)

In particular, this lies in a finite set of rational numbers. �

13. Proof of Theorem 4.9 and Theorem 4.8

Let F be a number field, and let Di be a sequence of homogeneous toral data
on PGLn over F . Let Yi be the associated homogeneous toral sets, and µi = µDi

the corresponding probability measures. Recall that Di is defined by a torus Ti ⊂
PGLn together with gi ∈ PGLn(A). Let Ki be the corresponding (degree n) field
extensions. See §6.

When convenient we may drop the subscript i, referring simply to D , µD ,K,T,
etc.

13.1. Bounds on the mass of small balls and the cusp. Fix a set of represen-

tatives 1 = a1, . . . , ar ∈ F (1)
S for F×S /(F

×
S )nO×. Such representatives may indeed

be chosen in F
(1)
S .

Take x ∈ PGLn(O)\PGLn(FS); we say that a lattice in FnS (i.e. an O-submodule

of rank n) corresponds to x if it is of the form On.g0t
−1
0 where g0 is a representative

for x in GLn(FS); and t0 ∈ F×S /O
× is so that tn0 = det(g0)ai, some 1 ≤ i ≤ r.

There are only finitely many lattices corresponding to a given x.
We say a set Q in FnS is nice if there exists a Schwartz function ΨS on FnS so

that ΨS ≥ 1 on Q with
∫

ΨS ≤ 2vol(Q).

13.2. Lemma. Let Q ⊂ FnS be nice; set LQ ⊂ PGLn(O)\PGLn(FS) to comprise
those x ∈ PGLn(O)\PGLn(FS) so that a lattice corresponding to x contains an
element of Q.

If (71) is known, then

(76) µD(LQ)�F,S,n vol(Q) +OQ(disc(D)−β)

23The number of possibilities for χ|F∞ is, in general, infinite. However, if χ contributes non-
trivially to Error, then Dχ is bounded above depending on Ψ. Moreover, the number of such χs

with inf<(s)=1/2 C∞(χns ) ≤ T is bounded polynomially in T .
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Proof. Indeed, choose ΨS as remarked. As is clear from (70), the function
∑r
i=1 ĒΨ,ai

dominates the characteristic function of LQ. The result is a consequence of Propo-
sition 12.5. �

Let ε = (εv)v∈S be a choice of εv ∈ (0, 1) for each v ∈ S. Set ‖ε‖ =
∏
v∈S |εv|v.

For each v ∈ S, let Bv(εv) be an εv-neighbourhood of the identity in PGLn(Fv).
Here, we equip PGLn(Fv) with the metric that arises from the adjoint embedding
PGLn ↪→Mn2 ; and we equip Mn2 with the metric that arises from norm: supremum
of all matrix entries.

Let

BS(ε) =
∏
v∈S

Bv(εv) ⊂ PGLn(FS).

The following is a consequence of Lemma 13.2, for a suitable choice of Q; we leave
the details to the reader.

13.3. Lemma. (Bounds for the mass of small balls). Suppose (71) is known. Let
x0 ∈ PGLn(O)\PGLn(FS). Then

µD(x0BS(ε))�F,S,n ‖ε‖n +Oε(disc(D)−β)

Moreover, the implicit constant in Oε(. . . ) is bounded uniformly when x0 belongs to
any fixed compact.

Now let N0,v be the standard norm on Fnv (cf. §7). For g ∈ GLn(A), we set

ht(g)−1 = |det(g)|−1/n
A inf

λ∈Fn−{0}

∏
v

N0,v(λgv).

Let Kmax =
∏
v Stabilizer(N0,v) be the standard maximal compact subgroup of

GLn(A), and let K̄max be its image in PGLn. Then ht descends to a proper map
from PGLn(F )\PGLn(A)/K̄max to R>0. In particular, sets of the type ht−1

(
[R,∞)

)
,

for large R > 0, define “the cusp.”
The next result is again a consequence of Lemma 13.2.

13.4. Lemma. (Bounds for the cusp.) Suppose (71) is known.

µD(ht−1[R,∞))� R−n +OR(disc(D)−β)

13.5. Proof of Theorem 4.8. The volume of the homogeneous toral set associ-
ated to D is defined in (13). We take the set Ω0 to be the product

∏
v|∞Ωv ×∏

v finite PGLn(OF,v). Here, we set Ωv ⊂ PGLn(Fv), for v archimedean, to equal
the image, in PGLn, of exp(Ev); here

Ev := {Y ∈Mn(Fv) : Y has operator norm ≤ 1
10}

and the operator norm is taken w.r.t. the canonical norm on Fnv . Let us note that
exp : Ev → exp(Ev) is a diffeomorphism onto its image, being inverted by log.

We claim that

(77) log vol(Y ) =
∑
v

log vol{t ∈ T(Fv) : g−1
v tgv ∈ Ω0}−1 + o(log disc(D)),

where, on the right hand side, the measure on T(Fv) is normalized as indicated in
§8; and we understand T(Fv) as being embedded in T(A) in the natural way.

To verify (77) we need to consider our measure normalizations. In the definition
of “vol(Y )”, in §4.3, we endowed T(F )\T(A) with a probability measure. If we
normalize the measures on T(Fv) according to §8, the product measure is not
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a probability measure on T(F )\T(A); its mass is given by Lemma 10.5 to be a
certain ζ-value. By a result of Siegel, log |ζK(1)| = o(log discK), and, by Lemma
9.6, disc(K)� disc(D). This establishes (77).

Let v be a finite place. Let us recall that we defined an order Λv ⊂ g−1
v Kvgv

via Λv = g−1
v Kvgv ∩Mn(OF,v) (see §9.4). Therefore, Λ×v = g−1

v Kvgv ∩GLn(OF,v).
Thus {t ∈ T(Fv) : g−1

v tgv ∈ Ω0} is identified, via t 7→ g−1
v tgv, to Λ×v F

×
v /F

×
v . Since

Λv∩Fv = OF,v, we see, given the measure normalizations of §8, that vol{t ∈ T(Fv) :
g−1
v tgv ∈ Ω0} = vol(Λ×v )/vol(O×F,v). Taking into account Lemma 9.5, Lemma 9.7

and (23), this becomes:

(78) log vol{t ∈ T(Fv) : g−1
v tgv ∈ Ω0} =

1

2
log disc(Dv) +OF (1), v finite.

Here the error term oF (1) is identically zero if the residue characteristic of v is
larger than n, F is unramified at v, and discv(Dv) = 1.

Now we establish an (approximate) analog of (78) at archimedean places. We
claim that, for archimedean v,

(79) log vol{t ∈ T(Fv) : g−1
v tgv ∈ Ω0} = log vol(Λv) +OF (1)

=
1

2
log discv(Dv) +OF (1)

The second equality follows readily from Lemma 9.5, so we need to verify the first
equality. Put Av = g−1

v (K ⊗Fv)gv ⊂Mn(Fv). Because Av is a subalgebra, we have
exp(Av) ⊂ Av, and log(Av) ⊂ Av when log is defined. Therefore,

Av ∩ exp(Ev) = exp(Av ∩ Ev)
The set {t ∈ T(Fv) : g−1

v tgv ∈ Ω0} is identified, via t 7→ g−1
v tgv, to F×v exp(Av ∩

Ev)/F
×
v . Its measure is therefore easily seen to be bounded above and below

by constant multiples by the Av-measure of exp(Av ∩ Ev).{F×v ∩ exp(Ev)}. This
set contains exp(Av ∩ Ev) and is contained in exp(Av ∩ 2Ev). The measure of
exp(Av∩Ev) and exp(Av∩2Ev) are bounded above and below by constant multiples
of the volume of Λv by constants, for the map exp : Av → A×v preserves (up to a
constant) measure. This establishes (79).

Combining (77), (78) and (79), we see that

log vol(Y ) =
1

2

∑
v

log disc(Dv) + oF (log discD).

The conclusion of Theorem 4.8 follows. �

13.6. Proof of Theorem 4.9. Let v be a place as indicated in the proof of The-
orem 4.9. Let S be a finite set of places of F as in §12.2; enlarging S, we may
suppose v ∈ S without loss of generality.

Let Hi = g−1
i,vTi(Qv)gi,v. The measure µi := µDi , upon projection to

PGL3(O)\PGL3(FS), is invariant under Hi. Denote by µ̄i this projection.
Let µ̄∞ be any weak∗ limit of the measures µ̄Di , which we may assume is the

projection of a limit µ∞ of the original sequence. Because the bounds of Lemma 13.4
are uniform in Di, the measure µ̄∞ is a probability measure.

It will suffice to show that µ̄∞ is SL3(Fv)-invariant. In fact, it then follows that
µ̄∞ is SL3(FS)-invariant by irreducibility of the lattice PGL3(O) ⊂ PGL3(FS) and,
S being arbitrary, that µ∞ is SL3(A)-invariant. Once µ∞ is SL3(A)-invariant, it is
determined by its projection to the compact group A×F /F×(A×F )3. We are reduced
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to showing that limits of homogeneous measures on a compact abelian group are
of the same type, which is easy.

We shall use the following observation, which is a consequence of Lemma 13.2:
Let P ⊂ PGL3 be the stabilizer of a line in F 3; let P′ be the stabilizer of a plane
in F 3. Thus P,P′ are F -parabolic subgroups. Let Z ⊂ P(Fw)\PGL3(Fw), Z ′ ⊂
P′(Fw)\PGL3(Fw) be the Fw-points of varieties of dimension ≤ 1. Then:

(80) µ̄∞((P(O)\P(FS)) .Z) = 0, µ̄∞ (P′(O)\P′(FS).Z ′) = 0.

Indeed, the first assertion of (80) follows directly from Lemma 13.2, taking for
Q a suitable sequence of sets. The second assertion may be deduced from the
first by applying the outer automorphism (transpose-inverse) of PGL3 to the entire
situation.

Case 1. Suppose discv(Di) → ∞. Let hi = Lie(Hi); let h∞ be any limit of hi
inside the Grassmannian of pgl3. It is a 2-dimensional commutative Lie subalgebra.
The measure µ̄∞ is invariant by exp(h∞). Necessarily h∞ contains a nilpotent
element.

Identify pgl3 with trace-free 3 × 3 matrices. There are two conjugacy classes of
nontrivial nilpotents in pgl3 according to the two possible Jordan blocks. Suppose

that h∞ contains a conjugate of

 0 1 0
0 0 1
0 0 0

 (i.e. a generic nilpotent element).

Then since the centralizer of this generic element is two dimensional, it follows in
this case by commutativity of h∞ that h∞ is this centralizer. I.e. h∞ contains in

any case a conjugate n of the Lie algebra spanned by

 0 0 1
0 0 0
0 0 0

.

We make the following observation: Suppose j is a proper Lie subalgebra of
sl3 containing n. Then j is reducible over F̄ 3

v , i.e. fixes a line or a plane over the
algebraic closure. Indeed, the only proper Lie subalgebra of sl3 that acts irreducibly
over the algebraic closure is soq, for q a nondegenerate quadratic form. But soq
does not contain any conjugate of n.

By [35,39], µ̄∞ may be expressed as a convex linear combination of Haar proba-
bility measures µι on closed orbits xιHι with ι belonging to some probability space
I; here Hι is a closed subgroup of PGL3(FS). Moreover, all the measures µι are
ergodic under the action of N = exp(n).

Suppose µ̄∞ is not SL3(Fv)-invariant. Then for a positive proportion of the ι,
say for ι ∈ I ′, the subgroup Hι does not contain SL3(Fv). Therefore, µ̄∞ dominates
the convex combination:

µ̄∞ ≥
∫
I′
µι.

Fix some ι ∈ I ′ and let xι = PGL3(O)g, where we may assume that xι has dense
orbit in xιHι under the action of N . We claim:
(81)

There exists a proper F -subgroup J ⊂ PGL3 so that xιHι ⊂ (J(O)\J(FS)).g.

For the proof of the claim, consider first Hι as a subgroup of a product of real
and p-adic Lie groups: if S̄ is the set of places of Q below S, then we consider
PGL3(FS) =

∏
p∈S̄

∏
w|p,w∈S PGL3(Fw). It may be seen that, in a neighbourhood

of the identity Hι is itself a product of real and p-adic subgroups. We define the
Lie algebra h of Hι to be the product of the real Lie algebra and the various p-adic
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ones; this is, by definition, a QS̄-submodule of ⊕w∈Spgl3(Fw). (Here, and in what
follows, we use pgl3(k) to denote the k-points of the vector space pgl3.)

In general, if the map S → S̄ is not bijective, h may not be a direct sum of
its projections to the pgl3(Fw). We claim, however, that the projection of h to
pgl3(Fv) is a proper subalgebra. Indeed, n is a Lie subalgebra of h ∩ pgl3(Fv); it
follows that all conjugates of n by elements of Hι again belong to h ∩ pgl3(Fv).
Were the projection of h to pgl3(Fv) surjective, it would follow – by the simplicity
of pgl3(Fv) as a module over itself – that pgl3(Fv) is contained in h; contradiction.

Next let J′ be the Zariski closure of gHιg
−1 ∩PGL3(O); by definition, this is an

F -algebraic subgroup of PGL3. J′ preserves the projection of Ad(g)h to pgl3(Fv),
and is therefore a proper subgroup of PGL3.

Just as in the Borel density theorem it follows that gNg−1 is contained in J′(Fv).
In fact, by Chevalley’s theorem there is an algebraic representation φ of PGL3 on
V and a vector vφ ∈ Vφ such that J′ is the stabilizer of the line generated by vφ.
Fix some parametrization nt of N as a one-parameter unipotent group. Note that
the line spanned by φ(gntg

−1)(vφ) approaches the line spanned by an eigenvector
vN of φ(gNg−1) if |t| → ∞. By our assumption on xι we have a sequence tk ∈ Fv
with |tk|v → ∞ for which xιntk → xι as k → ∞. Therefore, there exists some
sequence γk ∈ PGL3(O) ∩ gHιg

−1 and gk ∈ PGL3(Fv) with gntk = γkggk and gk
approaching the identity. This implies that φ(gn−1

tk
g−1)(vφ) = φ(gg−1

k g−1γ−1
k )(vφ)

both approaches vN and vφ, i.e. that vN = Vφ and so gNg−1 ⊂ J′(Fv).
To prove (81), we proceed as follows. Let J′′ ⊂ J′ be the preimage, in J′,

of the commutator subgroup of J′/Ru(J′). Since J′′ is F -algebraic without F -
characters, it follows that PGL3(O)J′′(FS) is closed. Therefore, the same holds
for PGL3(O)J′′(FS)g which is invariant under N . We see that PGL3(O)J′′(FS)g
contains xιHι by our choice of xι. We can take J := J′′.

Next we claim that J is contained in an F -parabolic subgroup P. For this we
need to show that J preserves a line in F 3 or a line in the dual (F 3)∗. Indeed, as
noted before Lie J⊗F F̄v preserves a line or a dual line in F̄ 3

v , and so Lie J preserves
a line or a dual line over the algebraic closure. If the Galois conjugates of this line
are not contained in a plane, then then J would be a torus, contradicting the fact
it contains unipotents. Otherwise, the Galois conjugates of the line span either a
line or a plane; this yields a preserved line24 in F 3 or in (F 3)∗.

Therefore,
PGL3(O)J(FS)g ⊂ PGL3(O)P(FS)g,

for some F -parabolic subgroup P, the stabilizer of a line or a dual line.
Moreover, we know that n ⊂ Ad(g−1)p where p is the Lie algebra of P. Thus

the fixed line (or dual line) for the parabolic Ad(g−1
v )P(Fv) is also preserved by n

acting on F 3 or (F 3)∗, i.e. belongs to the kernel of n. The kernel has dimension
2, and so we see that the coset P.gv belongs to a one-dimensional subvariety of
P(Fv)\PGL3(Fv).

Applying (80) and noting that there are only countably many F -parabolic sub-
groups, we derive a contradiction.

Case 2. There exists a place v so that the associated tori Ti are all Fv-split.
We may assume that discv(Di) remain bounded. The subgroups Hi then remain
in a compact set within the space of tori in PGL3(Qv). Let H be any limit of the
subgroups Hi. Then µ̄∞ is H-invariant and H is an Fv-split torus inside PGL3(Fv).

24Implicitly, we use Hilbert’s theorem 90.
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By Lemma 13.3, every H-ergodic component of µ̄∞ has positive entropy with
respect to the action of a regular element in H. It follows by [16, Theorem 2.6]
(which generalizes [15] to the S-algebraic setting) that µ̄∞ is SL3(Fv)-invariant. �

Appendix A. Recollections on subconvexity

In this section, we are going to briefly recall the subconvexity problem for L-
functions and some of the progress towards it. We refer to [27] for a more complete
description of the subconvexity problem.

Let L(π, s) denote an L-function attached to some arithmetic object π (of degree
n ≥ 1),

L(π, s) =
∏
p

L(πp, s) =
∏
p

n∏
i=1

(1− απ,i(p)p−s)−1.

L(π, s) is expected to have meromorphic continuation to C with (under an appro-
priate normalization) finitely many poles located on the lines <s = 0, 1. It satisfies
a functional equation of the form

qs/2π L(π∞, s)L(π, s) = ω(π)q(1−s)/2
π L(π∞, 1− s)L(π, 1− s).

Here

L(π∞, s) =

n∏
i=1

ΓR(s+ µπ,i), ΓR(s) = π−s/2Γ(s/2),

qπ ≥ 1 is an integer (the conductor of π) and |ω(π)| = 1.
A subconvex bound (in the conductor aspect), is a bound of the form

(82) L(π, s)� (C∞(πs))
Nq1/4−θ

π

for some absolute constants N > 0 and θ > 0. Here we denote by C∞(πs) the
quantity

(83) C∞(πs) =

d∏
i=1

(1 + |µπ,i + s|),

The bound (82) is named subconvex by comparison with the (easier) convexity
bound – which may be deduced from the Phragmén–Lindelöf convexity principle –
in which the exponent 1/4− δ is replaced by any exponent > 1/4.

In this paper the main class of L-functions for which we consider the subconvexity
problem are the Dedekind ζ-function of a number field K: the Dedekind ζ-function
of K is a function of a single complex variable. For <(s) > 1 it is defined by the
rule

ζK(s) =
∑

a⊂OK

NK/Q(a)−s,

the sum being taken over the non-zero ideals of OK . It extends to a meromorphic
function of s with a simple pole at s = 1. In that case the conductor of ζK is the
(absolute value of the) discriminant of K:

A.1. Hypothesis. Let K be a number field of fixed degree n. There exists θ,N > 0
(depending at most on n) such that for <s = 1/2,

ζK(s)�n |s|Ndisc(K)1/4−θ.

By now Hypothesis A.1 is known for a restriced class of number fields K:
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- when K is an abelian extensions of Q of fixed degree (n say); this follows
from the Kronecker-Weber theorem and from Burgess’s subconvex bound
for Dirichlet L-functions [6]. More generally, Hypothesis 5.1 holds if K
varies through the abelian extensions of a fixed number field F by the work
of fourth named author [46].

- when K is a cubic extension of Q: when K is not abelian, ζK(s) factors as
ζ(s)L(ρ, s) where ρ is a dihedral (2-dimensional) irreducible complex Galois
representation of Gal(Q/Q); more precisely L(ρ, s) is the L-function of a
cubic ring class character of the unique quadratic extension contained in
the closure of K. By quadratic base change, L(ρ, s) is the L-function of a
GL2,Q-automorphic form and the subconvex bound for the latter class of
L-functions follows from the works of Duke, Friedlander, Iwaniec [14] and
Blomer, Harcos and the third author [3]. By the work of the third and
fourth named authors [37], this now holds when K is a cubic extension of
a fixed number field F .

- More generally, by the above quoted works, Hypothesis A.1 is known if
K/Q is contained in a ring class field of an arbitrary quadratic extension
of an arbitrary ground field F .

We also need to consider the L-function, L(K,ψ, s), associated to a Hecke
Grössencharacter of K ψ (in other words a character of the idèles of K, A×K/K×).
The conductor of L(K,ψ, s) is the product of disc(K) and the “discriminant of ψ.”
(Usually, the conductor of ψ is defined as a certain integral ideal of K; the norm of
this ideal is the discriminant of ψ.)

A.2. Hypothesis. Let K be a number field of degree n and ψ a unitary character
of the idèles of K. Then there exists θ,N > 0 (depending at most on n) so that for
<s = 1/2,

L(K,ψ, s)�n C∞(ψ, s)N (disc(ψ)disc(K))1/4−θ,

where disc(ψ) denote the conductor of ψ.

Hypothesis A.2 is known in even fewer cases:

- when K is an fixed number field and ψ is varying : this is a consequence of
Burgess work if K = Q and of [46] in general.

- when K is a (possibly varying) quadratic extension of the base field F :
again this follows (by quadratic base change) from the works [3, 14,37].

- when K/F is an extension of given degree which is either, abelian, cubic
or contained in a ring class field of an arbitrary quadratic extension of F
and ψ factors through the norm map: that is ψ = χ ◦NK/F for some Hecke
character (over F ). In that case L(K,ψ, s) (viewed as an L-function “over”
F ) equals the twist of ζK(s) by the character χ and the subconvex bound
follows from a combination of the above quoted works.
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Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 697–740.

[4] R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1–30.



56 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, AND A. VENKATESH

[5] D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathe-

matics, vol. 55, Cambridge University Press, Cambridge, 1997.

[6] D. A. Burgess, On character sums and L-series. II, Proc. London Math. Soc. (3) 13 (1963),
524–536.

[7] T. Chelluri, Equidistribution of roots of quadratic congruences, Rutgers Univ. PhD thesis.
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