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1. Introduction

Flows on locally homogeneous spaces are a special kind of dynamical systems. The
ergodic theory and dynamics of these flows are very rich and interesting, and their
study has a long and distinguished history. What is more, this study has found
numerous applications throughout mathematics.

The spaces we consider are of the form Γ\G where G is a locally compact group
and Γ a discrete subgroup of G. Typically one takes G to be either a Lie group,
a linear algebraic group over a local field, or a product of such. Any subgroup
H < G acts on Γ\G and this action is precisely the type of action we will consider
here. One of the most important examples which features in numerous number
theoretical applications is the space PGL(n,Z)\PGL(n,R) which can be identified
with the space of lattices in Rn up to homothety.

Part of the beauty of the subject is that the study of very concrete actions
can have meaningful implications. For example, in the late 1980s G. A. Margulis
proved the long-standing Oppenheim conjecture by classifying the closed orbits of
the group of matrices preserving an indefinite quadratic form in three variables
in PGL(3,Z)\PGL(3,R) — a concrete action of a three-dimensional group on an
eight-dimensional space.

An element h of a linear group G (considered as a group of n × n matrices
over some field K) is said to be unipotent if h − e is a nilpotent matrix, e being
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the identity. Using the adjoint representation one can similarly define unipotent
elements for Lie groups. Thanks to the work of M. Ratner, actions of groups
H generated by unipotent elements are well understood, and this has numerous
applications to many subjects. We refer to [37, Chapter 3], [51] and [?, Ratner-
ICM]or more information on this important topic.

In this paper, we focus on the action of diagonalizable groups which of course
contain no nontrivial unipotent elements. A prototypical example is the action of
the group A of diagonal matrices on PGL(n,Z)\PGL(n,R). There is a stark differ-
ence between the properties of such actions when dimA = 1 and when dimA ≥ 2.
In the first case the dynamics is very flexible, and there is a wealth of irregu-
lar invariant probability measures and irregular closed invariant sets (though we
present some results for one-dimensional actions in §2.2 under an additional recur-
rence condition). If dimA ≥ 2, the dynamics changes drastically. In particular, it
is believed that in this case the invariant probability measures (and similarly the
closed invariant sets) are much less abundant and lend themselves to a meaningful
classification. Another dynamical property which is less often considered in this
context but which we believe is important is the distribution of periodic orbits,
i.e. closed orbits of the acting group with finite volume. The purpose of this pa-
per is to present some results in these directions, particularly with regards to the
classification of invariant measures, and their applications.

A basic invariant in ergodic theory is the ergodic theoretic entropy introduced
by A. Kolmogorov and Ya. Sinai. This invariant plays a surprisingly big role in
the study of actions of diagonalizable groups on locally homogeneous spaces as well
as in the applications. We discuss entropy and how it naturally arises in several
applications in some detail.

In an attempt to whet the reader’s appetite, we list below three questions on
which the ergodic theoretic properties of diagonalizable flows give at least a partial
answer:

• Let F (x1, . . . , xn) be a product of n linear forms in n variables over R. As-
sume that F is not proportional to such a form with integral coefficients.
What can be said about the values F attains on Zn? In particular, is
inf0 6=x∈Zn |F (x)| = 0?

• Let φi be a sequence of Hecke-Maass cusp forms1 on SL(2,Z)\H. What can
be said about weak∗ limits of the measure |φi|2 dm (m being the uniform
measure on SL(2,Z)\H)?

• Suppose n ≥ 3 is fixed. Is it true that any ideal class in a totally real2 number
field K of degree n has a representative of norm o(

√
disc(K))?

E.L. is scheduled to give a presentation based on this work in the ordinary differ-
ential equations and dynamical systems section of the 2006 International Congress

1See §5 for a definition.
2A number field K is said to be totally real if any embedding of K to C is in fact an embedding

to R.
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of Mathematicians. Since much of this is based on our joint work, we have de-
cided to write this paper jointly. Some of the results we present here are joint
with P. Michel and A. Venkatesh and will also be discussed in their contribution
to these proceedings [50].

We thank H. Oh, M. Ratner, P. Sarnak for comments on our paper. Both
M.E. and E.L. have benefited tremendously by collaborations and many helpful
discussions related to the topics covered in this survey, and are very thankful to
these friends, mentors, colleagues and collaborators.

2. Entropy and classification of invariant measures

2.1. Measures invariant under actions of big diagonalizable
groups.

2.1.1. We begin by considering a special case where it is widely expected that
there should be a complete measure classification theorem for the action of a
multidimensional diagonal group. The space we will be considering is Xn =
PGL(n,Z)\PGL(n,R), which can be identified with the space of lattices in Rn

up to homothety.

Conjecture 2.1. Let A be the group of diagonal matrices in PGL(n,R), n ≥
3. Then any A-invariant and ergodic probability measure µ on the space Xn is
homogeneous3, i.e. is the L-invariant measure on a closed orbit of some group
L ≥ A.

While at present this conjecture remains open, the following partial result is
known:

Theorem 2.2 (E., Katok, L. [14]). Let A be the group of diagonal matrices as
above and n ≥ 3. Let µ be an A-invariant and ergodic probability measure on
PGL(n,Z)\PGL(n,R). If for some a ∈ A the entropy hµ(a) > 0 then µ is homo-
geneous.

It is possible to explicitly classify the homogeneous measures in this case (see
e.g. [42]), and except for measures supported on a single A-orbit none of them is
compactly supported. It follows that:

Corollary 2.3. Let n ≥ 3. Any compactly supported A-invariant and ergodic
probability measure on PGL(n,Z)\PGL(n,R) has hµ(a) = 0 for all a ∈ A.

For an application of this corollary to simultaneous Diophantine approximation
and values of products of linear forms see §4.

3The adjective “algebraic” is also commonly used for this purpose. We follow in this the
terminology of [51].
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2.1.2. We now give a general conjecture, which is an adaptation of conjectures of
A. Katok and R. Spatzier [33, Main conjecture] and G. A. Margulis [49, Conjecture
2]. Similar conjectures were made by H. Furstenberg (unpublished).

Let S be a finite set of places for Q (i.e. a subset of the set of finite primes and
∞). By an S-algebraic group we mean a product GS =

∏
v∈S Gv with each Gv

an algebraic group over Qv. A Qv-algebraic group Gv is reductive if its unipotent
radical is trivial. An S-algebraic group GS is reductive (semisimple) if each of the
Gv is reductive (respectively, semisimple). For any group G and Γ ⊂ G a discrete
subgroup, we will denote the image of g ∈ G under the projection G → Γ\G by
((g))Γ or simply ((g)) if Γ is understood. We shall say that two elements a1, a2 of
an Abelian topological group A are independent if they generate a discrete free
Abelian subgroup.

Conjecture 2.4. Let S be a finite set of places for Q, let GS =
∏

v∈S Gv be an S-
algebraic group, G ≤ GS closed, and Γ < G discrete. For each v ∈ S let Av < Gv

be a maximal Qv-split torus, and let AS =
∏

v∈S Av. Let A be a closed subgroup of
AS∩G with at least two independent elements. Let µ be an A-invariant and ergodic
probability measure on Γ\G. Then at least one of the following two possibilities
holds:

1. µ is homogeneous, i.e. is the L-invariant measure on a single, finite volume,
L-orbit for some closed subgroup A ≤ L ≤ G.

2. There is some S-algebraic subgroup LS with A ≤ LS ≤ GS, an element
g ∈ G, an algebraic homeomorphism φ : LS → L̃S onto some S-algebraic
group L̃S, and a closed subgroup H < L̃S with H ≥ φ(Γ) so that (i) µ((LS ∩
G).((g))Γ) = 1, (ii) φ(A) does not contain two independent elements and
(iii) the image of µ to H\L̃S is not supported on a single point.

Examples due to M. Rees [60] show that µ need not be algebraic, even if
G = SL(3,R) and Γ a uniform lattice; see [12, Section 9] for more details. Such µ
arise from algebraic rank one factors of locally homogeneous subspaces as in case
2. of Conjecture 2.4.

2.1.3. We note that the following conjecture is a special case of Conjecture 2.4:

Conjecture 2.5 (Furstenberg). Let µ be a probability measure on R/Z invariant
and ergodic under the natural action of the multiplicative semigroup

{
pnql

}
k,l∈Z+

with p, q multiplicatively independent integers4. Then either µ is Lebesgue or it is
supported on finitely many rational points.

For simplicity, assume p and q are distinct prime numbers. Then Conjecture 2.5

4I.e. integers which are not both powers of the same integer.
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is equivalent to Conjecture 2.4 applied to the special case of

AS = {(t∞, tp, tq) : tv ∈ Q∗
v for v ∈ S} , S = {∞, p, q} ,

A =
{

(t∞, tp, tq) ∈ AS : |t∞| · |tp|p · |tq|q = 1
}
,

G = An (R×Qp ×Qq),
Γ = Λ n Z[1/pq],

with Λ the group
{
pkql

}
k,l∈Z embedded diagonally in A, and Z[1/pq] embedded

diagonally in R×Qp ×Qq.

2.1.4. Following is a theorem towards Conjecture 2.4 generalizing Theorem 2.2.
We note that the proof of this more general theorem is substantially more involved.

Theorem 2.6 (E., L. [19]). Let S be a finite set of places for Q as above, GS =∏
v∈S Gv a reductive S-algebraic group, and Γ < GS discrete. Let S′ ⊂ S and for

any v ∈ S′, let Av be a maximal Qv-split torus in Gv. Set AS′ =
∏

v∈S′ Av, and
assume AS′ has at least two independent elements5. Let µ be an AS′-invariant
and ergodic probability measure on Γ\GS. Then at least one of the following two
possibilities holds:

1. There is some nontrivial semisimple H < GS normalized by AS′ so that (i)
µ is H invariant, (ii) there is some g ∈ GS so that µ(NGS

(H).((g))Γ) = 1,
and (iii) for any a ∈ CAS′ (H), the entropy hµ(a) = 0.

2. there is some v ∈ S and a reductive Lv ⊂ Gv of Qv-rank one satisfying the
following: setting N = CGS

(Lv) and L = NLv (so that N � L), there is
some g ∈ GS so that µ(L.((g))Γ) = 1 and the image of g−1Γg ∩ L under the
projection L→ L/N is closed.

Note that option 2. above precisely corresponds to the existence of an algebraic
rank one factor of the action as in Conjecture 2.4.

2.2. Recurrence as a substitute for bigger invariance. It is well
known that invariance under a one-parameter diagonalizable group is not sufficient
to obtain a useful measure classification theorem. On the other hand, it seems that
in many situations one can replace additional invariance with a weaker requirement:
that of recurrence under some further action.

2.2.1. Let X be a measurable space, equipped with a measure µ, and L a lo-
cally compact second countable group acting on X. We first give a definition of
recurrence.

Definition 2.7. We say that µ is recurrent under L (or L-recurrent) if for every
set B ⊂ X with µ(B) > 0 for a.e. x ∈ B the set {` ∈ L : `.x} is unbounded, i.e.
has non-compact closure.

5Equivalently, that rank(AS′ ) ≥ 2.
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This condition is also called conservativity of µ; we find recurrence a more
natural term when dealing with the action of general group actions. It can be
defined alternatively in terms of cross-sections: a set Y ⊂ X is said to be a cross-
section for L if µ(L.Y ) > 0 and for every y ∈ Y there is a neighborhood U of
the identity in L so that `.y 6∈ Y for every ` ∈ U \ {e}. A cross-section is said to
be complete if µ(X \ L.Y ) = 0. We can define recurrence using cross-sections as
follows: a measure µ is recurrent under L if there is no cross-section intersecting
each L-orbit in at most a single point. This definition is equivalent to the one given
in Definition 2.7. An advantage of this viewpoint is that it allows us to consider
more refined properties of the action:

Definition 2.8. We say that the L-recurrence of a measure µ is dominated by H
if there is a complete cross-section Y ⊂ X for L so that for every y ∈ Y

{` ∈ L : `.y ∈ Y } ⊂ H.

We say that the L-recurrence of a measure µ is weakly dominated by H if there is
a (not necessarily complete) cross-section Y ⊂ X satisfying the same.

2.2.2. We now give a specific rigidity theorem employing recurrence as a substitute
for invariance under a multidimensional group. For an application of this theorem
to arithmetic quantum unique ergodicity, see §5.

Theorem 2.9 (E., L. [20]). Let v be either ∞ or a finite prime, and let Gv be a
semisimple algebraic group over Qv with Qv-rank one. Let Av be a Qv-split torus
in Gv an let L be an S-algebraic group (S a finite set of places for Q as above).
Let Γ < Gv ×L be a discrete subgroup so that |Γ ∩ {e} × L| <∞. Suppose µ is an
Av-invariant, L-recurrent probability measure on Γ\Gv × L, and that for a.e. Av-
ergodic component µξ the entropy hµξ

(Av) > 0. Then a.e. Av-ergodic component
is homogeneous.

The case Gv = SL(2,R) was proved in [39] and was used to prove arithmetic
quantum unique ergodicity (see §5).

It would be interesting to prove a version of Theorem 2.9 where Gv is replaced
by a higher rank algebraic group, e.g. SL(3,Qv), and Av any algebraic embedding
of Q∗

v → Gv. This seems like a feasible undertaking, but would require new ideas.

2.2.3. It seems desirable to have a general conjecture similar to Conjecture 2.4
where additional invariance is replaced by recurrence. The following seems not
completely implausible:

Conjecture 2.10. Let S be a finite set of places for Q, and GS =
∏

v∈S Gv an
S-algebraic group and Γ < GS discrete as above. Fix v ∈ S and let Av be a rank
one Qv-split torus. Let L < GS be a closed subgroup commuting with Av such that
|Av ∩ L| < ∞. Suppose µ is an Av-invariant, L-recurrent probability measure.
Then there is a AvL-invariant Borel set X ′ of positive µ-measure so that at least
one of the following holds:
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1. There are closed subgroups Ã ≥ Av and L̃ so that (i) Ã and L̃ commute and
have compact intersection6 (ii) for every x ∈ X ′ both L̃.x and Ã.x are closed
and furthermore Ã.x has finite Ã-invariant measure (iii) µ|X′ is Ã-invariant
(iv) the L-recurrence of µ|X′ is dominated by Ã · L̃.

2. There is a closed subgroup L̃ < GS commuting with Av such that for a set of
positive µ-measure of x ∈ X ′ we have that L̃.x is closed, and the L-recurrence
of µ|X′ is dominated by L̃.

If true, this conjecture implies many (if not all) cases of Conjecture 2.4, in
particular Conjecture 2.1.

2.2.4. In the notations of the above conjecture, let a be an element in Av which
does not generate a bounded subgroup7 of Av. Let

G+
a =

{
g ∈ Gv : a−ngan → e as n→∞

}
G−a =

{
g ∈ Gv : anga−n → e as n→∞

}
G0

a = CGv
(a).

In the paper [20] we give some nontrivial information on an Av-invariant, L-
recurrent probability measure µ for Av, L as in the conjecture, under the additional
conditions that µ is Uv-recurrent for some Qv-algebraic subgroup Uv ≤ G−v such
that

1. Uv commutes with L,

2. the Uv recurrence of µ is not weakly dominated by any proper Av-normalized
algebraic subgroup of Uv

3. for any g ∈ G+
v , there is a u ∈ Uv so that ugu−1 6∈ G0

vG
+
v .

The exact conclusions we derive about µ in this case is somewhat technical but in
particular they imply Theorem 2.9. Note that one consequence of these conditions
is that hµ(Av) > 0 (see §3).

2.3. Joinings.

2.3.1. Let (X,µ) and (Y, ν) be two measure spaces, and suppose that A is some
locally compact group that acts on both (X,µ) and (Y, ν) in a measure preserving
way. A joining between (X,µ) and (Y, ν) is a measure ρ on X × Y whose push
forward under the obvious projection to X and Y are µ and ν respectively, and
which is invariant under the diagonal action of A on X × Y .

One example of a joining which always exists is taking ρ = µ × ν (the trivial
joining). If φ : X → Y is a measure preserving map which is A equivariant (i.e.
a.φ(x) = φ(a.x) for all a ∈ A and a.e. x ∈ X) then ρ = (Id× φ)∗µ is a nontrivial

6Note that L̃ may be trivial.
7I.e. a subgroup with noncompact closure.
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joining between (X,µ) and (Y, ν). Note that this joining is supported on the graph
of φ. Let (Z, η) be another measure space on which A acts preserving the measure.
(Z, η) is a factor8 of (X,µ) if there is an A equivariant measurable map ψ : X → Z
so that η = ψ∗µ. Any common factor of (X,µ) and (Y, ν) can also be used to give
a nontrivial joining called the relatively independent joining.

Typically the most interesting case is studying the joinings of a space (X,µ)
with itself (called self joinings).

2.3.2. We now consider joinings between locally homogeneous spaces Γ\GS on
which we have an action of a higher rank diagonalizable group. Even though
we currently do not have a complete understanding of invariant measures in this
context, we are able to give a complete classification of joining between two such
actions in many cases.

Theorem 2.11 (E., L. [18, 17]). Let S be a finite set of places for Q, and Gi =∏
v∈S Gi,v for i = 1, 2 two S-algebraic semisimple groups, Γi < Gi be lattices9, and

mi Haar measure on Γi\Gi normalized to have total mass one. Let A =
∏

v∈S′ Av

with each Av a Qv-split torus and S′ ⊆ S satisfying rankA ≥ 2. Let τi (i = 1, 2)
be embeddings of A into Gi with the property that

1. τi(A) is generated by the subgroups τi(A) ∩H where H runs through the Qv

simple normal subgroups of Gi,v (v ∈ S).

2. For both i = 1, 2, there is no S-algebraic group L and an S-algebraic homo-
morphism φ : Gi → L so that φ(Γi) is discrete and rank(φ ◦ τi(A)) ≤ 1.

Then any ergodic joining between (Γ1\G1,m1) and (Γ2\G2,m2) is homogeneous10.

The assumptions of the theorem imply that the action of A on (Γi\Gi,mi)
(i = 1, 2) is ergodic, and so any joining can be written as the integral of ergodic
joinings. The second assumption in Theorem 2.11 regarding the non-existence of
rank one factors is clearly necessary. There is no reason to believe the same is true
regarding the first assumption.

A special case of the theorem is when Gi are simple algebraic groups over Qv,
v either a finite prime or ∞, and τi any algebraic embeddings of (Q∗

v)k to Gi,
k ≥ 2. In this case the two assumptions regarding τi are automatically satisfied.
This case has been treated in [17] using the methods developed by M. E. and
A. Katok in [13] (to be precise, only v = ∞ is considered in [17] , but there are no
difficulties in extending that treatment to Qv for any v). The proof of the more
general Theorem 2.11 requires also the results in [20].

8It may be more consistent with standard mathematical terminology to call (Z, η) a quotient,
but factor is the standard term in ergodic theory.

9I.e. discrete subgroups of finite covolume.
10A joining is in particular a measure on Γ1\G1 × Γ2\G2 invariant under the diagonal action

of the group A. Properties of invariant measures such as ergodicity, homogeneity etc. are in
particular equally applicable to joinings.
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2.3.3. A different approach to studying joinings was carried out by B. Kalinin and
R. Spatzier in [32] using the methods developed by A. Katok and R. Spatzier in
[33, 34]. A basic limitation of this technique is that e.g. for actions of split algebraic
tori on semisimple or reductive algebraic groups they are able to analyze joinings
only if the joining is ergodic not only under the action of the full acting group A
but also under the action of certain one parameter subgroups of A. Typically, this
is a fairly restrictive assumption, but for joinings which arise from isomorphisms
as discussed in §2.3.1 this assumption is indeed satisfied11. This has been used by
B. Kalinin and R. Spatzier to classify all measurable isomorphisms between actions
of Rk on Γi\Gi (i = 1, 2) with Gi a Lie group, Γi < Gi a lattice and the action
of t ∈ Rk on Γi\Gi is given by right translation by ρi(t), ρi a proper embedding12

of the group Rk in Gi whose image is Ad-diagonalizable over C under some mild
conditions on the action of ρi(Rk) on Γi\Gi.

2.3.4. We end our discussion of joinings by noting that extending these joining
results to the general context considered in Conjecture 2.4 is likely to be difficult;
at the very least it would directly imply Conjecture 2.5.

To see this, let p, q be two multiplicative independent integers, m Lebesgue
measure on R/Z and µ any other continuous probability measure on R/Z invariant
and ergodic under the action of the multiplicative semigroup S generated by p and
q. Let ρ denote the map (x, y) → (x, x+ y) from R/Z×R/Z to itself. Then since
m is weakly mixing for S, the measure m× µ is ergodic for S and so ρ∗(m× µ) is
an ergodic self joining of the action of S on (R/Z,m). What we have seen is that
a counterexample to Furstenberg’s Conjecture 2.5 would give a nonhomogeneous
ergodic self joining of (R/Z,m), which can be translated to a nonhomogeneous
ergodic self joining of the group action considered in §2.1.3.

One can, however, classify joinings of the actions of commuting endomorphisms
of tori with no algebraic projections on which the action degenerates to the action
of a virtually cyclic group up to this problem of zero entropy factors. This has been
carried out for actions by a group of commuting toral automorphisms satisfying
a condition called total nonsymplecticity by B. Kalinin and A. Katok [31] using
an adaptation of the methods of A. Katok and R. Spatzier. In [16] the authors
deal with general actions of commuting toral automorphisms (without the total
nonsymplecticity condition).

2.4. Historical discussion.

2.4.1. In 1967 Furstenberg proved that any orbit of the multiplicative semigroup{
pkql

}
k,l∈Z+ on R/Z for p, q multiplicatively independent integers is either finite

or dense and conjectured Conjecture 2.5 apparently at around the same time.
This conjecture seems to have appeared in print only much later (and by other
authors quoting Furstenberg). Furstenberg’s work was extended to the case of

11The same observation in the context of toral automorphisms was used by A. Katok, S. Katok
and K. Schmidt in [36].

12I.e. the preimage of compact sets is compact.
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automorphisms of tori and other compact abelian groups by D. Berend (see e.g.
[5]).

The first substantial result towards Conjecture 2.5 was published in 1988 by
R. Lyons [46], who proved it under the assumption that µ has completely positive
entropy for the action generated by the single element p (in particular, µ is ergodic
for the single transformation x 7→ px mod 1). D. Rudolph [62] showed for p, q
relatively prime that it is sufficient to assume that hµ(p) > 0; this is still the
best result known in this case. The restriction that p, q were relatively prime was
lifted by A. Johnson [29]. As Rudolph explicitly pointed out in his paper his proof
significantly simplifies if one assumes that µ is ergodic under x 7→ px mod 1. Other
proofs of this result were given by J. Feldman [24] and B. Host [26] (B. Host actually
proves a stronger result that implies Rudolph’s). We also note that Host’s proof
employed recurrence for a certain action which does not preserve the measure, and
was one of the motivations for Theorem 2.9.

2.4.2. The first results towards measure classification for actions of diagonalizable
groups on quotients of Lie groups and automorphisms of tori were given by A. Ka-
tok and R. Spatzier [33, 34]; certain aspects of their work were clarified in [30].
Their proof replaces Rudolph’s symbolic description by more geometric concepts,
and in particular highlighted the role of conditional measures on invariant folia-
tions on which a subaction acts isometrically. In most cases Katok and Spatzier
needed to assume both a condition about entropy and an assumption regarding
ergodicity of these subactions. Removing the extra ergodicity assumptions proved
to be critical for arithmetic and other applications. M.E. and Katok [12, 13] and
E.L. [39] developed two completely different and complementary approaches to
proving measure rigidity results in the locally homogeneous context without addi-
tional ergodicity assumptions. Both of these techniques were used in [14]. We note
that in [39] essential use was made of techniques introduced by M. Ratner to study
unipotent flows, particularly her work on rigidity of horocycle flows [56, 54, 55].
Ratner’s measure classification theorem [57] and its extensions [58, 48] are used in
all these approaches.

In the context of action by automorphisms on tori no ergodicity assumption was
needed by Katok and Spatzier under an assumption they term total nonsymplec-
ticity. A uniform treatment for the general case, using entropy inequalities which
should be of independent interest, was given by the authors in [16]. Host [27] has
a treatment of some special cases (and even some non commutative actions) by
other methods.

2.4.3. We have restricted our attention in this section solely to the measure classi-
fication question, but it is interesting to note that already in 1957, J. W. S. Cassels
and H. P. F. Swinnerton-Dyer [8] stated a conjecture regarding values of products
of three linear forms in three variables (case n = 3 of Conjecture 4.1) which is
equivalent to Conjecture 4.4 regarding behavior of orbits of the full diagonal group
on SL(3,Z)\SL(3,R), and which can be derived from Conjecture 2.1. It seems
that the first to observe the connection between Furstenberg’s work and that of
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Cassels and Swinnerton-Dyer was G. A. Margulis [47].

3. Brief review of some elements of entropy theory

In this section we give several equivalent definitions of entropy in the context of
actions of diagonalizable elements on locally homogeneous spaces, and explain the
relations between them.

3.1. General definition of entropy.

3.1.1. Let (X,µ) be a probability space. The entropy Hµ(P) of a finite or count-
able partition of X into measurable sets measures the average information of P in
the following sense. The partition can be thought of as an experiment or observa-
tion whose outcome is the partition element P ∈ P the point x ∈ X belongs to.
The information obtained about x from this experiment is naturally measured on
a logarithmic scale, i.e. equals − logµ(P ) for x ∈ P ∈ P. Therefore, the average
information or entropy of P (with respect to µ) is

Hµ(P) = −
∑
P∈P

µ(P ) logµ(P ).

One basic property of entropy is sub-additivity; the entropy of the refinement
P ∨Q = {P ∩Q : P ∈ P, Q ∈ Q} satisfies

Hµ(P ∨Q) ≤ Hµ(P) +Hµ(Q). (3.1)

However, this is just a starting point for many more natural identities and proper-
ties of entropy, e.g. equality holds in (3.1) if and only if P and Q are independent.

The ergodic theoretic entropy hµ(a) associated to a measure preserving map
a : X → X measures the average amount of information one needs to keep track of
iterates of a. To be more precise we need to start with a fixed partition P (either
finite or countable with Hµ(P) <∞) and then take the limit

hµ(a,P) = lim
N→∞

1
N
Hµ

(
N−1∨
n=0

a−nP

)
.

To get independence of the choice of P the ergodic theoretic entropy is defined by

hµ(a) = sup
P:Hµ(P)<∞

hµ(a,P).

The ergodic theoretic entropy was introduced by A. Kolmogorov and Ya. Sinai
and is often called the Kolmogorov-Sinai entropy; it is also somewhat confusingly
called the metric entropy even though X often has the additional structure of a
metric space and in that case there is a different (though related) notion of entropy,
the topological entropy (see §4.2.2), which is defined using the metric on X.
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3.1.2. Entropy has many nice properties and is manifest in many different ways.
We mention a few which will be relevant in the sequel.

A partition P is said to be a generating partition for a and µ if the σ-algebra∨∞
n=−∞ a−nP (i.e. the σ-algebra generated by the sets {an.P : n ∈ Z, P ∈ P})

separates points, that is for µ-almost every x, its atom with respect to this σ-
algebra is {x}.13 The Kolmogorov-Sinai theorem asserts the nonobvious fact that
hµ(a) = hµ(a,P) whenever P is a generating partition.

Entropy is most meaningful when µ is ergodic. In this case, positive entropy
hµ(a) > 0 means that the entropy of the repeated experiment grows linearly, i.e.
every new iteration of it reveals some new information of the point. In fact, one can
go to the limit here and say that the experiment reveals new information even when
one already knows the outcome of the experiment in the infinite past. Similarly,
zero entropy means that the observations in the past completely determine the
present one. If µ is an a-invariant but not necessarily ergodic measure, with an
ergodic decomposition µ =

∫
µExdµ(x),14 then

hµ(a) =
∫
hµE

x
(a)dµ(x), (3.2)

i.e. the entropy of a measure is the average of the entropy of its ergodic components.

3.2. Entropy on locally homogeneous spaces.

3.2.1. Let G =
∏

v∈S Gv be an S-algebraic group, Γ < G discrete, and set X =
Γ\G. The Lie algebra of GS can be defined as the product of the Lie algebra of
the Gv, and the group G acts on its Lie algebra of G by conjugation; this action is
called the adjoint representation and for every a ∈ G the corresponding Lie algebra
endomorphisms is denoted by Ad a. Fix an a ∈ G for which Ad a restricted to the
Lie algebra of each Gv is diagonalizable over Qv. We implicitly identify between
a ∈ G and the corresponding map x 7→ a.x from X to itself.

The purpose of this subsection is to explain how the entropy hµ(a) of an a-
invariant measure µ relates to more geometric properties of X. A good reference
for more advanced results along this direction is [48, Section 9] which contains an
adaptation of results of Y. Pesin, F. Ledrappier, L. S. Young and others to the
locally homogeneous context.

3.2.2. Fundamental to the dynamics of a are the stable and unstable horospherical
subgroups G−a and G+

a introduced in §2.2.4. Both G−a and G+
a are unipotent

algebraic groups and the Lie algebras of G−a (resp. G+
a ) are precisely the sums

of the eigenspaces of the adjoint Ada of eigenvalue with absolute value less than
(resp. bigger than) one. For any x ∈ X the orbits G−a .x and G+

a .x are precisely
the stable and unstable manifolds of x. We will also need the group

G0
a =

{
g ∈ G : the set {anga−n, n ∈ Z} is bounded

}
.

13Recall that the atom of x with respect to a countably generated σ-algebraA is the intersection
of all B ∈ A containing x and is denoted by [x]A.

14This decomposition has the property that µEx is ergodic and for a.e. x, the ergodic averages
of a function f along the orbit of x converge to

R
fdµEx
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Under our assumptions G0
a can be shown to be an algebraic subgroup of G, and if

1 is the only eigenvalue of Ad a of absolute value one, G0
a = CG(a). This subgroup

G0
a together with G−a and G+

a give a local coordinate system of G, i.e. there are
neighborhoods V − ⊂ G−a , V + ⊂ G+

a , and V 0 ⊂ G0
a of e for which V +V −V 0 is a

neighborhood of e in G and the map from V +×V −×V 0 to V +V −V 0 is a bijection.

3.2.3. Suppose X is compact. If P is a finite partition with elements of small
enough diameter, then the atoms of x with respect to A =

∨∞
n=1 a

−nP is a subset
of V −V 0.x for all x ∈ X as x and y are in the same A-atom if and only if an.x and
an.y are in the same partition element of P for n = 1, 2, . . .. In particular, they
must be close-by throughout their future, which can only be if the V +-component
of their relative displacement is trivial. Similarly, the atom of x with respect to∨∞
−∞ a−nP is a subset of V 0.x for all x ∈ X.

Thus even though P might not be a generator, the atoms of the σ-algebra
generated by a−nP for n ∈ Z are small, with each atom contained in a uniformly
bounded subset of a single G0

a-orbit. G0
a possesses a metric invariant under conju-

gation by a, and this implies that a acts isometrically on these pieces of G0
a-orbits.

Such isometric extensions cannot produce additional entropy, and indeed a modi-
fication of the proof of the Kolmogorov-Sinai theorem gives that

hµ(a,P) = hµ(a) for all a-invariant measures µ. (3.3)

In the non-compact case there is a somewhat weaker statement of this general form
that is still sufficient for most applications.

3.2.4. Positive entropy can be characterized via geometric tubes as follows. Let
B be a fixed open neighborhood of e ∈ G, and define Bn =

⋂n
k=−n a

kB. A tube
around x ∈ X = Γ\G is a set of the form Bn.x for some n. Then for a as in
§3.2.1, it can be shown using the Shannon-McMillan-Breiman theorem that if B is
sufficiently small, for any measure µ with ergodic decomposition

∫
µExdµ(x)

hµE
x
(a) = lim

n→∞

− logµ(Bn.x)
2n

for µ-a.e. x. (3.4)

In particular, positive entropy of µ is equivalent to the exponential decay of the
measure of tubes around a set of points which has positive µ-measure, and positive
entropy of all ergodic components of µ is equivalent to the same holding for a conull
subset of X. We note that (3.4) is a variant of a more general result of Y. Brin
and A. Katok [7].

3.2.5. Positive entropy can also be characterized via recurrence. For µ, a as above
the following are equivalent: (i) hµE

x
(a) > 0 for a.e. a-ergodic component µEx (ii) µ is

G−a -recurrent (iii) µ is G+
a -recurrent (see e.g. [39, Theorem 7.6]).

3.2.6. A quite general phenomenon is upper semi-continuity of entropy hµ(a) as
a function of µ in the weak∗ topology15. Deep results of Yomdin, Newhouse and

15A sequence of measures µi converges in the weak∗ topology to µ if for every compactly
supported continuous function f one has that

R
fdµi →

R
fdµ.
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Buzzi establish this for general C∞ diffeomorphisms of compact manifolds, but
in our context establishing such semi-continuity is elementary, particularly in the
compact case. For non-compact quotients X = Γ\G and a sequence of a-invariant
probability measures we might have escape of mass in the sense that a weak∗ limit
might not be a probability measure. In that case entropy might get lost (even
if some mass remains). However, if we assume that the weak∗ limit is again a
probability measure then upper semi-continuity still holds in this context. The
case where the whole sequence is supported on a compact set is discussed in [14,
Cor. 9.3]. The general case follows along similar lines, the key step is showing
that there is a finite partition capturing almost all of the ergodic theoretic entropy
uniformly for the sequence, cf. §3.2.3.

4. Entropy and the set of values obtained by prod-
ucts of linear forms

4.1. Statements of conjectures and results regarding products
of linear forms.

4.1.1. In this section we consider the following conjecture:

Conjecture 4.1. Let F (x1, x2, . . . , xn) be a product of n linear forms in n vari-
ables over the real numbers with n ≥ 3, and assume that F is not proportional to
a homogeneous polynomial with integer coefficients. Then

inf
0 6=x∈Zd

|F (x)| = 0. (4.1)

We are not sure what is the proper attribution of this conjecture, but the case
n = 3 was stated by J. W. S. Cassels and H. P. F. Swinnerton-Dyer in 1955 [8]. In
that same paper, Cassels and Swinnerton-Dyer show that Conjecture 4.1 implies
the following conjecture of Littlewood:

Conjecture 4.2 (Littlewood (c. 1930)). For any α, β ∈ R,

lim inf
n→∞

n ‖nα‖ ‖nβ‖ = 0,

where for any x ∈ R we denote ‖x‖ = minn∈Z |x− n|.

We let Fn denote the set of products of n linear forms in n-variables, considered
as a subvariety of the space of degree n homogeneous polynomials in n-variables,
and PFn the corresponding projective variety with proportional forms identified.
For any F ∈ Fn we let [F ] denote the corresponding point in PFn.

4.1.2. The purpose of this section is to explain how measure classification results
(specifically, Corollary 2.3) can be used to prove the following towards the above
two conjectures:
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Theorem 4.3 (E., Katok, L. [14]). 1. The set of products [F ] ∈ PFn for which
inf0 6=x∈Zn |F (x)| > 0 has Hausdorff dimension zero.

2. The set of (α, β) ∈ R2 for which lim infn→∞ n ‖nα‖ ‖nβ‖ > 0 has Hausdorff
dimension zero.

Even though Conjecture 4.1 implies Conjecture 4.2, part 2 of Theorem 4.3 does
not seem to be a formal consequence of 1 of that theorem. The proofs, however,
are very similar. Related results by M.E. and D. Kleinbock in the S-arithmetic
context can be found in [15].

4.1.3. As noted by G.A. Margulis [47], Conjecture 4.1 is equivalent to the following
conjecture regarding the orbits of the diagonal group onXn = PGL(n,Z)\PGL(n,R)
(cf. Conjecture 2.1 above):

Conjecture 4.4. Let A be the group of diagonal matrices in PGL(n,R), and Xn

as above. Then for any x ∈ Xn its orbit under A is either periodic (closed of finite
volume) or unbounded16.

The equivalence between Conjecture 4.1 and Conjecture 4.4 is a consequence
of the following simple proposition (the proof is omitted):

Proposition 4.5. The product of n linear forms

F (x1, . . . , xn) =
n∏

i=1

(`i1x1 + · · ·+ `inxn)

satisfies inf0 6=x∈Zn |F (x)| ≥ δ if and only if there is no ((g)) ∈ A.((`)) where ` =
(`ij)n

i,j=1 and a nonzero x ∈ Zn so that

‖xg‖n
∞ < det(g)δ.

In particular, by Mahler’s compactness criterion, (4.1) holds if and only if A.((`))
is unbounded.

The map F 7→ NG(A).((`)), NG(A) being the normalizer of A in G = PGL(n,R)
gives a bijection between PGL(n,Z) orbits in PFn and orbits of NG(A) in Xn.
Note that NG(A) is equal to the semidirect product of A with the group of n× n
permutation matrices.

4.1.4. In a somewhat different direction, G. Tomanov [71] proved that if F is a
product of n linear forms in n variables, n ≥ 3, and if the set of values F (Zn) is
discrete, then F is proportional to a polynomial with integer coefficients. Trans-
lated to dynamics, this statement reduces to a classification of all closed A-orbits
(bounded or unbounded) which was carried out by Tomanov and B. Weiss in [72].

4.2. Topological entropy and A-invariant closed subsets of Xn.

16I.e. does not have compact closure.
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4.2.1. Corollary 2.3 regarding A-invariant measures on Xn which have positive
ergodic theoretic entropy with respect to some a ∈ A implies the following purely
topological result towards Conjecture 4.4 (this theorem is essentially [14, Theorem
11.2]):

Theorem 4.6. Let Y be a compact A-invariant subset of Xn. Then for every
a ∈ A the topological entropy htop(Y, a) = 0.

Theorem 4.3 can be derived from Theorem 4.6 by a relatively straightforward
argument that in particular uses Proposition 4.5 to translate between the orbits of
A and Diophantine properties of products of linear forms (and a similar variant to
relate orbits of a semigroup of A with the behavior of lim infk→∞ k ‖kα‖ ‖kβ‖).

4.2.2. We recall the definition of topological entropy, which is the topological
dynamical analog of the ergodic theoretic entropy discussed in §3.1: Let (Y, d) be
a compact metric space and a : Y → Y a continuous map17. Two points y, y′ ∈ Y
are said to be k, ε-separated if for some 0 ≤ ` < k we have that d(a`.y, a`.y′) ≥ ε.
Set N(Y, a, k, ε) to be the maximal cardinality of a k, ε-separated subset of Y .
Then the topological entropy of (Y, a) is defined by

H(Y, a, ε) = lim inf
k→∞

logN(Y, a, k, ε)
k

htop(Y, a) = lim
ε→0

H(Y, a, ε).

We note that in analogy to §3.2.3, for the systems we are considering, i.e. a ∈ A
acting on a compact Y ⊂ Xn there is some ε(Y ) so that

htop(Y, a) = H(Y, a, ε) for ε < ε(Y ).

4.2.3. Topological entropy and the ergodic theoretic entropy are related by the
variational principle (see e.g. [25, Theorem 17.6] or [35, Theorem 4.5.3])

Proposition 4.7. Let Y be a compact metric space and a : Y → Y continuous.
Then

htop(Y, a) = sup
µ
hµ(a)

where the sup runs over all a-invariant probability measures supported on Y .

Note that when µ 7→ hµ(a) is upper semicontinuous (see §3.2.6), in particular if
a ∈ A (identified with the corresponding translation on Xn) and Y ⊂ Xn compact,
this supremum is actually attained by some a-invariant measure on Y .

4.2.4. We can now explain how Theorem 4.6 can be deduced from the measure
classification results quoted in §2

17For Y which is only locally compact, one can extend a to a map ã on its one-point compact-
ification Ỹ fixing ∞ and define htop(Y, a) = htop(Ỹ , ã)
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Proof of Theorem 4.6 assuming Corollary 2.3. Let Y ⊂ Xn be compact, and a ∈
A be such that htop(Y, a) > 0. Then by Proposition 4.7 there is an a-invariant prob-
ability measure µ supported on Y with hµ(a) > 0. Let Sr =

{
a ∈ A : ‖a‖ ,

∥∥a−1
∥∥ < er

}
.

Since A is a commutative group

µr =
∫

Sr

(a′.µ)dmA(a′)

(where mA is Haar measure on A) is also a-invariant, and in addition it follows
directly from the definition of entropy that ha′.µ(a) = hµ(a) for any a′ ∈ A. Using
(3.2) it follows that hµr (a) = hµ(a).

Let ν be any weak∗ limit point of µr. Then by semicontinuity of entropy,

hν(a) ≥ lim inf
r→∞

hµr
(a) > 0

and since Sr is a Folner sequence in A we have that ν is A-invariant. Finally, since
Y is A-invariant, and µ is supported on Y , so is ν. But by Corollary 2.3, ν cannot
be compactly supported — a contradiction.

5. Entropy and arithmetic quantum unique ergod-
icity

Entropy plays a crucial role also in a completely different problem: arithmetic
quantum unique ergodicity. Arithmetic quantum unique ergodicity is an equidistri-
bution question, but unlike most equidistribution questions it is not about equidis-
tribution of points but about equidistribution of eigenfunction of the Laplacian. A
more detailed discussion of this topic can be found in [40] and the surveys [63, 65]
as well as the original research papers, e.g. [61, 39].

5.1. The quantum unique ergodicity conjecture.

5.1.1. Let M be a complete Riemannian manifold with finite volume which we
initially assume to be compact. Then since M is compact, L2(M) is spanned by
the eigenfunctions of the Laplacian ∆ on M . Let φn be a complete orthonormal
sequence of eigenfunctions of ∆ ordered by eigenvalue. These can be interpreted
for example as the steady states for Schrödinger’s equation

−i∂ψ
∂t

= ∆ψ

describing the quantum mechanical motion of a free (spinless) particle of unit mass
on M (with the units chosen so that ~ = 1). According to Bohr’s interpretation
of quantum mechanics µ̃n(A) :=

∫
A
|φn(x)|2 dmM (x) is the probability of finding

a particle in the state φn inside the set A at any given time, mM denoting the
Riemannian measure on M , normalized so that mM (M) = 1. A. I. Šnirel′man, Y.
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Colin de Verdière and S. Zelditch [69, 9, 75] have shown that whenever the geodesic
flow on M is ergodic, for example if M has negative curvature, there is a subse-
quence nk of density one on which µ̃nk

converge in the weak∗ topology to m, i.e. µ̃n

become equidistributed on average. Z. Rudnick and P. Sarnak conjectured that in
fact if M has negative sectional curvature, µ̃n become equidistributed individually,
i.e. that µ̃n converge in the weak∗ topology to the uniform measure mM .

5.1.2. As shown in [69, 9, 75] any weak∗ limit µ̃ of a subsequence of the µ̃i is the
projection of a measure µ on the unit tangent bundle SM of M invariant under
the geodesic flow. This measure µ can be explicitly constructed directly from the
φi. We shall call µ the microlocal lift of µ̃. We shall call any measure µ on SM
arising in this way a quantum limit. A stronger form of Rudnick and Sarnak’s
conjecture regarding µ̃n is the following (also due to Rudnick and Sarnak)

Conjecture 5.1 (Quantum unique ergodicity conjecture [61]). Let M be a compact
Riemannian manifold with negative sectional curvature. Then the uniform measure
mSM on SM is the only quantum limit.

There is numerical evidence towards this conjecture in the analogous case of
2D concave billiards by A. Barnett [3], and some theoretical evidence is given
in the next two subsections, but whether this conjecture should hold for general
negatively curved manifolds remains unclear.

5.2. Arithmetic quantum unique ergodicity.

5.2.1. Consider now the special case of M = Γ\H, for Γ one of the following:

1. Γ is a congruence sublattice of PGL(2,Z);

2. D is a quaternion division algebra over Q, split over R (i.e. D(R) := D⊗R ∼=
M(2,R)). Let O be an Eichler order in D.18 Then the norm one elements in
O are a co-compact lattice in D(R)∗/R∗. Let Γ be the image of this lattice
under the isomorphism D(R)∗/R∗ ∼= PGL(2,R).

We shall call such lattices lattices of congruence type over Q.

5.2.2. If Γ is as in case 1 of §5.2.1, then M = Γ\H has finite volume, but is
not compact. A generic hyperbolic surface of finite volume is expected to have
only finitely many eigenfunctions of Laplacian in L2; consequently Conjecture 5.1
needs some modification to remain meaningful in this case. However, a special
property of congruence sublattices of PGL(2,Z) congruence is the abundance of
cuspidal eigenfunctions of the Laplacian (in particular, the existence of many eigen-
functions in L2) on the corresponding surface, and so Conjecture 5.1 as stated is
both meaningful and interesting for these surfaces. The abundance of cuspidal
eigenfunctions follows from Selberg’s trace formula [66]; see [41] for an elementary
treatment.

18A subring O < D is said to be an order in D if 1 ∈ O and every for β ∈ O its trace and its
norm are in Z. An order O is an Eichler order if it is the intersection of two maximal orders.
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We remark that for congruence sublattices of PGL(2,Z) the continuous spec-
trum of the Laplacian is given by Eisenstein series; equidistribution (appropriately
interpreted) of these Eisenstein series has been established by W. Luo and P. Sar-
nak and by D. Jakobson[44, 28].

5.2.3. The lattices given in §5.2.1 have the property that for all but finitely many
primes p, there is a lattice Λp in PGL(2,R)× PGL(2,Qp) so that

Γ\PGL(2,R) ∼= Λp\PGL(2,R)× PGL(2,Qp)/Kp (5.1)

with Kp = PGL(2,Zp) < PGL(2,Qp). For example, for Γ = PGL(2,Z) one can
take Λp = PGL(2,Z[1/p]) (embedded diagonally in PGL(2,R)× PGL(2,Qp)).

5.2.4. The isomorphism (5.1) gives us a map πp : Λp\H × PGL(2,Qp) → Γ\H.
The group PGL(2,Qp) acts on Λp\H×PGL(2,Qp) by right translation, and using
this action we set for every x ∈ Γ\H

Tp(x) = πp

((
p 0
0 1

)
.π−1

p (x)
)

;

this is a set of p + 1 points called the p-Hecke correspondence. Using this corre-
spondence we define the p-Hecke operator (also denoted Tp) on functions on Γ\H
by

[Tp(f)](x) = p−1/2
∑

y∈Tp(x)

f(y).

The Hecke operators (considered as operators on L2(M)) are self adjoint operators
that commute with each other and with the Laplacian, so one can always find an
orthonormal basis of the subspace of L2(M) which corresponds to the discrete
part of the spectrum consisting of such joint eigenfunctions. Furthermore, if the
spectrum is simple (as is conjectured e.g. for PGL(2,Z)), eigenfunctions of the
Laplacian are automatically eigenfunctions of all Hecke operators. These joint
eigenfunctions of the Laplacian and all Hecke operators are called Hecke-Maass
cusp forms.

5.2.5. We define an arithmetic quantum limit to be a measure µ on SM which
is a quantum limit constructed from a sequence of Hecke-Maass cusp forms (see
§5.1.2). The arithmetic quantum unique ergodicity question, also raised by Rudnick
and Sarnak in [61] is whether the uniform measure on SM is the only arithmetic
quantum limit. Some partial results towards answering this question were given
in [61, 38, 74, 64]. Assuming the Riemann hypothesis for suitable automorphic
L-functions, T. Watson [73] has shown that the only arithmetic quantum limit
for both types of lattices considered in §5.2.1 is the normalized volume measure.
In fact, to obtain this conclusion one does not need the full force of the Riemann
hypothesis but only subconvexity estimates on the value of these L-functions at 1/2,
which are known for some families of L-functions but not for the ones appearing
in Watson’s work. Assuming the full force of the Riemann hypothesis gives a rate
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of convergence of the µ̃k to the uniform measure that is known to be best possible
[45].

Using measure classification techniques one can unconditionally prove the fol-
lowing:

Theorem 5.2 (L. [39]). Let M be Γ\H for Γ one of the lattice as listed in §5.2.1.
Then if M is compact the arithmetic quantum limit is the uniform measure mSM

on SM (normalized to be a probability measure). In the noncompact case, any
arithmetic quantum limit is of the form cmSM some c ∈ [0, 1].

It is desirable to prove unconditionally that even in the non-compact case mSM

is the only arithmetic quantum limit. A weaker version would be to prove uncon-
ditionally that for any sequence of Hecke-Maass cusp forms φi and f, g ∈ Cc(M)
with g ≥ 0 ∫

f(x) |φi(x)|2 dm(x)∫
g(x) |φi(x)|2 dm(x)

→
∫
fdm(x)∫
gdm(x)

.

5.2.6. We briefly explain how measure rigidity results are used to prove Theo-
rem 5.2. Let φi be a sequence of Hecke-Maass cusp forms on Γ\H, and let µ be
the associated arithmetic quantum limit, which we recall is a measure on SM
which is essentially Γ\PGL(2,R). Using the isomorphism (5.1) and in the nota-
tions of §5.2.3, one can identify µ with a right Kp-invariant measure, say µ′, on
Λp\PGL(2,R) × PGL(2,Qp). Using the fact that φi is an eigenfunction of the
Hecke operators and some elementary fact regarding the regular representations
of PGL(2,Qp) one can show that µ′ is recurrent under PGL(2,Qp) (see Defini-
tion 2.7).

Building upon an idea of Rudnick and Sarnak from [61], J. Bourgain and E. L.
[6] have shown that any ergodic component µEx of µ with respect to the action

of the group a(t) =
(
et 0
0 e−t

)
(equivalently, any ergodic component of µ′ with

respect to the action of the group a′(t) = (a(t), e)) has positive entropy (in fact,
hµE

x
(a) ≥ 2/9). One can now use Theorem 2.9 for PGL(2,R) to deduce that µ′ and

hence the arithmetic quantum limit µ is proportional to the Haar measure.
The entropy bound of [6] is proved by giving a uniform bound for every x in a

compactK ⊂ Γ\PGL(2,R) on the measure of geometric tubes around x of the form
µ(Bk.x) < cB,K exp(−4k/9), with Bk as in §3.2.4. This bound holds already for
appropriate lifts of the measures µ̃n, and depends only on φn being eigenfunctions
of all Hecke operators (but does not use that they are also eigenfunctions of the
Laplacian).

5.2.7. Using the same general strategy, L. Silberman and A. Venkatesh have been
able to prove arithmetic quantum unique ergodicity for other Γ\G/K, specifically
for G = PGL(p,R) (p > 2 prime) and Γ a lattice arising from an order in a division
algebra of degree p over Q (for p = 2 this gives precisely the lattices considered in
part 2 of §5.2.1). While the strategy remains the same, several new ideas are needed
for this extension, in particular a new micro-local lift for higher rank groups [68, 67].
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Silberman has informed us that these methods can be used to establish analogs of
Theorem 5.2 in some three-dimensional hyperbolic (arithmetic) manifolds; to the
best of our knowledge such extensions are not known for any higher dimensional
hyperbolic manifolds.

5.3. A result of N. Anantharaman. We conclude this section by dis-
cussing some very recent results of N. Anantharaman which shed some light on
quantum limits in full generality (and not just in the arithmetic context). It can be
deduced from her paper [1] that if M is a compact manifold with negative sectional
curvature then every quantum limit has positive ergodic theoretic entropy. In the
case of surfaces of constant curvature −1 Anantharaman actually proves that for
any δ > 0 any quantum limit has a positive measure of ergodic components with
ergodic theoretic entropy ≥ (d−1)/2−δ; in this normalization the ergodic theoretic
entropy of the uniform measure mSM is d− 1.

An exposition of some of her ideas as well as a different but closely related
approach, both applied to a simpler toy model, can be found in [2] by N. Anan-
tharaman and S. Nonnenmacher.

Note that in contrast to [6], this method inherently can only prove that some
ergodic components have positive entropy. In the nonarithmetic situation it seems
very hard to show that all ergodic components have positive entropy; indeed, this
is false in the toy model considered in [2] as well as for an appropriately quantized
hyperbolic toral automorphism [23].

6. Entropy and distribution of periodic orbits

Let G be a semisimple R-split algebraic group, Γ < G a lattice, and A a R-
split Cartan subgroup of G. Then there are always infinitely many periodic A
orbits in Γ\G [53]. Uniform measure on these orbits give examples of A-invariant
measures with zero entropy. It is surprising therefore that entropy plays a key
role in our understanding of distribution properties of such compact orbits. The
results described in this section are joint work of the authors with P. Michel and A.
Venkatesh [21] and are also described from a somewhat different viewpoint in [50]
in these proceedings. Unless otherwise stated, proofs of all the statements below
can be found in [21].

Periodic orbits of R-split Cartan subgroups have also been studied elsewhere.
We mention in particular the papers [52] by H. Oh where finiteness theorems re-
garding these orbits are proved and [4] where Y. Benoist and H. Oh prove equidis-
tribution of Hecke orbits of a fixed A-periodic orbit.

6.1. Discriminant and regulators of periodic orbits. For con-
creteness, we restrict to the case G = PGL(n,R), Γ = PGL(n,Z) and A < G the
group of diagonal matrices. Later, we will also allow Γ to be a lattice associated
to an order in a division algebra D over Q of degree n with D⊗R ∼= M(n,R) (e.g.
for n = 2 a lattice as in part 2 in §5.2.1).
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6.1.1. We wish to attach to every periodic A orbit in Xn = Γ\G two invariants:
discriminant and regulator. Before doing this, we we recall the following classical
construction of such orbits:

Let K be a totally real extension of Q with [K : Q] = n. Let OK be the
integers of K, and let I � OK be an ideal. Chose an ordering τ1, . . . , τn of the n
embeddings of K in R, and let τ = (τ1, . . . , τn) : K → Rn. Then τ(I) is a lattice
in Rn, hence corresponds to a point ((gI)) ∈ Xn. If α1, . . . , αn generate I as an
additive group we can take gI = (τj(αi))n

i,j=1. For any v ∈ Rn we let diag(v) be
the diagonal matrix with entries v1, v2, . . . , vn. If α ∈ O∗K then I = αI and

((gI)) = diag(τ(α)).((gI)).

diag(τ(·)) embeds O∗K discretely in A, and Dirichlet’s unit theorem gives us that
O∗K/ {±1} is a free Abelian group with n− 1 generators. It follows that ((gI)) has
periodic orbit under A. Two ideals I, J � OK are equivalent if I = αJ for some
α ∈ K; in this case diag(τ(α)).((gI)) = ((gJ)) hence A.((gI)) = A.((gJ)) iff I ∼ J .
The number of equivalence classes of ideals is denoted by CK and is called the
class number of K; given τ we see that there are CK distinct periodic A-orbits
associated with OK .

A small variation of this construction allowing a general order O < OK and I
a proper ideal of O gives all periodic A-orbits.

6.1.2. Let D be the algebra of all n × n (not necessarily invertible) diagonal
matrices over R. Let x = ((g)) be a point with periodic A-orbit. Define ΓA,g :=
Γ ∩ gAg−1. Then since x is periodic, g−1ΓA,gg is a lattice in A. To ΓA,g we
can also attach a subring Q[ΓA,g] in M(n,R) in an obvious way. Let ∆A,g =
g−1(Q[ΓA,g] ∩M(n,Z))g; this ring can be shown to be a lattice in D (considered
as an additive group).

We define the regulator reg(x) of a periodic x ∈ Xn for x = ((g)) to be the
volume of A/(g−1ΓA,gg) and the discriminant disc(x) by

disc(x) = mD(D/∆A,g)2.

Note that reg(x) is simply the volume of the periodic orbit A.x. This defines both
of these notions up to a global multiplicative constant corresponding to fixing a
Haar measure on A and D respectively. This normalization can be chosen in such
a way that disc(x) is an integer for every A-periodic x and so that for ((gI)), gI

as in §6.1.1 for I �OK , the discriminant and regulator of ((gI)) coincide with the
discriminant and regulator of the number field K. The regulator and discriminant
of a periodic orbit are related, but in a rather weak way: in general for any periodic
orbit A.x,

log disc(x) � reg(x) �ε disc(x)1/2+ε.

If e.g. K has no subfields other than Q the lower bound on reg(x) can be improved
to c′n[log disc(x)]n−1, which is tight. However, ifK, I and x = ((gI)) are as in §6.1.1,
CK reg(x), i.e. the total volume of all periodic A orbits coming from ideals in OK ,
is closely related to the discriminant:

disc(x)1/2−o(1) ≤ CK reg(x) ≤ disc(x)1/2+o(1).
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Properly formulated (the easiest formulation is Adelic) a similar relation holds also
for periodic A orbits coming from non-maximal orders O < OK .

6.2. Some distribution properties of periodic orbits. We would
like to prove statements regarding how sequences of periodic orbits are distributed.
Care must be taken however as even for the simplest cases such as X3 it is not true
that for any sequence of A-periodic points xi ∈ X3 with disc(xi) → ∞ the orbits
A.xi become equidistributed. Let µA.xi be the unique A-invariant probability
measure on A.xi. One problem, for n = 3 or more generally, is that it is possible
to construct sequences xi such that µA.xi

converge weak∗ to a measure µ with
µ(Xn) < 1. However, as remarked by Margulis the following is a consequence of
Conjecture 4.4:

Conjecture 6.1. For any fixed compact K ⊂ Xn, n ≥ 3, there are only finitely
many periodic A-orbits contained in K.

Using Corollary 2.3 and what we call the Linnik principle (see §6.3) we prove
the following towards this conjecture:

Theorem 6.2 ([21]). For any fixed compact K ⊂ Xn, n ≥ 3, for any ε > 0, the
total volume of all periodic A-orbits contained in K of discriminant ≤ D is at most
Oε(Dε).

In contrast, for n = 2, for any ε one can find a compact Kε ⊂ X2 so that the total
volume of all periodic A-orbits contained in K of discriminant ≤ D is � D1−ε.

Theorem 6.2 directly implies that for any ε > 0 and n ≥ 3 the number of
totally real numbers fields K of degree [K : Q] = n and discriminant disc(K) ≤ D
for which for some ideal class there is no representative of norm ≤ εdisc(K)1/2 is
� Dε, giving a partial answer to the third question posed in the introduction.

The same method gives the following in the compact case:

Theorem 6.3 ([21]). Let Γ be a lattice in PGL(n,R) associated with a division
algebra over degree n over Q and η > 0 arbitrary. For any i let (xi,j)j=1,...,Ni be a
finite collection of A-periodic points with distinct A-orbits such that

Ni∑
j=1

reg(xi,j) ≥ max
j

(disc(xi,j))η.

Suppose that there is no locally homogeneous proper subset of Γ\G containing in-
finitely many xi,j. Then

⋃
i,j A.xi,j = Γ\G.

6.3. The Linnik principle. In the proofs of Theorems 6.2 and 6.3 a crucial
point is establishing that a limiting measure has positive entropy under some a ∈
A, which allows one to apply the measure classification results described in §2.
Positivity of the entropy is established using the following proposition, which links
entropy with the size (regulator) of a periodic orbit (or a collection of periodic
orbits) compared to its discriminant(s). We give it below for some lattices Γ in
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G = PGL(n,R), but this phenomenon is much more general. We call this relation
between orbit size and entropy the Linnik principle in honor of Yu. Linnik in
whose book [43] a special case of this relation is implicit.

Proposition 6.4 ([21]). For every `, let A.x`,j (j = 1 . . . N`) be a finite collection
of (distinct) periodic A-orbits in Γ\PGL(n,R) with Γ either PGL(n,Z) or a lattice
corresponding to an order in a division algebra of degree n over Q. Let µ(`) be the
average of the measures µA.x`,1 , . . . , µA.x`,N`

weighted by regulator. Suppose that

N∑̀
j=1

reg(x`,j) ≥ max
j

(disc(x`,j))η.

and that the µ(`) converge weak∗ to a probability measure µ. Then for any regular19

a ∈ A, there is an ca,n > 0 (which can be easily made explicit) so that

hµ(a) ≥ ca,nη. (6.1)

If disc(x`,j) = disc(x`,j′) for all `, j, j′ then (6.1) can be improved to hµ(a) ≥
2ca,nη.

The key observation lies in the fact that for any compact K ⊂ Γ\G if x and
x′ ∈ K are periodic with discriminant ≤ D then either x = a.x′ for some small
a ∈ A or d(x, x′) > CD−2 where C = C(K) depends on K (if disc(x) = disc(x′)
then d(x, x′) > CD−1 hence the improved estimate in this case). This fact is used
together with the subadditivity of Hµ(`)(·) (see §3.1.1) to show that hµ(a) ≥ ca,nη.

6.4. Packets of periodic orbits and Duke’s theorem. Another
completely different way to establish positive entropy for limiting measures is given
by subconvex estimates on L-functions.

Theorem 6.5 ([21]). Let K(`) be a sequence of totally real degree three extensions
of Q, C(`) the class number of K(`), and τ(`) : K(`) → R3 a 3-tuple of embeddings.
Let A.x1,`, . . . , A.xC(`),` be the periodic A orbits corresponding to the ideal classes
of K(`) as in §6.1.1. Let µ(`) = 1

C(`)

∑
i µA.xi,`

. Then µ(`) convege in the weak∗

topology to the PGL(3,R) invariant probability measure mX3 on X3.

Subconvexity estimates of W. Duke, J. Friedlander and H. Iwaniec [11] imply
that for certain test functions f , the integrals

∫
X3
fdµ(`) converge to the right

value (i.e.
∫

X3
fdmX3). The space of test functions on which this convergence can

be established from the subconvex estimates of Duke, Friedlander and Iwaniec is
far from dense, but is sufficiently rich to show that any limiting measure of µ(`) is
a probability measure (i.e. there is no escape of mass to the cusp) and that the
entropy of every ergodic component in such a limiting measure is greater than an
explicit lower bound. Once these two facts have been established, Theorem 2.2
can be used to bootstrap entropy to equidistribution.

Theorem 6.5 is a generalization to the case n = 3 of the following theorem of
Duke, proved using earlier and related subconvexity estimates of Duke and Iwaniec:

19I.e. with no multiple eigenvalues.
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Theorem 6.6 (Duke [10]). Let K(`) = Q(
√
D`) be a sequence of real quadratic

fields and µ(`) an average of the corresponding measures on A-periodic orbits in
X2 as above. Then µ(`) converge weak∗ to mX2 .

We note that Duke also gives an explicit rate of equidistribution of the µ(`).
There is an alternative, ergodic theoretic, approach to this theorem that dates

back to Yu. Linnik and B. F. Skubenko. Skubenko [70], building on work of Linnik
[43], used this approach, which is closely related to techinques discussed in §6.3,
to prove Theorem 6.6 under a congruence condition on the sequence D` (see [43,
Chapter VI]). In [22] we show that a variation of this method can actually be used
to give a complete and purely ergodic theoretic proof of Theorem 6.6.

References

[1] Nalini Anantharaman. Entropy and the localization of eigenfunctions. preprint, 50
pages, 2004.
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[69] A. I. Šnirel′man. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk,
29(6(180)):181–182, 1974.



Diagonalizable flows and number theory 29

[70] B. F. Skubenko. The asymptotic distribution of integers on a hyperboloid of one
sheet and ergodic theorems. Izv. Akad. Nauk SSSR Ser. Mat., 26:721–752, 1962.

[71] George Tomanov. Values of decomposable forms at S-integer points and tori orbits
on homogeneous spaces. preprint, 2005.

[72] George Tomanov and Barak Weiss. Closed orbits for actions of maximal tori on
homogeneous spaces. Duke Math. J., 119(2):367–392, 2003.

[73] Thomas Watson. Rankin triple products and quantum chaos. Ph.D. thesis, Princeton
University, 2001.

[74] Scott A. Wolpert. The modulus of continuity for Γ0(m)\H semi-classical limits.
Comm. Math. Phys., 216(2):313–323, 2001.

[75] Steven Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic sur-
faces. Duke Math. J., 55(4):919–941, 1987.

Department of Mathematics, Ohio State University, Columbus, OH 43210

Department of Mathematics, Princeton University, Princeton NJ 08544


	Introduction
	Entropy and classification of invariant measures
	Measures invariant under actions of big diagonalizable groups
	Recurrence as a substitute for bigger invariance
	Joinings
	Historical discussion

	Brief review of some elements of entropy theory
	General definition of entropy
	Entropy on locally homogeneous spaces

	Entropy and the set of values obtained by products of linear forms
	Statements of conjectures and results regarding products of linear forms
	Topological entropy and A-invariant closed subsets of Xn

	Entropy and arithmetic quantum unique ergodicity
	The quantum unique ergodicity conjecture
	Arithmetic quantum unique ergodicity
	A result of N. Anantharaman

	Entropy and distribution of periodic orbits
	Discriminant and regulators of periodic orbits
	Some distribution properties of periodic orbits
	The Linnik principle
	Packets of periodic orbits and Duke's theorem


