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Abstract. We consider invariant measures for partially hyperbolic,
semisimple, higher rank actions on homogeneous spaces defined by prod-
ucts of real and p-adic Lie groups. In this paper we generalize our earlier
work to establish measure rigidity in the high entropy case in that set-
ting. We avoid any additional ergodicity-type assumptions but rely on,
and extend the theory of conditional measures.

1. Introduction

This paper is a part of the program of studying invariant measures for
hyperbolic actions of higher rank abelian groups: Zk and Rk for k ≥ 2,
based on the considerations of entropy and conditional measures on invariant
foliations. This program was initiated in [18] and continued in [16, 6, 17].
We precede the description of our results by a general discussion of problems
that motivated our work.

1.1. The Furstenberg conjecture. In his seminal paper [11] H. Fursten-
berg showed that the action of the multiplicative semigroup Σm,n ⊂ N gen-
erated by ×m,×n (with m,n not powers of the same integer) on R/Z has
only one infinite closed Σ-invariant set namely R/Z itself. Since there are
many closed sets that are invariant under ×m (or ×n) this is a remarkable
rigidity property of the joint action, which was subsequently generalized by
D. Berend [1, 2] to the higher dimensional torus and other groups.

Furstenberg also raised the question for the measure theoretic extensions
of this.

Conjecture 1.1 (Furstenberg). Let µ be an Σm,n-invariant and ergodic
probability measure on R/Z. Then µ is either atomic supported by finitely
many rational periodic points or µ is the Lebesgue measure.

The first partial result for the measure problem on T was given by Lyons
[23] under a strong additional assumption. D. Rudolph [33] and A. Johnson
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[15] weakened this assumption considerably, and proved that µ must be
the Lebesgue measure provided that ×m (or ×n) has positive entropy with
respect to µ.

1.2. Number theory and dynamics. There are numerous connections
between number theory and dynamical systems. In fact Furstenberg’s result
mentioned earlier about Σm,n-invariant closed sets can be viewed in that
light: Given any two multiplicatively independent integers m,n ≥ 2 and an
irrational α ∈ R, the set {minjα : i, j ∈ N} is dense modulo 1.

A slightly different setting is the following. Dynamics on the space of
unimodal lattices in Rk, or equivalently on SL(k,R)/SL(k,Z), play a key
role for many problems in the theory of diophantine approximations.

The long-standing Oppenheim Conjecture was solved by G. Margulis [24]
through the study of the action of a certain subgroup H on the space of
unimodal lattices in R3. This conjecture, posed by A. Oppenheim in 1929,
deals with density properties of the values of indefinite quadratic forms in
three or more variables. So far there is no proof known of this result in its
entirety which avoids the use of dynamics of homogeneous actions.

An important property of the acting group H as above is that it is gener-
ated by unipotents: i.e. by elements of SL(k,R) all of whose eigenvalues are
one. Another situation where the action of a unipotent subgroup appears is
the horocycle flow on (the unit tangent bundle of) quotients of the hyper-
bolic plane. Here H. Furstenberg [12] showed earlier that the horocycle flow
is uniquely ergodic if the quotient is compact. For non-compact quotients
this is not true but the only other ergodic measures are those supported by
periodic horocycles as was shown by S. Dani and J. Smillie [5].

The dynamical results proved by Margulis, Furstenberg, Dani and Smil-
lie were special cases of a conjecture of M. S. Raghunathan regarding the
actions of general unipotents groups; if H ⊆ G is a subgroup of an arbitrary
connected Lie group G that is generated by unipotents and Γ is a lattice in G,
then the left action of H on the homogeneous space G/Γ shows topological
and measurable rigidity in the sense that the only possible H-orbit closures
and H-ergodic probability measures are of an algebraic type. Raghunatan’s
conjecture was proved in full generality by M. Ratner in a landmark series
of papers ([27, 28] and others; see also the expository papers [29, 30]).

A. Borel and G. Prasad [3] pointed out that a natural generalization of
Raghunathan’s conjecture to the case where G is an S-algebraic group (i.e.
a product of real and p-adic algebraic groups) would imply an S-arithmetic
analogue of the Oppenheim conjecture, and they proved a result in that
direction. The S-algebraic Raghunathan’s conjecture was proved in full
independently by G. Margulis and G. Tomanov [25] and by M. Ratner [31].

Notice that rigidity of measures or orbit closures holds in the above set-
ting regardless of the size of the acting group as long as it is generated by
unipotent elements.
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Another long-standing conjecture that is intimately linked to dynamics
on SL(3,R)/SL(3,Z) is the following.

Conjecture 1.2 (Littlewood (c. 1930)). For every u, v ∈ R,

lim inf
n→∞ n〈nu〉〈nv〉 = 0, (1.1)

where 〈w〉 = minn∈Z |w − n| is the distance of w ∈ R to the nearest integer.

However, here it is the left action of the group A of positive diagonal
matrices on SL(3,R)/SL(3,Z) that gives the connection. This is a particular
case of a Weyl chamber flow whose dynamics is not as well understood as
that of unipotent actions. Notice that, similar to the case of the Σm,n action
on R/Z, one–parameter subgroups of the Weyl chamber flow are partially
hyperbolic and do not show rigidity. The analogue to Furstenberg’s result
resp. conjecture are given by two conjectures of G. Margulis, both of which
would imply Littlewood’s conjecture. E. Lindenstrauss and B. Weiss [22]
have obtained a partial result regarding the topological conjecture, and more
recently we showed in joint work with E. Lindenstrauss the following

Theorem 1.3 ([7, Thm. 1.3]). Let µ be an A-invariant and ergodic measure
on X = SL(k,R)/SL(k,Z) for k ≥ 3. Assume that there is some one
parameter subgroup of A which acts on X with positive entropy. Then µ is
algebraic.

Moreover, we applied this to Littlewood’s conjecture and proved that the
set of exceptions has Hausdorff dimension zero [7, Thm. 1.5].

1.3. Measure rigidity, low entropy, and high entropy. Rudolph’s re-
sult [33] has subsequently been proved using slightly different methods by
J. Feldman [10] and W. Parry [26] but positive entropy remained a crucial
assumption. A further extension was then given by B. Host [13].

When Rudolph’s result appeared, the second author suggested another
test model for the measure rigidity: two commuting hyperbolic automor-
phisms of the three–dimensional torus. In joint work with R. Spatzier the
second author developed a more geometric technique [18, 19] which was sub-
sequently extended by B. Kalinin and the second author [16] as well as by
B. Kalinin and R. Spatzier [17].

This method is based on the study of conditional measures induced by
a given invariant measure µ on certain invariant foliations. The foliations
considered include stable and unstable foliations of various elements of the
actions, as well as intersections of such foliations, and are related to the
Lyapunov exponents of the action. For Weyl chamber flows these foliations
are given by orbits of unipotent subgroups normalized by the action.

Unless there is an element of the action which acts with positive entropy
with respect to µ, these conditional measures are well-known to be δ-measure
supported on a single point, and do not reveal any additional meaningful
information about µ. Hence this and later techniques are limited to study
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actions where at least one element has positive entropy. Under ideal situ-
ations, such as the original motivating case of two commuting hyperbolic
automorphisms of the three torus, no further assumptions are needed, and
a result entirely analogous to Rudolph’s theorem can be proved using the
method of [18] (see also [16]).

However, for Weyl chamber flows, an additional assumption is needed for
the proof [18] to work. This assumption is satisfied, for example, if the
flow along every singular direction in the Weyl chamber is ergodic (though
a weaker hypothesis is sufficient, see also [17]). This additional assump-
tion, which unlike the entropy assumption is not stable under weak∗ limits,
precludes applying the results from [18] in many cases.

Recently, two new methods of proofs were developed, which overcome this
difficulty.

The first method was developed by the authors [6], following an idea
mentioned at the end of [18]. This idea uses the non-commutativity of the
above-mentioned foliations (or more precisely, of the corresponding unipo-
tent groups). This paper deals with general R-split simple Lie groups; in
particular it is shown there that if µ is an A-invariant measure on X =
SL(k,R)/Γ, and if the entropies of µ with respect to all one parameter
groups are positive, then µ is the Haar measure. It should be noted that for
this method the properties of the lattice do not play any role, and indeed
this is true not only for Γ = SL(k,Z) but for every discrete subgroup Γ.
Subsequently this was called the high entropy case and the corresponding
method was one of the main tools for Theorem 1.3 and the above mentioned
partial result on Littlewood’s conjecture [7]. A second key argument which
appeared in [6] the first time was the product structure of the conditional
measures.

A different approach was developed by E. Lindenstrauss [21] and was
used to prove a special case of the quantum unique ergodicity conjecture.
A special case of the main theorem of [21] is the following: Let A be an
R-split Cartan subgroup of SL(2,R)× SL(2,R). Any A-ergodic measure on
SL(2,R) × SL(2,R)/Γ for which some one parameter subgroup of A acts
with positive entropy is algebraic. Here Γ is e.g. an irreducible lattice in
SL(2,R)× SL(2,R). Since the foliations under consideration in this case do
commute, the methods of [6] are not applicable. This was the other method
used for Theorem 1.3 and Littlewood’s conjecture in [7] and was applied
in the case where very few conditional measures are not δ-measures, this is
the low entropy case. Here the earlier mentioned product structure of the
conditional measures was proved in a more formal setting and was crucial
to the argument.

1.4. Generalizing the high entropy argument. In this paper we gen-
eralize the method [6] for the high entropy case to the case of a semisimple
action on a locally homogeneous space defined by a product of real and
p-adic Lie groups. This generalization is given by two separate theorems
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which give the product structure resp. translation invariance of the condi-
tional measures. We expect that these two theorems together with a gener-
alization of the method [21] for the low entropy case will likely again lead
to a full understanding of the positive entropy case in this setting.

The importance of the understanding of conditional measures for measure
rigidity lies in two central facts.

• Positive entropy for a partially hyperbolic map is equivalent to the
conditional measures not being atomic a.e. For the high entropy case
it is important that this statement can be made more quantitative;
entropy can only be high if the support of the conditional measure
is big, see also Section 9.1.

• Secondly translation invariance of the measure in question can be
characterized by the conditional measures, see Proposition 5.7.

These two facts allow one to show in certain cases that positive entropy
implies translation invariance of the measure.

We now state the assumptions to the two main technical theorems of the
paper which are stated below (not using some of the abbreviations defined in
the course of the paper), see Section 3–4 for more details on the preliminary
material needed.

Let S be a finite set of places, i.e. a set containing rational primes and the
symbol ∞ (that stands for the Archimedean norm on Q). We write σ for
the elements of S, unless we want to specify that we talk about a rational
prime p or about the Archimedean place ∞. So Qσ denotes either the field
of p-adic integers Qp or the real numbers R accordingly.

Let Gσ be a Lie group over Qσ for σ ∈ S and define GS to be the direct
product of these. Let X be a locally compact second countable metric
space. Assume that GS acts locally free by homeomorphisms of X, and
write (h, x) 7→ hx for the action. Moreover, assume that α is a Zk-action by
homeomorphisms of X and θ is a Zk-action by automorphisms of GS such
that

αn(hx) = θn(h)αn(x) for x ∈ X,h ∈ GS , and n ∈ Zk.

Then the derivative of θ gives a (coordinate-wise linear) Zk-action A – the
adjoint action – on the product gS of the Lie algebras gσ of Gσ for σ ∈ S.
Local properties of α with respect to the GS-leaf can be formulated in terms
of the θ-action and ultimately in terms of the linear action A. Recall that
A is semisimple if it is a a direct product of diagonalizable linear actions
(where we do not assume that the eigenvalues lie in Qσ).

For instance let m ∈ Zk and let h be a sum of A-invariant Lie subalgebras
hσ ⊂ gσ such that Am contracts every element of h. The m-stable subgroup
H of GS (associated to h) is the minimal θ-invariant subgroup of GS that
is a product of (not necessarily closed) Lie subgroups Hσ with Lie algebra
hσ for σ ∈ S, see Proposition 4.11. The associated leaves Hx for x ∈ X are
part of the stable ’manifold’ of x with respect to αm.
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If a subgroup H ′ is in fact n-stable for all n that lie in an open halfspace,
then we call H ′ a coarse Lyapunov subgroup. We determine the halfspace
by its outward normal ray Λ and write HΛ = H ′ for such a group. The
basic Corollary 4.13 shows that every m-stable subgroup H can be written
as a product of coarse Lyapunov subgroups HΛ1 , . . . , HΛ` , where Λi 6= Λj

for i 6= j. (This homeomorphism is in general not a group isomorphism.)
Let µ be an α-invariant measure on X. Then there exists a family of

conditional measures µH
x for the foliation into H-orbits that are almost surely

locally finite measure on H. Roughly speaking, these measures describes the
behavior (including its dimension) of the original measure (near x) along
the direction of H, see Section 5 for a formal definition and [21] for the
construction.

We are now ready to state the main technical theorems.

Theorem 8.4. Let α, X, θ, GS , A and gS be as above, and suppose the
adjoint action A is a semisimple. Let H be an m-stable subgroup of GS,
let HΛ1 , . . . ,HΛ` be the different coarse Lyapunov subgroups of H, and let
φ : HΛ1 × · · · ×HΛ` → H be the homeomorphism defined by φ(g1, . . . , g`) =
g1 · · · g`. Then any α-invariant probability measure µ on X satisfies

µH
x ∝ φ∗

(
µΛ1

x × · · · × µΛ`
x

)
a.e.,

where µH
x and µΛi

x are the conditional measures for the H-leaves and the
HΛi-leaves for i = 1, . . . , ` respectively.

This decomposition helps to understand the structure of the conditional
measures (and therefore of the original measure) since the conditional mea-
sures for coarse Lyapunov subgroups are easier to study. For these there
exists sequences nj for which the restriction of θnj are approximate isome-
tries.

A particular case of this theorem for abelian GS , namely Theorem 8.2,
is one of the tools for a full analogue of Rudolph’s theorem for the higher
dimensional torus as announced [8] by E. Lindenstrauss and the first author.

In case the coarse Lyapunov subgroups do not commute with each other,
we obtain the following generalization of the high entropy argument.

Theorem 8.5. With the same notation and assumptions as before, for any
α-invariant probability measure µ there exist for a.e. x two subgroups

Hx ⊆ Px ⊆ H

with the following properties:
(1) µH

x is supported by Px.
(2) µH

x is left- and right-invariant under multiplication with elements of
Hx.

(3) The subgroups Hx and Px are both products of subgroups of Gσ for
σ ∈ S. The latter are images under exp of Lie subalgebras of gσ.
Moreover, Hx and Px allow weight decompositions.
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(4) Hx is a normal subgroup of Px and any elements g ∈ Px ∩HΛr and
h ∈ Px ∩HΛs of different coarse Lyapunov subgroups (r 6= s) satisfy
that gHx and hHx commute with each other in Px/Hx.

(5) µΛi
x is left- and right-invariant under multiplication with elements of

Hx ∩HΛi for i = 1, . . . , `.

The notion ’weight decomposition’ is defined in Definition 6.1 – in the
case of a real Lie group and real eigenvalues of A it is equivalent to Hx and
Px being normalized by θ.

In Section 2 we give a few corollaries of the above structure theorems
for conditional measures. Moreover, E. Lindenstrauss and the first named
author [9] apply Theorem 8.5 to show algebraicity of ergodic joinings for
certain higher rank semisimple actions.

1.5. Acknowledgements. We thank the referee and E. Lindenstrauss for
their comments on the earlier draft.

The authors gratefully acknowledge the hospitality of the Center for Dy-
namical Systems at the Penn State University and the University of Wash-
ington respectively.

The results presented in this paper were obtained jointly. The actual text
of the paper (including exact formulations of principal theorems) was almost
completely written by the first named author.

2. Measure rigidity in the high entropy case

We start by a few definitions. Let S denote as before a finite set of places.

Definition 2.1. For every σ ∈ S let Gσ be a Lie group over Qσ with Lie
algebra gσ. Then GS =

∏
σ∈S Gσ is an S-Lie group and gS =

∑
σ∈S gσ its

corresponding S-Lie algebra.

Notions like S-Lie subalgebra are defined similarly as products of the
corresponding objects over Qσ for σ ∈ S.

Let Γ ⊂ GS be a discrete subgroup, and let α : Zk → GS be a homomor-
phism. Then α induces a left action on X = GS/Γ by letting

αn(gΓ) = (α(n)g)Γ where gΓ ∈ X.

Furthermore, α gives rise to an Zk-action θ by automorphisms of GS and
an adjoint Zk-action A on gS by letting θn(g) = αngα−n and An = Adα(n)

for g ∈ GS and n ∈ Zk, see Section 3.2.

Definition 2.2. Let h− ⊂ gS be an A-invariant S-Lie subalgebra such that
all eigenvalues of Am restricted to h− have absolute value less than one, and
let H− be the corresponding m-stable S-Lie subgroup. Then mod(αm,H−)
denotes the negative logarithm of the module of Am restricted to h (with
respect to the Haar measure mh of h), i.e.

mh(AmB) = e−mod(αm,H−)mh(B) for any measurable B ⊂ h.
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A Lyapunov weight is a linear functional λ : Rk → R (possibly zero)
such that for some joint eigenspace of the linear action A the eigenvalues
tm of Am satisfies log |tm|σ = λ(m) for all m ∈ Zk, see Section 4. The
corresponding Lyapunov weight space is the sum of all eigenspaces that give
rise to the same Lyapunov weight, it is denoted by gλ

S , resp. by hλ = h ∩ gλ
S

if h is an A-invariant S-Lie subalgebra. In the case of a Cartan action and
a real Lie group the Lyapunov weights coincides with the real part of the
roots, and the weight spaces with the sum of the root spaces that give rise
to the same Lyapunov weight.

We now state the main assumption on the action needed for our theorem.
Note that the condition is local in its nature and independent of Γ.

Definition 2.3. The restriction of the adjoint action A to an A-invariant
S-Lie subalgebra h ⊂ gS has a rank one factor if there exists an h′ ⊆ h with
the following properties:

(1) h′ is an S-Lie ideal.
(2) h′ is invariant under A.
(3) Any two nonzero Lyapunov weights λ1 and λ2 of h, whose weight

spaces hλ1 , hλ2 are both not contained in h′, are proportional.
(4) h′ 6= h.

In particular, if A restricted to h has no rank factors, then there are two
linearly independent Lyapunov weights λ1, λ2 (set h′ = {0}), and so k ≥ 2.

For every m ∈ Zk there exists a unique maximal m-stable S-Lie sub-
group H of GS , see Section 4. The notion of (maximal) m-unstable S-Lie
subgroups is defined similarly.

Theorem 2.4. Let GS be an S-Lie group, let Γ ⊂ GS be a discrete sub-
group, and let X = GS/Γ. Let α be a Zk-action on X by left multiplication
with elements of GS such that the adjoint action on the Lie algebra gS is
semisimple. Let m ∈ Zk, and let h be the S-Lie algebra that is generated by
the maximal m-stable S-Lie subalgebra h− and the maximal m-unstable S-
Lie subalgebra h+ of gS. Assume that h has no rank one factors. Then there
exists some q < 1 (which is independent of Γ) such that every α-invariant
and ergodic probability measure µ on X with hµ(αm) > q mod(αm,H−) sat-
isfies in fact hµ(αm) = mod(αm,H−) and that µ is invariant under left
multiplication by elements of H− and H+.

Clearly, if we know additionally that GS is generated by H− and H+,
then Γ has to be a lattice in GS and µ = mX is the Haar measure of X.

2.1. Twisted Weyl chamber flows. Let G be a semisimple real connected
Lie group, and let α : Rk → G be a homomorphism into a Cartan subgroup
of G (so that Adα(t) is semisimple for every t ∈ Rk). For every discrete
subgroup Γ ⊂ G and t ∈ Rk we identify αt = α(t) with its left action on
X = G/Γ and obtain the Weyl chamber flow α on X.
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Every root λ of G can be restricted to the image of the derivative Dα
(with base point 0 ∈ Rk), and induces in this way a linear map λ(α) =
λ ◦Dα : Rk → C. For measure rigidity in the high entropy case we need the
following condition.

Definition 2.5. We say that α has no local rank one factors if for every
simple factor of G there exist two roots λ1, λ2 of that factor such that Reλ

(α)
1

and Reλ
(α)
2 are linearly independent.

Clearly, the above condition implies that none of the simple factors of G
are compact. Notice, furthermore, that the above is a purely local condition
that does not depend on the discrete subgroup Γ.

Before we state the theorem we extend the above setting as follows. Let
ρ : G → SL(n,R) be a linear representation, and define the group structure
on Gtw = Rn oG by

(u, g) · (v, h) = (u + ρ(g)v, gh).

Let Γ ⊂ G be a discrete subgroup (lattice) and suppose ρ(Γ)(Zn) = Zn,
then Γtw = ZnoΓ is a discrete subgroup (lattice) of Gtw. We define Xtw =
Gtw/Γtw and identify αt for t ∈ Rk again with its left action on Xtw so that

αt((u, g)Γtw
)

=
(
(ρ(αt)u, αtg)

)
Γtw.

This defines a twisted Weyl chamber flow. The projection map

π : Xtw = Gtw/Γtw → X = G/Γ

defined by π
(
(u, g)Γtw

)
= gΓ is a factor map from the twisted Weyl chamber

flow to the corresponding Weyl chamber flow with tori as fibers.

Definition 2.6. The twisted Weyl chamber flow α on Xtw acts without
center on the torus fibers if there is no nonzero u ∈ Rn that is fixed under
ρ(G).

Theorem 2.7. Let α be a (twisted) Weyl chamber flow on X (on Xtw)
that has no local rank one factors (and that acts without center on the torus
fibers). Furthermore, let t ∈ Rk be such that for every simple factor of G

there exists a root λ with Re λ(α)(t) 6= 0. Then there exists some q < 1 such
that for any α-invariant and ergodic probability measure µ with

hµ(αt) > q
∑

Re(λ(α)(t))>0

Re(λ(α)(t))d(λ)

in fact µ is the unique G-invariant Haar measure on X (Gtw-invariant Haar
measure on Xtw). In this case Γ is a lattice in G. Here the above sum goes
over all roots λ of G (and all weights λ of the representation ρ) and d(λ) is
the real dimension of the root (weight) space to λ.

The sum in the above theorem is the entropy of αt with respect to the
Haar measure on X (Xtw) in case Γ is a lattice in G. So the theorem states
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that if the entropy is close to this maximal value, then in fact the entropy
is equal and the invariant measure is the Haar measure.

Without further assumptions on the discrete subgroup Γ Rees’s example
[32][6, Sect. 9] shows even in the case of the Weyl chamber flow on SL(3,R)/Γ
that positive entropy alone is not sufficient to guarantee algebraicity of the
invariant measure µ.

2.2. The Cartan action for products of SL(k + 1,Qσ). Because of the
close connection to number theory dynamics on the homogeneous space
SL(k + 1,R)/SL(k + 1,Z) is especially interesting. We consider here the
S-algebraic analogue of the Cartan action by diagonal matrices.

Let k ≥ 2, let S be a finite set of places, let GS =
∏

σ∈S SL(k+1,Qσ), and
let Γ ⊂ GS be discrete subgroup. For any m ∈ Zk let αm∞ be the diagonal
matrix with entries em1 , . . . , emk , e−(m1+···+mk) along the diagonal, similarly
let αm

p be the diagonal matrix with entries pm1 , . . . , pmk , p−(m1+···+mk) along
the diagonal. Each ασ for σ ∈ S defines a Zk-action on X = GS/Γ by left
multiplication. Note that α∞ naturally extends to an Rk-action, but by only
considering the Zk-action we get a slightly stronger result.

Let Eij be the matrix with only one nonzero entry, namely a one in row
i, column j, and let Ik+1 denote the identity matrix. It is easy to see that
each subgroup H

(i,j)
σ = Ik+1 + QσEij for 1 ≤ i, j ≤ k + 1 and i 6= j is

normalized by αm
σ for m ∈ Zk. Moreover, the Lie algebra QσEij is one of

the common eigenspaces for the adjoint maps Adαm
σ

for m ∈ Zk, i.e. one of
the root spaces. We denote the conditional measures of µ with respect to
the foliation into H

(i,j)
σ -orbits by µ

σ,(i,j)
x , see Section 5 for a definition. High

entropy can only occur if µ
σ,(i,j)
x are non-atomic a.e. (i.e. the dimension of µ

along H
(i,j)
σ -orbits is positive) for many or all pairs (i, j), see also Section 9.1

for the exact relation between entropy and the conditional measures.

Theorem 2.8. Let X = GS/Γ and let ασ for some fixed σ ∈ S be as
above. Let µ be an ασ-invariant probability measure on X = GS/Γ. If all
conditional measures µ

σ,(i,j)
x are non-atomic a.e. for i 6= j, then µ is actually

invariant under left multiplication by any element of SL(k + 1,Qσ).

Note that we do not assume ergodicity of ασ here, this has the advantage
that we can apply the above for a measure invariant and ergodic under the
joint action of all ασ with σ ∈ S.

It is clear that if µ satisfies the conclusion of Theorem 2.8 for all σ ∈ S,
then Γ is actually a lattice in GS and µ = m is the Haar measure of X =
GS/Γ. Instead of that we can also obtain a stronger conclusion by assuming
ergodicity for ασ and combining our result with measure rigidity for groups
generated by unipotent subgroups, see [25] or [31].

For this recall that a measure µ on X is algebraic if there exists a closed
subgroup H ⊂ GS and some x ∈ X such that µ(Hx) = 1 and µ is the unique
H-invariant probability measure on the (necessarily closed) orbit Hx.
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Corollary 2.9. Assume that µ is an ασ-invariant and ergodic probability
measure on X = GS/Γ. Suppose that at least one of the following conditions
is satisfied.

(1) All conditional measures µ
σ,(i,j)
x are non-atomic a.e. for i 6= j.

(2) The measure theoretic entropy hµ(αm
σ ) > 0 with respect to µ is posi-

tive for all nonzero m ∈ Zk.
Then µ is algebraic.

Note that [6, Thm. 4.2] gives various additional statements for the ho-
mogeneous space X = SL(3,R)/Γ which can (with the tools provided here)
easily be shown to hold in the S-algebraic setting discussed above as well.

Another way to obtain a rigidity result for GS is to replace the assumption
on the conditional measures in Theorem 2.8 or the above assumption on
entropy for all elements of the action, by the assumption that the entropy
of some element αm of the action is close to the maximal value (which is
determined only by k and m). In this case it is enough to assume invariance
with respect to an arbitrary Z2-subaction of ασ for some σ ∈ S. This is
a consequence of Theorem 2.4. Moreover, we can apply this theorem also
for a (sufficiently generic) higher rank subaction of the joint action of all ασ

with σ ∈ S.

2.3. Outline of the paper. In Section 3 and 4 we recall some basic ma-
terial on p-adic numbers and Lie groups, and develop a basic theory of
Lyapunov weights for real and p-adic Lie groups.

In Section 5 we recall the definition and basic properties of conditional
measures from [21] for (T, H)-spaces, which generalizes the notion of the
foliation into GS-orbits considered above. The main difference is that the
T -leaves of a (T,H)-space do not have a canonical ’coordinate map’ from
the space T to the leaf corresponding to a base point x.

In Section 6 we consider conditional measures for H-orbits, and show that
for a.e. x the subgroup under which the conditional measure is translation
invariant has a special structure: it allows a weight decomposition.

One tool which was used in an essential way, both in the high and low
entropy case, is the product structure of the conditional measures. In Sec-
tion 7 we use the framework of (T, H)-spaces to show Theorem 7.5 that
generalizes [21, Prop. 6.4]. In the algebraic case this theorem states that the
conditional measure of an invariant measure µ for the foliation into H-orbits
is a product measure if H = ST is itself a product of two subgroups S, T
such that T is normal in H and (asymptotically) some part of the action
acts isometrically on the induced S-orbits while the T -orbits are contracted.

In the case of a semisimple higher rank action on a homogeneous space
we prove in Section 8 the Theorems 8.4 and 8.5, which we already discussed
in Section 1.4.

Theorem 2.4, 2.7, and 2.8 all rely heavily on Theorem 8.5 and in part also
on the relation between the conditional measures and entropy. The latter
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we recall from [25] and slightly extend in Section 9, where we will also prove
the results presented in this section.

3. Preliminaries on local fields and Lie groups

3.1. p-adic numbers. For any rational prime number p the p-adic field of
rational numbers Qp is defined as the completion of Q with respect to the
norm | · |p defined by

|0|p = 0
∣∣p` n

m

∣∣
p

= p−` for `, n,m ∈ Z and p - nm.

Furthermore, Qp is a locally compact field and every t ∈ Qp can be written
as a converging sum

t =
∞∑

i=n

tip
i

for some n ∈ Z and ti ∈ {0, 1, . . . , p − 1}. It is easy to check that | · |p and
its extension to Qp satisfy

|s|p ∈ {pk : k ∈ Z} ∪ {0} ⊂ R≥0

|s + t|p ≤ max(|s|p, |t|p)
|st|p = |s|p|t|p for all s, t ∈ Qp.

The second of these properties is the ultrametric triangle inequality.
The closure of Z in Qp is the compact ring Zp of p-adic integers and

consists of all t ∈ Qp allowing a representation as above but with n ≥ 0.
Moreover, every ball B

Qp
r of arbitrary finite radius r and center 0 allows a

similar description and is a compact open subgroup that is isomorphic to
Zp.

Another main difference between real numbers and p-adic numbers is the
multiplicative structure. It is easy to see that Z×p is a compact open sub-
group of Q×p . The p-adic logarithm log is defined on a neighborhood of 1
in Z×p and has the same Taylor series expansion as for the reals. Its inverse
map is the p-adic exponential map which is defined on a neighborhood of 0,
and again has the same Taylor series expansion as for the reals. Therefore,
the multiplicative group Q×p is locally isomorphic to the additive group Zp.
However, Q×p also contains the cyclic subgroup pZ = {pn : n ∈ Z}. To-
gether these two subgroups generate a finite index subgroup of Q×p that is
isomorphic to Z× Zp.

For notational simplicity we write Q∞ = R and |t|∞ = |t| for the usual
norm. We will refer to ∞ and to rational prime numbers as places and use
the letter σ to denote a place. Note that for any of the fields Qσ the Haar
measure mσ satisfies mσ(tB) = |t|σmσ(B) for any measurable B ⊆ Qσ.
Suppose K is a field extension of Qσ of degree d, then we extend | · |σ to K
normalized such that mσ(tB) = |t|dσmσ(B) for any measurable B ⊆ K.
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3.2. Lie groups over local fields. In this section we recall some of the
basic facts about real and p-adic Lie groups, see [4]. Let σ be a place, let
K be a finite field extension of Qσ, and let GK be a Lie group over K with
Lie algebra gK, i.e. gK is the tangent space of GK at the identity element
e ∈ GK with an induced commutator map [·, ·] : g2

K → gK. Then we can
consider Gσ = GK as a Lie group over Qσ and gσ = gK as the corresponding
Lie algebra over Qσ. Therefore, it is enough to consider Lie groups over Qσ.

Just as for the multiplicative group Q×σ in Section 3.1 there exist two
locally defined maps between Gσ and gσ (see [4, Ch. III, §7.2, Prop. 3]): the
exponential map

exp : Bgσ

δ → Gσ

is defined on some ball around 0 ∈ gσ and has as its local inverse the
logarithm map

log : BGσ
R → gσ

which is defined on some ball around e ∈ Gσ. (Note that when σ = ∞ the
exponential map is of course defined on the whole of g∞.)

Recall that the commutator [·, ·] : g2
σ → gσ is skew-symmetric, bilinear,

and satisfies the Jacobi-identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ gσ. (3.1)

Another useful fact is the Campbell-Hausdorff formula which allows one
to express u ∗ v = log

(
(expu)(exp v)

)
for sufficiently small u, v ∈ gσ as a

converging sum

u ∗ v = u + v +
1
2
[u, v] + · · · =

∞∑

n=1

Fn(u, v), (3.2)

where each Fn(u, v) is a finite sum of expressions of the form

[w1, [w2, [· · · [wn−1, wn] · · · ]]] (3.3)

with universal (rational) coefficients. If σ = p is a prime number it is possible
to choose ρ > 0 such that B

gp
ρ ∗B

gp
ρ ⊆ B

gp
ρ . In other words the image of B

gp
ρ

under exp is an open compact subgroup Gp(ρ) ⊂ Gp (see [4, Ch. III, §7.1,
Thm. 1]). (This ultimately goes back to the ultrametric triangle inequality.)

Of particular interest to us is the adjoint representation of Gσ on gσ. For
any a ∈ Gσ the conjugation map h 7→ aha−1 for h ∈ Gσ fixes e and its
derivative at e

A = Ada : gσ → gσ,

is the adjoint representation of a ∈ Gσ. More generally, if θ : Gσ → Gσ is a
group automorphism, we will consider its derivative

A = deθ : gσ → gσ.

In both cases this linear automorphism of gσ satisfies

A[u, v] = [Au,Av] for all u, v ∈ gσ (3.4)
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and
exp(Au) = θ(exp(u)) for all sufficiently small u ∈ gσ. (3.5)

3.3. S-Lie groups and actions preserving GS-leaves. Recall that GS

denotes a direct product of Lie groups Gσ over Qσ for σ ∈ S, where S is a
finite set of places.

We will use expu, log g, [u, v] for u, v ∈ gS and g ∈ GS , and adjoint maps
Ada for a ∈ GS freely, these are all defined as product maps. We identify
Gσ and gσ with the corresponding subgroup of GS resp. the corresponding
subspace of gS .

We define the “norm” ‖ · ‖ on gS by

‖v‖ = max
σ∈S

‖vσ‖σ,

where ‖ · ‖σ denotes some fixed norm on gσ (which we will specify later).
It is easy to see that automorphisms of nilmanifolds and (twisted) Weyl

chamber flows give actions of the following type.

Definition 3.1. Let X be a locally compact, second countable, metric space
and suppose GS acts continuously and locally free on X. Furthermore, let α
be a Zk-action by homeomorphisms of X. Then α preserves the GS-leaves
if for every n ∈ Zk there exists an automorphism θn of GS such that

αn(gx) = θn(g)αnx for x ∈ X, g ∈ GS .

Let An = de θn be the derivative of θn at e ∈ GS . Then A is the adjoint
action to α.

We will use the adjoint action to study the behavior of the action along
the GS-leaves.

4. Lyapunov weights and weight subspaces

In this section we define Lyapunov weights and study their properties.
This will lead to the notion of coarse Lyapunov subgroup GΛ

S . Since we are
only interested in this case, we assume from now on that the adjoint action
to α is semisimple.

4.1. Semisimple linear maps.

Definition 4.1. Let V be a finite dimensional vector space over Qσ, and let
A : V → V be a linear map. Then A is semisimple if the minimal polynomial
of A is a product of distinct irreducible polynomials. An action by linear
automorphisms is semisimple if this is the case for all of its elements.

Lemma 4.2. Let V be a finite dimensional vector space over some field k.
Let A : V → V be linear. Then A is semisimple if and only if we can find
A-invariant subspaces Vi (for i = 1, . . . , `) such that V is the direct sum∑`

i=1 Vi, each Vi can be given a vector space structure with respect to some
finite field extension Ki of k, and A(v) = tiv for some ti ∈ Ki and all v ∈ Vi.
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Moreover, each Vi can be defined as the kernel of qi(A) for some irreducible
factor qi(T ) ∈ k[T ] of the minimal polynomial of A.

Proof. This is an easy exercise in algebra. We only note that the linear map
A gives V a module structure over the ring of polynomials k[T ]. Since k[T ]
is a principal ideal domain, V allows a decomposition into submodules Vi

annihilated by a power qni
i (T ) of some irreducible polynomial qi(T ) (see [14,

Thm. 6.12(ii)]). Since A is semisimple we must have ni = 1 and we can give
Vi a vector space structure over Ki = k[T ]/(qi(T )). ¤

We need to extend this to several commuting semisimple linear maps.

Proposition 4.3. Let V be a vector space over Qσ, and let A1, . . . , Ak be
commuting semisimple linear maps on V . Then there exist subspaces Vi (for
i = 1, . . . , `) such that V is the direct sum

∑`
i=1 Vi, each Vi is invariant

under A1, . . . , Ak, each Vi can be given a vector space structure with respect
to some finite field extension Ki of Qσ, and Aj(v) = ti(j)v for some fixed
ti(j) ∈ Ki, for all v ∈ Vi, and for j = 1, . . . , k.

Proof. The proposition follows by induction on k using Lemma 4.2. In every
step the space Vi ⊆ V is defined using only A1, . . . , Ak−1 and is therefore
invariant under Ak. Moreover, the vector space structure on Vi over Ki is
also defined using A1, . . . , Ak−1 and the restriction of Ak becomes a linear
map on Vi over Ki. Applying the lemma to the restriction of Ak to Vi and
the field Ki we refine the decomposition of V if necessary. ¤

4.2. (Coarse) Lyapunov weights. Let α be a Zk-action on X that pre-
serves the GS-leaves. Assume the adjoint action (i.e. the restriction of
A to every gσ for σ ∈ S) is semisimple. Then we can decompose every
gσ =

∑
i gσ,i into common eigenspaces, so that gσ,i is a vector space over

Kσ,i and Adα(n)(v) = tnσ,iv for every v ∈ gσ,i and n ∈ Zk, where tnσ,i =
tσ,i(1)n1 · · · tσ,i(k)nk and tσ,i(1), . . . , tσ,i(k) ∈ Kσ,i.

Definition 4.4. For every eigenspace gσ,i as above we define the Lyapunov
weight λ = λσ,i : Zk → R by

λσ,i(n) = log |tnσ,i|σ =
k∑

j=1

nj log |tσ,i(j)|σ.

Here | · |σ is the extension to Kσ,i as in Section 3.1. Clearly λ can be
extended to a linear map λ : Rk → R. Next we group the eigenspaces
together in two different ways according to their Lyapunov weights and
obtain subspaces with dynamical significance.

Definition 4.5. For a Lyapunov weight λ the Lyapunov weight subspace gλ
S

is the sum of all subspaces gσ,i for which λ = λσ,i. Moreover, let gλ
σ = gλ

S∩gσ

for any σ ∈ S.
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Note that gλ
S =

∑
σ∈S gλ

σ for any Lyapunov weight λ and that gS =
∑

λ gλ
S ,

where both sums are direct sums. The same holds similarly for the following
notion.

Definition 4.6. For a nonzero Lyapunov weight λ the coarse Lyapunov
weight subspace is defined by gΛ

S =
∑

ζ∈Λ g
ζ
S where Λ = {tλ : t > 0} = R+λ

is the ray from the origin through λ. Similarly let gΛ
σ = gΛ

S ∩ gσ for any
σ ∈ S.

4.3. Basic properties of (coarse) Lyapunov weight subspaces.

Lemma 4.7. We can choose the norms ‖ · ‖σ on gσ for σ ∈ S such that the
induced norm

‖v‖ = max
σ
‖vσ‖σ for v ∈ gS

satisfies
‖Anv‖ = eλ(n)‖v‖ (4.1)

for all n ∈ Zk, v ∈ gλ
S, and all Lyapunov weights λ.

Proof. For any eigenspaces gσ,i we fix some bases v1, . . . , v` over Kσ,i and
define

∥∥∥
∑̀

j=1

tjvj

∥∥∥
σ,i

=
`

max
j=1

|tj |σ.

For some fixed σ ∈ S and u =
∑

i ui ∈ gσ with ui ∈ gσ,i we define ‖u‖σ =
maxi ‖ui‖σ,i. It is easy to check that ‖ · ‖ satisfies the lemma. ¤

The next lemma characterizes the (coarse) weight subspaces dynamically
using the adjoint action.

Lemma 4.8. For a Lyapunov weight λ we have u ∈ gλ
S if and only if there

exists some constant c > 0 such that

‖Anu‖ ≤ ceλ(n)‖u‖ for all n ∈ Zk. (4.2)

Furthermore, u ∈ gΛ
S for Λ = (0,∞)λ if and only if there exist c, c1, c2 > 0

such that

‖Anu‖ ≤ c max(ec1λ(n), ec2λ(n))‖u‖ for all n ∈ Zk. (4.3)

Moreover, it is possible to set c = 1 in (4.2) and (4.3).

Proof. From Lemma 4.7 it is clear that elements of gλ
S satisfy (4.2). So sup-

pose that u ∈ gS satisfies (4.2), and let u =
∑

σ,i uσ,i be the decomposition
of u according to the eigenspaces gσ,i. Since gS is a direct sum of these
eigenspaces, it is clear that every uσ,i satisfies

‖Anuσ,i‖ ≤ ceλ(n)‖u‖.
Note that uσ,i also satisfies (4.1) for λσ,i. This implies that

eλσ,i(n)‖uσ,i‖ ≤ ceλ(n)‖u‖
for all n ∈ Zk and so λσ,i = λ unless uσ,i = 0. The proof of the second
statement is similar. ¤
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By definition it is clear that every (coarse) weight subspace is invariant
under the adjoint action. However, gS is also an S-Lie algebra and we study
next how each of these decompositions respects the commutator. (There is
no reason to expect some kind of linearity of [·, ·] with respect to the vector
space structure of gσ,i over Kσ,i.)

Proposition 4.9. Let α : Zk → GS be an Ad-semisimple homomorphism,
and let λ1, λ2 be Lyapunov weights of α. Then for u ∈ gλ1

S and v ∈ gλ2
S we

have [u, v] ∈ gλ1+λ2
S . Therefore, any coarse weight subspace gΛ

S is an S-Lie
subalgebra, i.e. gΛ

σ is a Lie subalgebra of gσ over Qσ for every σ ∈ S.

Proof. It is enough to consider u, v ∈ gσ for some σ ∈ S. It is clear that
there exists some r > 0 such that [Bgσ

1 , Bgσ
1 ] ⊆ Bgσ

r . Let n ∈ Zk and choose
s ∈ Qσ such that |s|σ ≥ ‖Anu‖ and |s|σ is minimal with this property. If
σ = ∞ then

|s|∞ = ‖Anu‖ = ‖u‖eλ1(n) = c1e
λ1(n),

otherwise σ = p is some rational prime and

|s|p ≤ p‖Anu‖ = p‖u‖eλ1(n) = c1e
λ1(n).

We choose t ∈ Qσ similarly such that |t|σ ≥ ‖Anv‖ and |t|σ ≤ c2e
λ2(n).

From (3.4) we see that
∥∥An[u, v]

∥∥ = |st|σ
∥∥s−1t−1An[u, v]

∥∥ ≤
c1c2e

(λ1+λ2)(n)
∥∥[s−1Anu, t−1Anv]

∥∥ ≤ rc1c2e
(λ1+λ2)(n).

Now Lemma 4.8 shows [u, v] ∈ gλ1+λ2
S . The second statement follows since

Λ = (0,∞)λ is closed under addition. ¤

4.4. Coarse Lyapunov subgroups, m-stable, m-unstable subgroups.
In the next proposition we show that the exponential map has a canonical
extension to coarse Lyapunov weight subspaces and find the subgroups corre-
sponding to the coarse Lyapunov weight subspaces. A more general context
gives the following definition.

Definition 4.10. An S-Lie subalgebra h ⊆ gS is an m-stable S-Lie subal-
gebra if h is a closed under [·, ·], invariant under the adjoint action A, and
h =

∑`
j=1 hλj is a direct sum of Lyapunov weight spaces hλj = h ∩ g

λj

S of h

such that λj(m) < 0 for j = 1, . . . , `. Similarly we define m-unstable Lie
subalgebras by requiring that λj(m) > 0 for j = 1, . . . , ` instead.

Recall that h is nilpotent if there exists some n ≥ 1 such that all Lie
polynomials of degree n as in (3.3) with w1, . . . , wn ∈ h vanish.

It follows from Proposition 4.9 that the S-Lie subalgebra generated by
two m-stable S-Lie subalgebras is also m-stable. Therefore, there exists a
unique maximal m-stable S-Lie subalgebra.
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Proposition 4.11. Let α be a Zk-action on X that preserves the GS-leaves
such that its adjoint action A on gS is semisimple. Then every m-(un)stable
Lie subalgebra h is nilpotent as an S-Lie algebra, i.e. a direct sum of nilpotent
Lie algebras hσ = h ∩ gσ over Qσ for σ ∈ S. The exponential map can be
uniquely extended to the whole of h such that

θn(exp(u)) = exp(Anu) for all n ∈ Zk, u ∈ gΛ
S , (4.4)

where θ is as in Definition 3.1. The image H = exp h is a Lie subgroup of
GS. The inverse of the exponential map is the logarithm map

log : H → h,

the map u ∗ v = log
(
(expu)(exp v)

)
is defined on h2, and the Campbell-

Hausdorff formula (3.2) expresses u ∗ v as a finite linear combination of
expressions as in (3.3).

Furthermore, if h =
∑`

i=1 hi is a direct sum of m-stable Lie subalgebras
and Hi = exp hi are the corresponding subgroups of H, then φ : H1 × · · · ×
H` → H defined by φ(g1, . . . , g`) = g1 · · · g` is a homeomorphism.

In the above proposition we do not require that the Lie subgroup H carries
the induced topology.

Recall that an element g ∈ GS is unipotent if its adjoint Adg has only
1 as its eigenvalues, and that a subgroup is unipotent if all of its elements
are unipotent. We only note that it is not too difficult to extend the above
proposition: H is actually a unipotent subgroup of GS .

By Proposition 4.9 the coarse Lyapunov weight subspace gΛ
S is an m-

stable Lie subalgebra for some m ∈ Zk, whenever Λ = R+λ and λ 6= 0 is a
Lyapunov weight.

Definition 4.12. The image GΛ
S = exp gΛ

S of a coarse Lyapunov weight
subspace is a coarse Lyapunov subgroup and the image H = exp h of an m-
(un)stable Lie algebra as in the proposition is an m-(un)stable Lie subgroup.

Any m-stable Lie subalgebra h we can decompose into coarse Lyapunov
weight subspaces hΛ = h ∩ gΛ

S which are m-stable Lie subalgebras of h by
Proposition 4.9. Therefore we immediately obtain the following corollary.

Corollary 4.13. Any m-stable subgroup H is homeomorphic to the direct
product of its coarse Lyapunov subgroups via the map that sends (h1, . . . , h`) ∈
HΛ1 × · · · ×HΛ` to h1 · · ·h`.

Proof of Proposition 4.11. Note that (4.4) already holds for sufficiently small
u by (3.5). This shows that we can find for every u ∈ h some k ≥ 0 such
that exp(Akmu) is already defined and that

exp(u) = θ−km(exp(Akmu))

does not depend on k. Similarly we show that this extended map exp is
invertible and get the extension of log.
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We claim that h is nilpotent. By definition h is a direct sum over Lyapunov
weight spaces. Therefore and since [·, ·] is bilinear, it is enough to consider
wi ∈ gλi for i = 1, . . . , n. By Proposition 4.9 we know that the expression w
in (3.3) belongs to gλ1+···+λn

S . However, since all λ` satisfy λ`(m) < 0 and
there are only finitely many weights, we conclude that for large enough n
the sum λ1 + · · ·+ λn cannot be a weight and w = 0 as claimed.

This shows that (3.2) is actually a finite sum and is well defined on the
whole of h. It follows that H = exp h is a subgroup. We define the topology
on H by requiring exp to be a homeomorphism.

For σ ∈ S the restriction φσ of φ to H1 × · · · × H` has an invertible
derivative at the identity and so is a local diffeomorphism. Therefore φ is a
local homeomorphism. However, as for the exponential map we can use θm

to conclude that φ is a homeomorphism. ¤

4.5. A metric on m-stable subgroups. Let H be an m-stable subgroup.
As before we will use subscripts and superscripts for h and H as for gS and
GS , e.g. hσ = g ∩ gσ and HΛ = H ∩GΛ

S . Furthermore, we say λ is a weight
of H if hλ 6= 0.

In this subsection we define a right invariant metric

d(g, h) = max
σ∈S

dσ(gσ, hσ)

for g, h ∈ H by specifying for any σ ∈ S a right invariant metric dσ(·, ·) on
Hσ. We will show that there exists χ < 1 such that

d
(
θm(g), θm(h)

)
< χd(g, h), (4.5)

for any g, h ∈ H, and equivalently if H is an m′-unstable subgroup then
there exists χ > 1 with

d
(
θm′

(g), θm′
(h)

)
> χ′d(g, h). (4.6)

Lemma 4.14. For every σ ∈ S there exists a right invariant metric dσ(·, ·)
satisfying (4.5), (4.6), and the following additional property. If λ is a weight
of H such that there exists a t ∈ Rk with λ(t) = 0 and ξ(t) < 0 for any
weight ξ of H that is linearly independent to λ, then

dσ
(
θn(g), e

) ≤ max
(
ec1λ(n), ec2λ(n)

)
dσ(g, e)

for some c1, c2 > 0, all n ∈ Zk, and all g ∈ HΛ
σ where Λ = R+λ.

Proof for σ = ∞. Let ‖ · ‖ be a norm on g∞ derived from an inner product
that satisfies that all weight spaces are orthogonal to each other. Let d∞
denote the right invariant Riemannian metric on H∞ derived from ‖ · ‖.

Let λ be as in the lemma. We claim that d∞ induces the Riemannian
metric dΛ on HΛ∞ (which again is induced by the restriction of ‖ · ‖ to hΛ∞).
Clearly d∞(g, e) ≤ dΛ(g, e) for any g ∈ HΛ∞ (since any path in HΛ∞ is also a
path in H∞). To show the opposite inequality define the Lie subalgebra h′ =∑

ξ(t)<0 hξ∞ of h∞. Then h∞ = hΛ∞ + h′ and h∞/h′ is metrically isomorphic
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to hΛ∞. Moreover, H ′ = exp h′ is a normal subgroup of H∞ and H∞/H ′ is
isomorphic to HΛ∞. Any path γ in H∞ connecting e to g ∈ HΛ∞ induces a
path in H/H ′, and so in HΛ∞ which again connects e to g. In this process
the length of the path does not increase, and so d∞(e, g) = dΛ(e, g) for all
g ∈ HΛ∞.

Let c1, c2 > 0 be such that all weights in Λ = (0,∞)λ are in fact elements
of [c1, c2]λ. Let g ∈ HΛ∞, let n ∈ Zk, and let γ be a path connecting e
to g within HΛ∞. Then we apply θn to γ and obtain a new path θn ◦ γ
connecting e to θn(g), and the lengths of the paths satisfy length(θn ◦ γ) ≤
max(ec1λ(n), ec2λ(n)) length(γ). This shows the desired inequality.

The proof of (4.5) is similar to the above. ¤

Proof for σ = p. Suppose H is an m′-unstable subgroup. We claim that it
is possible to choose for any weight a constant cλ > 0 such that

κ(u) = max
λ

cλ‖uλ‖1/λ(m′)

satisfies κ(u ∗ v) ≤ max(κ(u), κ(v)) for any u, v ∈ hp.
Note first that κ(u + v) ≤ max(κ(u), κ(v)) holds independent of the

choice of the constants. Because of that it is enough to show that κ(tw) ≤
max(κ(u), κ(v)) whenever w is as in (3.3) and t is one of the universal con-
stants. Let n be the degree of w. For n = 1 there is nothing to prove, so
assume n > 1. By using the bi-linearity of [·, ·] we can reduce to the situa-
tion where w is defined by various weight components uζ ∈ hζ and vξ ∈ hξ

of u =
∑

ζ uζ resp. v =
∑

ξ vξ. Suppose that ζ1, . . . , ζ` are the weights for
which uζi appears in w, where we list a weights as often as the correspond-
ing component appears. Let ξ1, . . . , ξn−` be the corresponding weights for
v. Then w ∈ hη

p for

η =
∑̀

i=1

ζi +
n−∑̀

i=1

ξi (4.7)

by Proposition 4.9. Since [·, ·] is bilinear there exists some constant C > 0
such that ‖tw‖ ≤ C

∏
i ‖uζi‖

∏
i ‖vξi‖. Therefore

κ(tw) = cη‖tw‖1/η(m′) ≤ cηc
∏̀

i=1

κ(u)ζi(m
′)/η(m′)

n−∏̀

i=1

κ(v)ξi(m
′)/η(m′)

where c = c(C, cζ1 , . . . , cξn−`
) is some combination of all these constants.

Here the right hand side is cηc times a geometric mean of κ(u) and κ(v), so
for the claim all we need is

cηc(C, cζ1 , . . . , cξn−`
) ≤ 1. (4.8)

We can now define cλ inductively: For a weight λ with minimal value λ(m′)
we set cλ = 1. Suppose the constants are already defined for weights λ with
λ(m′) < r and let η be a weight with η(m′) = r, then we can choose cη

small enough so that (4.8) holds for all ways to express η as a sum as in
(4.7).
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We define dp(g, h) = κ(log(gh−1)) for g, h ∈ H ∩Gp. Right invariance is
obvious, the triangle inequality follows from

dp(g, e) = κ(log(g)) = κ
(
log(gh−1) ∗ log(h)

) ≤
max

(
κ(log(gh−1), κ(log(h))

)
= max

(
dp(g, h), dp(h, e)

)

and symmetry is similar. The last statement of the lemma follows from
(4.3) and the construction of the metric dp. Properties (4.5) and (4.6) follow
similarly. ¤

5. Conditional measures

In this section we provide the framework of conditional measures, which
we will need for the main technical results in the following sections, namely
the generalization of [6, Prop. 8.3] and [21, Prop. 6.4] which both state in
different settings that certain conditional measures are product measures.
In [21] the framework of (T,H)-spaces and their conditional measures was
developed and applied to the proof of arithmetic cases of the Quantum
Unique Ergodicity conjecture, where the above mentioned fact was one of
the tools for the proof.

5.1. (T,H)-spaces and conditional measures. First we recall the notion
of atoms [x]A and conditional measures µAx for a countably generated σ-ring
A. Clearly there exists a maximal element A ∈ A and A|A is a σ-algebra.
If A is generated by A1, . . . , Ai, . . ., the atom of x is defined by

[x] =
⋂

i:x∈Ai

Ai ∩
⋂

i:x/∈Ai

A \Ai.

Then µAx is a probability measure on the atom [x]A for a.e. x ∈ A, such that
the conditional expectation can be expressed as an integral

E
(
f |A

∣∣A
)
(x) =

∫

A
f(y) dµAx (y)

for all integrable functions f .
In the following T is a locally compact second countable metric space

with a distinguished point e ∈ T , and H is a subgroup of the group of
isometries Isom(T ) that acts transitively on T . We will write BY

r (a) = {b ∈
Y : d(a, b) < r} for the ball of radius r in the metric space Y and center a.
If the center is e ∈ T we also write BT

r = BT
r (e).

Definition 5.1. A locally compact second countable metric space X is said
to be a (T, H)-space if there is some countable open cover T of X by relatively
compact sets, and for every U ∈ T a continuous map tU : T × U → X with
the following properties:

(1) For every x ∈ U ∈ T, we have tU (e, x) = x.
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(2) For any x ∈ U ∈ T, any t ∈ T and any V ∈ T containing y = tU (t, x),
there exists a φ ∈ H with φ(e) = t and

tV (·, y) = tU (·, x) ◦ φ. (5.1)

(3) There is some rU > 0 so that for any x ∈ U the map tU (·, x) is
injective on BT

rU
.

We define T(x) = {U ∈ T : x ∈ U}. Property (2) above shows that
the leaf tU (T, x) is independent of U ∈ T(x) and furthermore how the two
parameterizations tU (·, x) and tV (·, y) of tU (T, x) differ. It also implies that
BT

r (x) = tU (BT
r , x) is independent of U ∈ T(x). The following lemma will

be useful later.

Lemma 5.2. Let x0 ∈ U ∈ T. Suppose

tU (·, x0) is injective on BT
20r. (5.2)

Then for small enough ε > 0 any y ∈ A = tU (BT
r , Bε(x)) satisfies the

following two properties:
(1) BT

10r(y) ∩A ⊂ BT
4r(y) and

(2) tV (·, y) is injective on BT
19r where V ∈ T(y).

Proof. The first statement was shown in [21, Lemma 3.2 (1)].
We claim that (5.2) holds for small enough ε > 0 in fact for all x ∈

Bε(x0). Assume by contradiction that for every ε > 0 there exists an xε

with d(xε, x0) ≤ ε such that (5.2) fails for xε. Then there exist two different
tε, t

′
ε ∈ BT

20r with yε = tU (tε, xε) = tU (t′ε, xε). Note that here yε belongs to a
fixed compact set which we can cover by finitely many V ∈ T, and let rK > 0
be the minimum over the corresponding rV as in Definition 5.1 (3). Choose
V with yε ∈ V and φ ∈ H such that tV (·, yε) = tU (φ(·), xε) and φ(tε) = e.
Since φ(t′ε) 6= e but tV (φ(t′ε), yε) = yε it follows that d(tε, t′ε) ≥ rV ≥ rK .

By choosing a converging subsequence we now obtain t0, t
′
0 ∈ BT

20r with
d(t0, t′0) ≥ rK and tU (t0, x0) = tU (t′0, x0), which contradicts the assumption
of the lemma. This shows the claim. To see that this implies the second
part of lemma, let y = tU (t, x) for some t ∈ BT

r and note that the element
φ ∈ H as in Definition 5.1 (2) maps BT

19r into BT
20r. ¤

The following algebraic case of this structure is of special interest to us.

Definition 5.3. Let X be a locally compact second countable metric space
X, let H be a locally compact second countable metric group H with a right
invariant metric. Then an H-space is given by a locally free action of H on
X, which we write as (h, x) 7→ hx.

An H-space gives an example of an (H, H)-space, where H acts on itself by
right translation Rg(s) = sg for g, s ∈ H, and tU (h, x) = hx is independent
of U ∈ T(x).

In [21, Thm. 3.3] the family of conditional measures for the (T,H)-space
were constructed (see also [18, Sect. 4] and [16, Sect. 1.4]). Since this is
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fundamental for what follows, we state this results but first we recall two
more necessary definitions.

Definition 5.4. A set D ⊂ X is an open T -plaque if for any x ∈ D:
D ⊆ tV (BT

r , x) for some r > 0, and tV (·, x)−1D is open in T for some (all)
V ∈ T(x).

Definition 5.5. A pair (A, A) with A ⊆ B a countably generated σ-ring
and A ⊆ X its maximal element is called an r, T -flower with center C ⊆ X
if

(1) A is open and relatively compact, and C ⊆ A.
(2) For every y ∈ A the atom [y]A is an open T -plaque, in fact for

V ∈ T(y) we require that

[y]A = A ∩ tV (BT
4r, y).

(3) If y ∈ C and V ∈ T(y) then [y]A ⊃ tV (BT
r , y).

The existence of r, T -flowers with a small disc as a base has been shown
in [21, Cor. 3.5].

For the following it is convenient to write ν1 ∝ ν2 if two measures ν1, ν2

are equal up to a multiplicative constant, i.e. if there exists a constant C > 0
with ν1(B) = Cν2(B) for all measurable B. Furthermore, we will use for a
measure ν on Y and a measurable function f : Y → Z the push forward f∗ν
which is defined by f∗ν(A) = ν(f−1A) for any measurable A ⊆ Z.

We let M∞(T ) be the set of all locally finite Borel measures on T ,
equipped with the weak∗ topology defined by If (µ) =

∫
T f dµ for f ∈ Cc(T ).

Note that M∞(T ) (unlike the full dual of Cc(T )) is a metrizable, separable
space with this topology.

Proposition 5.6. [21, Thm. 3.6] Let X be a (T,H)-space, let µ be a Borel
probability measure on X, and suppose that

tU (·, x) is injective for every U ∈ T, and a.e. x ∈ U. (5.3)

Then the conditional measures µU
T,x for U ∈ T(x) are Radon measures on T

with the following properties:
(1) The unit ball BT

1 has measure one.
(2) For any countably generated σ-ring A with maximal element A whose

atoms are open T -plaques and for a.e. x ∈ A and every U ∈ T(x),
we have

tU (·, x)−1
∗ µAx ∝ µU

x,T |tU (·,x)−1[x]A .

(3) There is a set X0 ⊆ X of full µ-measure so that for every x, y ∈
X0, t ∈ T with y = tU (t, x), U ∈ T(x), and V ∈ T(y) we have
µU

x,T ∝ φ∗µV
y,T where φ ∈ H is the isometry satisfying φ(e) = t and

tV (·, y) = tU (·, x) ◦ φ .
Furthermore, the map x 7→ µU

T,X from U to the set MT of Radon measures
on T is measurable.
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In the case of an H-space the conditional measure does not depend on
the set U ∈ T, and we simply write µH

x = µU
x,H . Note that the existence

of the conditional measures in the sense of Proposition 5.6 is linked to the
assumption (5.3). When we speak below of a measure µ with conditional
measures µU

T,x for U ∈ T(x) we implicitly assume that (5.3) is satisfied.
Note that Proposition 5.6 (2) shows that the conditional measure does

not depend on the choice of the metric d(·, ·) on T (assuming the topology
is induced by the metric and all properties of T -spaces are satisfied).

It is well known that translation invariance of the conditional measures µH
x

implies translation invariance of the global measure µ (see [18], [6, Prop. 3.3]
or [21, Prop. 4.3]).

Proposition 5.7. Let X be an H-space, and let µ be a probability measure
such that the H-action for a.e. base point is free. Then µ is H-invariant if,
and only if, for µ-a.e. x the conditional measure µH

x is a left invariant Haar
measure on H.

The following lemma follows easily from the construction of the condi-
tional measures µU

x,T (see [21, Lemma 3.7]) and is the reason why we can
impose the normalization (1) in Proposition 5.6. Recall that the support
supp ν of a measure ν on Y is the complement of the biggest open set in Y
that is also a null set with respect to ν.

Lemma 5.8. Let X be a (T, H)-space, let µ be a probability measure with
conditional measures µU

x,T for U ∈ T(x). Then for a.e. x ∈ X and all
U ∈ T(x) we have e ∈ suppµU

x,T .

Another corollary of the construction of the conditional measures (Propo-
sition 5.6 (2) and the properties of µAx ) is the following (see [6, Lemma 3.1]).

Lemma 5.9. Let X be a (Ti,Hi)-space for i ∈ I, where I is a finite or
countable index set. Let µ be a probability measure with conditional measures
µU

x,Ti
for U ∈ Ti(x) and i ∈ I. Let N be a null set. Then there exists a null

set N ′ ⊃ N such that µUi
x,Ti

(tUi(·, x)−1N ′) = 0 for all x ∈ X \N ′, i ∈ I, and
Ui ∈ Ti(x).

5.2. First dynamical properties of the conditional measures. Let X
be a (T, H)-space. A homeomorphism α : X → X preserves the T -leaves if

α ◦ tU (x, ·) = tV (αx, ·) ◦ θU,V
x (5.4)

for all U ∈ T(x), V ∈ T(αx) and some homeomorphism θU,V
x of T fixing e.

In the case where X is an H-space, α preserves the H-leaves if (5.4) holds
for some fixed group automorphism θ of H (just as in Definition 3.1).

Clearly, this implies that there exists for every n ∈ Z, x ∈ X, U ∈ T(x),
and V ∈ T(αnx) a homeomorphism (group automorphism) θU,V

n,x of T fixing
e with

αn ◦ tU (x, ·) = tV (αnx, ·) ◦ θU,V
n,x . (5.5)
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We say α acts isometrically on the T -leaves if additionally

d(θU,V
x s, θU,V

x s′) = d(s, s′)

for all s, s′ ∈ T , x ∈ X, and U, V as above. Furthermore, α uniformly
expands the T -leaves if it preserves them and there exists a constant χ > 1
so that

d(θU,V
x s, θU,V

x s′) > χd(s, s′)
for all s, s′ ∈ T , and x ∈ X. Similarly α uniformly contracts the T -leaves
if α−1 uniformly expands them. A more general group action preserves the
leaves (or acts isometrically on the leaves) if this is true for every element
of the action.

Note that, if α uniformly expands (or contracts) the T -leaves and pre-
serves the probability measure µ, then (5.3), which is needed for the con-
struction of the conditional measures, is automatically satisfied. To see this,
note that by Poincaré recurrence for a.e. x ∈ U ∈ T there exists arbitrary
large n > 0 with α−nx ∈ U . By Definition 5.1 (3), tU (·, α−nx) is injective
on BT

rU
. By (5.5) and expansion, this implies that tU (·, x) is injective on

BT
rUχn .
If µ is an α-invariant measure and µU

x,T are the conditional measures as
in the last section, it follows that

µV
αx,T ∝ (θU,V

x )∗µU
x,T (5.6)

for a.e. x ∈ X. This can be seen as in the proof of [21, Prop. 5.2], which
considers the case of an isometry: If α acts isometrically on the (T,H)-leaves
then equality holds by the normalization in Proposition 5.6 (1).

Lemma 5.10. Let X be an H-space, and suppose α uniformly contracts the
H-leaves. Let µ be an α-invariant probability measure. Let Lh : H → H
denote the left translation with h ∈ H, i.e. Lh(g) = hg for all g ∈ H. Then
there exists a null set N ⊂ X with the following property. If x ∈ X \ N
satisfies that µH

x is left translation invariant by some h ∈ H in the affine
sense, i.e. (Lh)∗µH

x ∝ µH
x , then in fact µH

x is translation invariant by h, i.e.
(Lh)∗µH

x = µH
x . (The same holds similarly for right translation Rh(g) = gh.)

Proof. Since µH
x (BH

2 ) < ∞ for a.e. x, we can find for every m > 0 a set
Km with µ(Km) > 1 − 1

m such that µH
x (BH

2 ) < Mm for some Mm > 0
independent of x ∈ Km. Without loss of generality we can assume that
(5.6) holds for all x ∈ Km and all αn for n ≥ 1. Let K ′

m ⊆ Km be the set of
points x for which there exists infinitely many n > 1 with αnx ∈ Km. By
Poincaré recurrence µ(K ′

m) = µ(Km), so that N = X \⋃
m K ′

m is a null set.
By continuity of the group multiplication in H, there exists ε > 0 with

hBH
1 ⊂ BH

2 for all h ∈ BH
ε . Let x ∈ X \N , and suppose µH

x is translation
invariant in the affine sense by Lh. Then x ∈ K ′

m for some m, and so αnx
belongs to Km infinitely often. Since θ is assumed to be a group automor-
phism of H, (5.6) implies that µH

αnx is translation invariant in the affine
sense by Lθnh. Here the multiplicative constant C remains unchanged. Fix
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some ` ≥ 1. Since α uniformly contracts the H-leaves, we can find n > 0
with αnx ∈ Kn and θnh` ∈ BH

ε . It follows that

Mm ≥ µH
x

(
BH

2

) ≥ µH
x

((
θnh

)`
BH

1

)
= C`.

Since this holds for all ` ≥ 1 (and some fixed m), we conclude that C ≤ 1.
By applying the above to h−1 we see that C = 1. ¤

6. The structure of the subgroup leaving the conditional
measure invariant

Let α be a Zk-action on X, and let GS act continuously and locally free
on X such that α preserves the GS-leaves (as in Section 3.3). Let θ be
the corresponding Zk-action by automorphisms of GS describing the action
of α on the GS-leaves, i.e. such that αn(gx) = θn(g)αn(x) for x ∈ X and
n ∈ Zk. Finally, let A be the adjoint Zk-action on gS and assume that A is
semisimple.

In this section we begin our study of α-invariant probability measures on
X. We will show that the maximal subgroup leaving conditional measures
invariant has a special structure.

For this let H be an m-stable subgroup of GS and let d(·, ·) be the metric
defined in Section 4.5. The metric is right invariant as required in Defini-
tion 5.3. Since h is invariant under the adjoint action A, it is easy to check
that the induced H-space structure is also preserved by the Zk-action α.
Moreover, (4.5) shows that αm uniformly contracts the H-leaves. As we
saw in Section 5.2 this implies that the conditional measures µH

x exist for
every α-invariant probability measure µ on X. We study in this section the
maximal subgroup Hx of H that leaves µH

x invariant by multiplication from
the left (or right).

Definition 6.1. A closed subgroup H ′ ⊆ H = exp h of an m-stable sub-
group H allows a weight decomposition if H ′ = exp h′ for some h′ ⊆ h with
the following properties:

(1) [h′, h′] ⊆ h′,
(2) h′ =

∑
σ∈S h′ ∩ hσ,

(3) h′ ∩ hσ =
∑

λ h′ ∩ hλ
σ for all σ ∈ S, and

(4) h′ ∩ hλ
σ is a vector space over Qσ for all Lyapunov weights λ and all

σ ∈ S.

In other words H ′ = exp h′ is an S-Lie subgroup of H with S-Lie algebra
h′ such that h′ allows a decomposition into subspaces of Lyapunov weight
spaces of h. Note that we do not require invariance of h′ under the adjoint
action A, and that in the case of a real Lie group the above requirements
show in particular that H ′ is connected.

Proposition 6.2. Let X, α, GS, and A be as above, and let H = exp h be
an m-stable subgroup of GS. For any α-invariant probability measure µ on
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X the conditional measures µH
x exist a.e. and the subgroup

Hx =
{
h ∈ H : (Lh)∗µH

x = µH
x

}

allows a weight decomposition. (The same holds similarly for the subgroup
defined using right multiplication Rh.)

The following easy facts will be useful for the proof of the proposition.

Lemma 6.3. Let hj , h ∈ H and νj , ν be locally finite measures on H such
that hj → h and νj → ν for j →∞, where we use the weak∗ topology induced
by all continuous functions with compact support. Then

(Lhj )∗νj → (Lh)∗ν for j →∞,

where Lh(g) = hg is left multiplication. (The same holds similarly for right
multiplication Rh(g) = gh.) In particular, Hx as in Proposition 6.2 is closed.

Lemma 6.4. Let µ and H be as in Proposition 6.2. Then for a.e. x ∈ X
and all m ∈ Zk we have Hαmx = θm(Hx).

Proof. Let m ∈ Zk. The lemma follows from the relationship between µH
x

and µH
αmx in (5.6). Recall that in our situation θU,V

m,x = θm is a fixed auto-
morphism of H, so that µαmx = θm∗ µx a.e. ¤
Lemma 6.5. Any subgroup H ′ ⊆ H satisfying (2)–(4) of Definition 6.1,
also satisfies (1).

Proof. Note first that (2)–(4) imply that h′ = log(H ′) is an additive sub-
group of h. Since [·, ·] is bilinear and any element of h′ can be written as a
sum of elements in h′ ∩ hλ

σ for various σ ∈ S and weights λ, it is enough to
consider u, v ∈ h′ with u ∈ hξ

σ and v ∈ hζ
σ for some weights ξ, ζ. Since H ′ is

a subgroup, we have u ∗ v ∈ h′. By (3.2) we can express u ∗ v as a combina-
tion of u, v, [u, v], . . ., where each of these expressions belongs to a particular
weight subspace hλ

σ as in Proposition 4.9. In particular, [u, v] ∈ hξ+ζ
σ and

this term is the only one in that particular weight subspace (using that H is
m-stable). However, Definition 6.1 (3) and (4) now show that [u, v] ∈ h′. ¤
Proof of Proposition 6.2. Suppose H is m-unstable for an m ∈ Zk such that
additionally λ1(m) 6= λ2(m) for any two different weights λ1, λ2 of H. We
define β = αm, then it is enough to show the proposition for the Z-action
defined by β. We denote the corresponding map on H by θ, and the adjoint
action by A. Weights can be identified with real numbers, and so hr will
denote the weight space corresponding to r ∈ R. Moreover, we let

hI =
∑

r∈I

hr for any interval I ⊆ R+.

By our choice of m we are still considering the same weight subspaces, in
fact hλ = hλ(m).

Let N be a null set such that µH
x is well defined and satisfies Lemma 6.4

for x /∈ N . Let K ⊆ X \N be a compact set with µ(K) > 1 − ε such that
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µH
x depends continuously on x within K (Luzin’s theorem). By Poincaré

recurrence there exists a set K ′ ⊆ K of equal measure such that for all
x ∈ K ′ there exists a diverging sequence nj with βnjx ∈ K and βnjx → x
for j → ∞. We can require that this holds for some sequence nj → ∞ as
well as for some sequence nj → −∞ for j → ∞. Since ε is arbitrary, it is
enough to show the proposition for any x ∈ K ′.

Let hSf
=

∑
p∈S\{∞} h∩ gp. Our first step towards the linear structure of

hx = log Hx is contained in the next lemma.

Lemma 6.6. Let x ∈ K ′ and r > 0 be fixed. Then there exists a group
homomorphism

ψr : domψr =
(
h[r,∞)
∞ + hSf

) → hr
∞

which is linear on h
[r,∞)
∞ = h[r,∞) ∩ g∞ and has

kerψr =
(
h(r,∞)
∞ + hSf

)

as its kernel, such that Rψr(v) ⊆ hx for all v ∈ hx ∩ domψr.

Proof. Let nj → −∞ be such that βnjx ∈ K and βnjx → x for j →
∞. Recall that every β−1 uniformly contracts the H-leaves. We define
ϕj = MjA

nj , where Mj = be−njrc and A is the adjoint action to β. Let
V = h

[r,∞)
∞ +hSf

. Then ϕj |V has only eigenvalues of absolute value less than
or equal to one and its eigenvalues on hr∞ are the only ones bounded away
from zero. To see this, note first that the natural number Mj has norm
less than or equal to one with respect to all the non-Archimedean norms.
Therefore the eigenvalues of ϕj restricted to hSf

are at least as small as the
ones of Anj and approach zero for j → ∞. For the real part h∞ we have
chosen Mj such that the eigenvalues have precisely the stated behavior. We
assume without loss of generality that ϕj → ψr on V = dom ψr, where ψr

is a group homomorphism as in the lemma.
Suppose now v ∈ hx∩D and t ∈ R. Let g = exp(v) ∈ Hx. Since Mj →∞

we can choose some qj ∈ Z with t = lim qj

Nj
. Define vj = qjA

nj (v), then
exp(vj) = θnj (gqj ) ∈ Hankx by Lemma 6.4. Since vj = qj

Mj
ϕj(v) → tψr(v)

and µH
anj x

→ µH
x by construction of K, we conclude from Lemma 6.3 that

exp(tψr(v)) ∈ Hx. ¤

Lemma 6.7. Let x ∈ K ′. Then hx ∩ hr∞ is a real vector space for all r > 0,
and hx =

∑
r hx ∩ hr∞ + hx ∩ hSf

.

Proof. Fix some r > 0 and let ψr be as in Lemma 6.6. Choose a maximal
list v1, . . . , vd ∈ hx ∩ domψr of vectors such that ψr(vi) for i = 1, . . . , d are
linearly independent over R. Let

W = 〈ψr(vi) : i = 1, . . . , d〉
denote the linear span. Since ψr has image in hr∞ on which it is also injective,
it follows that any v ∈ hx ∩ domψr can be expressed as v = vr + v′ where
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vr ∈ W and v′ ∈ kerψr. For otherwise we would have a list of d + 1 vectors
with linearly independent image.

We claim that W ⊆ hx is ψr-invariant. For invariance note that ψ2
r (vi) ∈

hx, and therefore ψ2
r (vi) ∈ W by the first paragraph. Since ψr is injective

on hr∞, this shows that ψr(W ) = W . It remains to show that W ⊆ hx. So
let v ∈ W and find t1, . . . , td ∈ R with

v = t1ψ
2
r (v1) + · · · tdψ2

r (vd).

By Lemma 6.6 we already know tiψr(vi) ∈ hx. Since Hx is a group, we
have u = (t1ψr(v1)) ∗ · · · ∗ (tdψr(vd)) ∈ hx. By (3.2) and Proposition 4.9
u = ur + u>r where

ur = t1ψr(v1) + · · · tdψr(vd) and

u>r ∈ h
(r,∞)
∞ . By Lemma 6.6 v = ψr(ur) = ψr(u) ∈ hx. This proves the

claim and the first statement of the lemma.
For the second statement we show by induction that for all r > 0

hx ∩ domψr =
∑

s∈[r,∞)

hx ∩ hs
∞ + hx ∩ hSf

. (6.1)

For large enough r this is trivial because then domψr = hSf
. So suppose

for the inductive step that v ∈ hx ∩ domψr. Then we can decompose v =
vr+

∑
s>r vs+vSf

according to the weights for the real part and the remaining
non-Archimedean parts. The first two paragraphs show that vr ∈ W ⊆ hx.
We need to show that vs, vSf

∈ hx for all s > r. Since Hx is a group,
we have u = v ∗ (−vr) = v − vr − 1

2 [v, vr] + . . . ∈ hx by (3.2). Note that
u =

∑
s>r us +vSf

already satisfies (6.1) by the inductive assumptions. This
shows immediately that vSf

∈ hx. Let s > r. Then

us = vs − 1
2
[vs−r, vr] + . . . ∈ hx ∩ hs

∞ (6.2)

by Proposition 4.9, where all other terms are [·, ·]-polynomials in vr and
maybe several vt for t ∈ (r, s). Therefore vs = us ∈ hx when s is the
smallest weight bigger then r. Suppose we already know vt ∈ hx for all
t ∈ (r, s). Then vr ∗ vt ∗ (−vr) ∈ hx and the inductive assumptions shows
[vr, vt] ∈ hx (just as in the proof of Lemma 6.5). Therefore, us and all the
additional terms on the right of (6.2) belong to the vector space hx ∩ hs∞.
We conclude that vs ∈ hx for all s. For small enough r the second statement
of the lemma is exactly (6.1). ¤

Lemma 6.7 already shows that hx satisfies Definition 6.1 (3)–(4) hold for
σ = ∞ and moreover that hx = hx ∩ h∞ + hx ∩ hSf

. For Definition 6.1 (2)
we still need to show that

hx ∩ hSf
=

∑

p∈Sf

hx ∩ hp.

So suppose v ∈ hx ∩ hSf
, then Mv = log((exp v)M ) ∈ hx ∩ hSf

for every
integer M . Let p ∈ Sf , then we can find a sequence Mp,j for j = 1, . . . such
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that Mp,j → 1 with respect to | · |p but Mp,j → 0 with respect to | · |q for
any q ∈ Sf \ {p}. Since hx is closed, Mp,jv → vp ∈ hx ∩ hp. Taking the sum
we find that v =

∑
p∈Sf

vp ∈ hx ∩ hSf
decomposes as claimed.

Similar to the real case we will establish Definition 6.1 (3)–(4) for p ∈ Sf

in two lemmata.

Lemma 6.8. Let p ∈ Sf , x ∈ K ′, and r > 0 be fixed. Then there exists a
Qp-linear map

ψr : domψr = h(0,r]
p → hr

p

with kernel
kerψr = h(0,r)

p

such that Qpψr(v) ⊆ hx for all v ∈ hx ∩ domψr.

Proof. By definition of K ′ there exists a sequence nj →∞ such that βnjx ∈
K and βnjx → x for j →∞. We choose some integer sequence Mj such that
the eigenvalues of pMjAnj restricted to hr

p stay bounded and bounded away
from zero. By choosing a subsequence if necessary we can assume that these
eigenvalues have a nonzero limit. Note that the eigenvalues of Anj restricted
to h

(0,r)
p grow at a smaller rate. We denote the limit of the restriction of

pMjAnj to h
(0,r]
p by ψr.

Suppose v ∈ hx ∩ h
(0,r]
p and M ∈ Z. Then g = exp(v) ∈ Hx and θnj (g) ∈

Hβnj x by Lemma 6.4. Since

(θnj (g))pMj−M → exp(p−Mψr(v)) for j →∞,

we get p−Mψr(v) ∈ hx from Lemma 6.3. Therefore mp−Mψr(v) ∈ hx for all
m ∈ Z, which implies that Qpψr(v) ⊆ hx. ¤
Lemma 6.9. Let x ∈ K ′ and p ∈ Sf . Then hx ∩ hr

p is a vector space over
Qp for all r > 0, and hx ∩ hp =

∑
r hx ∩ hr

p.

Proof. We prove by induction that hx ∩ hs
p is a vector space for s ≥ r and

that for any v =
∑

s>0 vs ∈ hx with vs ∈ h ∩ hs
p we have in fact vs ∈ hx for

s ≥ r. For large enough r this statement is vacuous, and for r = 0 it is a
reformulation of the lemma. So it is enough to prove the inductive step.

Let v1, . . . , vd ∈ hx ∩ hr
p be a maximal set of linearly independent vectors,

and let t1, . . . , td ∈ Qp. By Lemma 6.8 tiψr(vi) ∈ hx for i = 1, . . . , d,
and so w = (t1ψr(v1)) ∗ · · · ∗ (tdψr(vd)) ∈ hx. Clearly w =

∑
s≥r ws with

ws ∈ hs
p for s ≥ r. By the inductive assumption we know ws ∈ hx for s > r.

Suppose t > r is the smallest weight with wt 6= 0, then w′ = w ∗ (−wt) ∈ hx

satisfies that w′r = wr and w′t = 0. Continuing like that we finally show that
wr = t1ψr(v1) + · · · + tdψr(vd) ∈ hx. Since v1, . . . , vd is a maximal list of
linearly independent vectors, we conclude that ψr(v1), . . . , ψr(vd) must have
the same linear span over Qp and that hx∩hr

p is a d-dimensional ψr-invariant
vector space over Qp.

To conclude the proof we need to show that vr ∈ hx whenever v =∑
s>0 vs ∈ hx. Since we already know vs ∈ hx for all s > r, we can
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show similar to the above that w =
∑

s∈(0,r] vs ∈ hx. By Lemma 6.8
ψr(w) = ψr(vr) ∈ hx, and invariance of hx ∩ hr

p implies that vr ∈ hx as
required. ¤

So we have shown that hx satisfies (2)–(4) of Definition 6.1 for any x ∈ K ′.
Together with Lemma 6.5 this concludes the proof of Proposition 6.2. ¤

7. Stability of conditional measures and product measures

We return to the more general setup of (S, H)-spaces.

Definition 7.1. Let α be a Zk-action on an (S, H)-space X that preserves
the S-leaves. Then the linear functional λ is a coarse Lyapunov weight for
the (S, H)-space (with respect to α) if there exists c2 ≥ c1 > 0 such that for
x ∈ X, n ∈ Zk, U ∈ T(x), V ∈ T(αnx), and s, s′ ∈ S we have

d(θU,V
n,x s, θU,V

n,x s′) ≤ max
(
ec1λ(n), ec2λ(n))d(s, s′) for every n ∈ Zk,

where θU,V
n,x is the homeomorphism of S as in (5.5) for the element αn of the

action.

We give some general comments about coarse Lyapunov weights; if λ(n) <
0, Definition 7.1 shows that αn contracts the S-leaves at least by the factor
ec1λ(n). If on the other hand λ(n) > 0, αn expands the S-leaves at most
by the factor ec2λ(n). Using this also for α−n in both cases, it follows easily
that we also have a lower bound, i.e. the above is equivalent to

min
(
ec1λ(n), ec2λ(n))d(s, s′) ≤ d(θU,V

n,x s, θU,V
n,x s′) ≤ max

(
ec1λ(n), ec2λ(n))d(s, s′).

If there exists some n ∈ Zk with λ(n) = 0, it follows that αn acts isometri-
cally on the (S,H)-leaves. Since we only consider a Zk-action, there might
be no such element.

We can consider nonzero elements w ∈ Rk as asymptotic directions in
Zk by using sequences nj ∈ Zk that stay close to R+w. We now extend [6,
Prop. 5.1] and [21, Lemma 6.2] accordingly.

Definition 7.2. Let λ be a coarse Lyapunov weight for the Zk-action α
on the (S,H)-space X, and let w ∈ Rk with λ(w) = 0. Then x′ w-
asymptotically belongs to the S-leaf of x ∈ U if there exists some s0 ∈ S
such that y = tU (s0, x) satisfies: for every diverging sequence nj ∈ Zk with
bounded distance to R+w such that αnjx is relatively compact we have
d(αnjy, αnjx′) → 0 as j →∞, see Figure 1.

Proposition 7.3. Let λ be a coarse Lyapunov weight for the Zk-action α
on the (S, H)-space X, and let w ∈ Rk with λ(w) = 0. Suppose µ is an α-
invariant probability measure with conditional measures µU

x,S for U ∈ T(x).
Then there exists a null set N such that for U,U ′ ∈ T, x ∈ U \ N , and
x′ ∈ U ′ \N the conditional measures for the S-leaves satisfy

µU
x,S ∝ (Φ)∗µU ′

x′,S for some homeomorphism Φ (7.1)
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x

x′

y

U

U ′

αnj αnjx
αnj x′

αnjy

Figure 1. The points y and x′ approach each other when
αnj is applied.

whenever x′ w-asymptotically belongs to the S-leaf of x. (Here Φ in general
depends on x and x′.)

Additionally if a homeomorphism Ψ : S → S satisfies for any s ∈ S that

d
(
αnj ◦ tU (Ψ(s), x), αnj ◦ tU ′(s, x′)

) → 0 for j →∞ (7.2)

along any diverging sequence nj ∈ Zk with bounded distance to R+w such
that αnjx is relatively compact, then Φ = Ψ satisfies (7.1).

Actually it is possible to find an isometry Φ ∈ Isom(S) that satisfies (7.1).
We will indicate at the end of the proof how to show this extension.

Proof. We first show that there exists for every ε > 0 a set Xε with µ(Xε) >
1 − 2ε on which the proposition holds. Since µU

x,S depends measurably on
x ∈ U (for every U ∈ T), there exists a compact set K of measure µ(K) >
1− ε on which these functions are continuous by Luzin’s theorem. Without
loss of generality assume that (5.3), Proposition 5.6 (3), and (5.6) hold for
all x ∈ K and αn, n ∈ Zk.

We wish to apply the “ergodic theorem along the direction w”. Unless
Rw ∩ Zk 6= {0} we need to use the suspension flow for this. Let Xs =
X × [0, 1)k, αv

s (x,u) = (αnx,u + v − n) where u ∈ Rk, (x,u) ∈ Xs, and
n ∈ Zk is chosen such that u + v − n ∈ [0, 1)k. It is easy to check that
αs is a measurable Rk-flow on Xs which preserves µs = µ × λ[0,1)k . Let
Ks = K × [0, 1)k. By the ergodic theorem the function

fs(x,u) = lim
m→∞

1
m

m−1∑

j=0

1Ks(α
jw
s (x,u))

exists for a.e. (x,u) and satisfies
∫

fs dµs = µ(K) > 1− ε.
We are going back to the space X. Clearly we can fix some u ∈ [0, 1)k

such that f(x) = fs(x,u) exists for a.e. x ∈ X and
∫

f dµ > 1 − ε. Let
nj ∈ Zk be the unique sequence such that u + jw−nj = vj ∈ [0, 1)k for all
j. From Ks = K × [0, 1)k and the above we get that

f(x) = lim
m→∞

1
m

m−1∑

j=0

1K(αnj (x))
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exists for a.e. x ∈ X. Furthermore the sequence nj ∈ Zk diverges but does
not leave a certain tube around Rw, in fact ‖nj − jw‖∞ = ‖u− vj‖∞ ≤ 1
and |λ(nj)| ≤ ‖λ‖ for j. Let Xε =

{
x : f(x) exists and f(x) > 1

2

}
. Then

1− ε <

∫
f dµ ≤ 1

2
(
1− µ(Xε)

)
+ µ(Xε) =

1
2

+
1
2
µ(Xε)

and so µ(Xε) > 1− 2ε. We can again assume that (5.6) holds for all x ∈ Xε

and αn for n ∈ Zk.
Suppose now x, x′ ∈ Xε satisfy the assumption of the proposition. Since

the asymptotic frequencies of the event αnj (x) ∈ K is given by f(x) and since
f(x), f(x′) > 1

2 , there exists a common subsequence of nj (again denoted by
nj) so that αnjx, αnjx′ ∈ K. By compactness we find another subsequence
such that

xj = αnjx → z ∈ K,

x′j = αnjx′ → z′ ∈ K for j →∞.

Suppose V ∈ T(z) and V ′ ∈ T(z′), then xj ∈ V , yj , x
′
j ∈ V ′ for large enough

x

x′

y

U

U ′

αnj
xj

x′

j

yj

z

z′

V

V ′

Figure 2. After choosing a subsequence we get two limit
points z, z′ on the same T -leaf.

j as in Figure 2. The construction of K implies that

µV
xj ,S → µV

z,S for j →∞ (7.3)

and a similar statement for x′j and z′. Let θj = θU,V
nj ,x and θ′j = θU ′,V ′

nj ,x′ be as
in (5.5). By (5.6)

αnj ◦ tU (·, x) = tV (·, xj) ◦ θj , (7.4)

(θj)∗µU
x,S ∝ µV

xj ,S , (7.5)

and similarly for x′j and θ′j . By Definition 7.1 and our estimate |λ(nj)| ≤ ‖λ‖
the maps θj satisfy

e−c2‖λ‖d(s1, s2) ≤ d(θj(s1), θj(s2)) ≤ ec2‖λ‖d(s1, s2).

Therefore we can pass to another subsequence and assume that θj → θ and
θ′j → θ′ for j → ∞ and two homeomorphisms θ, θ′ which satisfy the above
estimate as well. (The map θ can be thought of as a map from the S-leaf
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through x to the S-leaf through z, see Figure 2.) Therefore (7.3) and (7.5)
show that

θ∗µU
x,S ∝ µV

z,S and θ′∗µ
U ′
x′,S ∝ µV ′

z′,S , (7.6)

since the proportionality constant in (7.5) has to converge to some nonzero
real number.

By the assumption on x, x′ there exists some s0 ∈ S such that y =
tU (s0, x) satisfies (for the chosen subsequence) that

yj = αnjy → z′.

Continuity of the map tV and (7.4) imply that

yj = αnjy = tV (θjs0, xj) → tV (θs0, z),

and therefore z′ = tV (θs0, z). By assumption Proposition 5.6 (3) holds for
all points in K. Since z, z′ ∈ K there exists some φ ∈ HS such that

tV (·, z) ◦ φ = tV ′(·, z′) and µV
z,S = φ∗µV ′

z′,S . (7.7)

Together with (7.6) this shows that the main assertion (7.1) of Proposi-
tion 7.3 holds for Φ = θ−1 ◦ φ ◦ θ′, which satisfies

e−2c2‖λ‖d(s1, s2) ≤ d(Φ(s1),Φ(s2)) ≤ e2c2‖λ‖d(s1, s2). (7.8)

Suppose Ψ satisfies the assumptions stated in the proposition and let nj

be the sequence constructed above. Using (7.4) we can reformulate (7.2) to

d
(
tV (θj ◦Ψ(s), xj), tV ′(θ′j(s), x

′
j)

) → 0 for j →∞.

Since θj → θ and θ′j → θ′ for j → ∞ we conclude that tV (θ ◦ Ψ(s), z) =
tV ′(θ′(s), z′) for any s ∈ S. Note that Φ satisfies the same equation by
definition of Φ and φ in (7.7). By assumption (5.3) holds for z ∈ K, and
therefore we conclude that Φ = Ψ.

Since the above holds for all ε > 0 we can find an increasing sequence
X1/n such that X \⋃

n X1/n is a null set and the proposition follows.
We now show that (7.1) also holds for an isometry. Let V ⊂ Rk be the

smallest rational subspace that contains w. Choose a basis of V consisting
of elements of Zk ∩ V that are close to Rw. Then the restriction of α to
Zk ∩ V defines a new Zk′-action α′ where k′ = dim(V ). It follows from
the definition that the restriction λ′ of λ to V is a coarse Lyapunov weight
for α′ (with the same constants). However, by choosing the basis close to
Rw we can achieve that ‖λ′‖ < 1

` for some given ` ≥ 1. (Here we use the
maximum norm on V induced by the chosen basis and the dual norm on
the space of linear functions on V .) Applying the above proof to α′ gives
a homeomorphism Φ` that satisfies (7.1) and an improved version of (7.8).
Varying ` and choosing a subsequence we find the isometry Φ = lim` Φ` that
satisfies (7.1). ¤

The stability of the conditional measure in Proposition 7.3 implies already
that the conditional measures are product measures. For this we will use
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the following general situation of a foliated space whose leaves are product
spaces.

Definition 7.4. Let S, T, S×T be locally compact second countable metric
spaces such that the metric on S × T induces the product topology and
its restriction to S × {e} and {e} × T gives the metric on S and T . Let
H ⊆ Isom(S × T ) be such that all φ ∈ H have the form φ = φS × φT for
homeomorphisms φS : S → S and φT : T → T (which are not assumed to
be isometries). Then we say H is a group of product maps.

An important case is the case where H is a group with two subgroups S
and T such that T is normal in H, T ∩S = {e} and H = ST ' S×T . If the
additional requirements on the metric are satisfied, this gives an example of
a group of product maps. In fact, the right translation

Rs0t0(st) = (st)(s0t0) = (ss0)(s−1
0 ts0t0) ∈ ST

for every s, s0 ∈ S and t, t0 ∈ T is in this case a product of two maps.
Similar to the case studied in [21, Sect. 6] an (S×T, H)-space where H is

a group of product maps induces an (S, Isom(S))-space and an (T, Isom(T ))-
space in a natural way: we use the same atlas T and the restrictions of the
parametrization maps tU (·, x) to S and T respectively.

We say that α contracts the T -leaves along w if

d(θU,V
x,nj

t1, θ
U,V
x,nj

t2) → 0 for j →∞ (7.9)

for every t1, t2 ∈ T and every diverging sequence nj with bounded distance
to R+w (and U, V, θU,V

x,nj as in (5.5)).

Theorem 7.5. Let X be an (S×T,H)-space where H is a group of product
maps and let α be a Zk-action on X preserving the (S × T, H)-leaves as
well as the two induced foliations. Suppose λ is the Lyapunov weight to
the (S, Isom(S))-space and suppose w ∈ Rk satisfies λ(w) = 0 and that
the (T, Isom(T ))-leaves are contracted along w. Then for every α-invariant
probability measure µ with conditional measures µU

x,S×T for U ∈ T(x) we
have for almost every x ∈ X

µU
x,S×T ∝ µU

x,S × µU
x,T .

Our first step towards Theorem 7.5 is to study the relationship between
the conditional measures for the (S × T,H)-leaves and the induced leaf
structure.

Lemma 7.6. Let X, S × T,H and µ be as in Theorem 7.5. Let rS , rT > 0,
and choose r > rS > 0 such that Q = QrS ,rT = BS

rS
× BT

rT
⊆ BS×T

r .
Then for all a.e. x0 there exists σ-rings A× = A(S × T ) and A(S) with
common maximal element A such that A× is an r, S × T -flower with open
center C containing x0, A(S) is countably generated, and the A(S)-atoms
are open S-plaques. For some fixed x ∈ C and any (s′, t′) ∈ Q let f(s′, t′) =
tU ((s′, t′), x). Then we have

[f(s′, t′)]A(S) ∩ f(Q) = f(BS
rS
× {t′}) (7.10)
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and

µA
×

x |f(Q) =
∫

f(Q)

(
µ
A(S)
x′ (f(Q))

)−1
µ
A(S)
x′

∣∣
f(Q)

dµA
×

x (x′) (7.11)

for a.e. x ∈ C, see Figure 3. Furthermore this is the decomposition of
µA×x |f(Q) into conditional measures with respect to A(S).

For the proof that the conditional measure is a product measure the above
lemma will be useful, since it allows us to replace the atom [x]A× , whose
shape is in general unknown, by the rectangular set f(Q).

x
x′

[x]A×

[x′]A(S)

f(Q)

Figure 3. For elements x ∈ C of the common center we
have f(Q) ⊆ [x]A× ⊆ A, and for x′ = f(s′, t′) the A(S)-atom
[x]A(S) containing x′ intersects f(Q) in f(BS

rS
× {t′}).

Proof. Let U ∈ T. Recall that we assume that tU (·, x0) is injective for a.e.
x0 ∈ U (by our assumption that the conditional measures exist). By [21,
Cor. 3.5] there exists an r, S×T -flowerA× = A(S×T ) with maximal element
A and center C. In fact the maximal element is A = tU (BS×T

r , Bε(x0)) and
the center is C = Bε(x0) for any small enough ε > 0. We choose ε small
enough such that Lemma 5.2 holds for the (S × T, H)-spaces structure, i.e.

tV (·, y) is injective on BS×T
19r for any y ∈ A and V ∈ T(y). (7.12)

We now construct the countably generated σ-ring A(S) with the same
maximal element A as above. For y0 ∈ A, V ∈ T(y0), and η > 0 we define

Dη(y0) = tV
(
BS

4r, Bη(y0) ∩A
)
∩A.

We claim that

BS
4r(z) ∩A ⊂ Dη(y0) for any z ∈ Dη(y0). (7.13)

To see this, note first that

BS
4r(z) ⊂ BS

8r(y) (7.14)

for some y ∈ Bη(y0) ∩ A by the triangle inequality and the definition of
Dη(y0). However, this implies BS

4r(z) ∩ A ⊂ BS×T
4r (y) ∩ A by Lemma 5.2

(1). By (7.14) and the injectivity statement in (7.12) this is equivalent to
BS

4r(z) ∩A ⊂ BS
4r(y) ∩A ⊂ Dη(y0).
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Now choose some countable dense sequence ym ∈ A and define A(S) to be
the σ-ring generated by the sets D1/n(ym) for n,m ≥ 1. Then the maximal
element of A(S) is A. For any z ∈ A we can choose a sequences ymn such
that d(z, ymn) < 1/n for all n. Therefore, D =

⋂
n D1/n(ymn) contains z

and by (7.13) also BS
4r(z) ∩ A. On the other hand, for any x ∈ D there

exist sequences y′n → z and sn ∈ BS
4r with x = tV (sn, y′n), where we assume

z, y′n ∈ V ∈ T. Choosing a converging subsequence we find x = tV (s, z) ∈ A
for some s ∈ BS

5r. Applying Lemma 5.2 again, it follows that x ∈ BS
4r(z)

and D = BS
4r(z) ∩A. Therefore, the A(S)-atom containing z is

[z]A(S) = BS
4r(z) ∩A = A ∩ tV (BS

4r × {e}, z). (7.15)

In fact, [z]A(S) ⊂ D but the atom cannot be smaller by (7.13). This shows
that A(S) is a countable generated σ-ring that has open S-plaques as atoms.
ReplacingA(S) byA(S)∨A× does not affect (7.15) since [z]A = BS×T

4r (z)∩A
by Definition 5.5 (2), i.e. we can assume that A× ⊂ A(S).

Let x ∈ C = Bε(x0) and (s′, t′) ∈ BS×T
4r . We define x′ = f(s′, t′) =

tU ((s′, t′), x) and choose some U ′ ∈ T(x′). Suppose φ ∈ H satisfies

f ◦ φ = tU (·, x) ◦ φ = tU ′(·, x′)
and φ((e, e)) = (s′, t′) as in Definition 5.1 (2). By Definition 7.4 we must
have φ(S × {e}) = φS(S) × φT (e) = S × {t′}. We assume in the following
that x′ = f(s′, t′) ∈ A.

By Definition 5.5 (2) and (7.15) we have

[x]A× = A ∩ f(BS×T
4r ) = [x′]A× and

[x′]A(S) = A ∩ tU ′(BS
4r × {e}, x′) = A ∩ tU (φ(BS

4r × {e}), x)

= [x′]A× ∩ f ◦ φ(BS
4r × {e}) = [x]A× ∩ f ◦ φ(BS

4r × {e}).
Assume now additionally that (s′, t′) ∈ Q. We are going to calculate the
intersection of [x′]A(S) ∩ f(Q). For this note first that trivially

Q ∩ φ(BS
4r × {e}) ⊂ Q ∩ (S × {t′}) = BS

rS
× {t′}.

We claim that in fact

Q ∩ φ(BS
4r × {e}) = BS

rS
× {t′}.

So let s̃ ∈ BS
rS

, then (s′, t′), (s̃, t′) ∈ Q ⊂ BS×T
r . Therefore, d

(
(s′, t′), (s̃, t′)

)
<

2r and since φ is an isometry we find φ−1(s̃, t′) ∈ BS
2r × {e}, which shows

the claim. Since x is in the center C of the r, S×T -flower A× we also know
that f(Q) ⊆ [x]A× . Therefore and by (7.12)

[x′]A(S) ∩ f(Q) = f(Q) ∩ f ◦ φ
(
BS

4r × {e}
)

= f
(
Q ∩ φ(BS

4r × {e})
)

= f(BS
rS
× {t′}).
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Since A× ⊆ A(S) the conditional measures µ
A(S)
x′ for x′ ∈ [x]A× are the

conditional measures for µA×x with respect to A(S) (for µ-a.e. x ∈ A). In
particular

µA
×

x =
∫

[x]A×
µ
A(S)
x′ dµA

×
x (x′).

We take the restriction of both sides to f(Q) and get

µA
×

x |f(Q) =
∫

[x]A
µ
A(S)
x′

∣∣
f(Q)

dµA
×

x (x′)

=
∫

[x]A
µ
A(S)
x′

∣∣
f(Q)

(
µ
A(S)
x′ (f(Q))

)−1
∫

1f(Q)(z) dµ
A(S)
x′ (z) dµA

×
x (x′)

=
∫

[x]A

∫
1f(Q)(z)

(
µA(S)

z (f(Q))
)−1

µA(S)
z

∣∣
f(Q)

dµ
A(S)
x′ (z) dµA

×
x (x′)

=
∫

f(Q)

(
µA(S)

z (f(Q))
)−1

µA(S)
z

∣∣
f(Q)

dµA
×

x (z).

Note in the second line that the term (µA(S)
x′ (f(Q)))−1 is only undefined

when µ
A(S)
x′

∣∣
f(Q)

vanishes anyway. In the next line we used that µ
A(S)
z =

µ
A(S)
x′ for µ

A(S)
x′ -a.e. z ∈ [x′]A(S) (µA×x -a.s.). And finally we used that µ

A(S)
x′

are the conditional measures for µA×x and the σ-algebra A(S). ¤
The next lemma is the main step towards Theorem 7.5 and shows that

the conditional measure µU
x,S×T is the product measure of µU

x,S and some
second measure that will be specified later.

Lemma 7.7. Under the assumptions of Theorem 7.5 there exists for almost
every x ∈ U a locally finite measure νU

x on T such that

µU
x,S×T ∝ µU

x,S × νU
x .

Proof. Fix rS , rT > 0, and let r > 0 and Q be as in Lemma 7.6. Since X is
second countable we can find countably many σ-rings as in Lemma 7.6 such
that the union of their centers covers almost all of X (with respect to µ).
Suppose N is a null set so that Lemma 7.6 holds for all x /∈ N and all of
the countably many σ-rings constructed above.

By Proposition 5.6 (2)

tU (·, x)−1
∗ µA

×
x ∝ µU

x,S×T |tU (·,x)−1[x]A×
and (7.16)

tU ′(·, x′)−1
∗ µ

A(S)
x′ ∝ µU ′

x′,S |tU′ (·,x′)−1[x′]A(S)
(7.17)

hold for a.e. x ∈ U , a.e. x′ ∈ U ′, all U,U ′ ∈ T, and all σ-rings constructed
above. Enlarge N to a null set such that the above and Proposition 7.3
holds for x, x′ ∈ U \N and the (S, Isom(S))-space.

Let A×,A(S) be two of the σ-rings with common center C. Let x ∈
U ∩C \N be fixed such that µA×x (N) = 0 (which holds a.e. by the properties
of the conditional measures). We write again f(s, t) = tU ((s, t), x). The idea
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for the proof of the lemma is to start with (7.11) and use f−1∗ as in (7.16)
to push this equality to S × T . The difficulty with this is that we have to
identify the measure f−1∗ µ

A(S)
x′ on S × T . (Note that f uses x as the base

point, so that we cannot apply (7.17) directly.)
Let (s′, t′) ∈ S×T , x′ = f(s′, t′) = tU ((s′, t′), x) ∈ U ′, and y = tU ((s′, e), x).

Suppose φ ∈ H satisfies

f ◦ φ = tU (·, x) ◦ φ = tU ′(·, x′) (7.18)

and φ((e, e)) = (s′, t′) as in Definition 5.1 (2). Then by Definition 7.4 we
must have φ = φS × φT and φ−1(s′, e) = (e, t1) for some t1 ∈ T , and so
y = tU ′((e, t1), x′). By (7.9) we have d(αnjy, αnjx′) → 0 as j →∞ for every
diverging sequence nj ∈ Zk with bounded distance to R+w. We conclude
that (7.1) holds for some Φ ∈ Isom(S) whenever x′ = f(s′, t′) /∈ N , see
Figure 4.

x
x′

U ′

U yf(Q)

Figure 4. The points y = f(s′, e) and x′ = f(s′, t′) belong
to the same T -leaf. Proposition 7.3 implies a strong coinci-
dence of the conditional measures for the S-leaves.

Let Ψ = φS : S → S. It follows similarly that tU ′((s, e), x′) = f ◦φ(s, e) =
tU ((Ψ(s), t′), x) and tU ((Ψ(s), e), x) are in the same T -leaf. Since the T -
leaves are contracted along the direction R+w, this shows that Ψ satisfies
(7.2) and therefore (7.1) holds for Φ = Ψ. It follows that

f−1
∗ µ

A(S)
x′ = φ∗tU ′(·, x′)−1

∗ µ
A(S)
x′ by (7.18)

∝ φ∗
(
µU ′

x′,S |tU′ (·,x′)−1[x′]A(S)

)
by (7.17)

∝ (
(Ψ, t′)∗µU ′

x′,S
)∣∣

φ(tU′ (·,x′)−1[x′]A(S))

∝ (
µU

x,S × δt′)
)∣∣

f−1[x′]A(S)
by (7.1) (7.19)

whenever x′ = f(s′, t′) /∈ N .
We now apply f−1∗ to both sides of (7.11), on the left this leads to a mea-

sure proportional to µU
x,S×T |Q by (7.16). For the measure in the integrant

on the right we use (7.19) and (7.10) to arrive at a measure proportional to
µU

x,S |BS
rS
× δt′ . However, the measure in the integrant of (7.11) (where we

include in the measure the normalizing factor) is a probability measure and
therefore the proportionality constant is independent of x′ = f(s′, t′). This
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shows that

µU
x,S×T |Q ∝

∫

Q

(
µU

x,S |BS
rS
× δt′

)
dµU

x,S×T (s′, t′).

Recall that Q = QrS ,rT . For the measure νrS ,rT defined by

νrS ,rT (A) = µU
x,S×T (BS

rS
×A) for a measurable A ⊆ BT

rT
,

we have shown that

µU
x,S×T |Q ∝ µU

x,S |BS
rS
× νrS ,rT . (7.20)

To conclude the proof of the lemma, we need to extend the above to
S × T . Suppose N is a null set such that (7.20) holds for all rS , rT ∈ N
and all x ∈ U \N . Suppose x ∈ U \N . We check that the measures νrS ,rT

can be naturally extended to a measure ν. It is obvious from the above
definition that νrS ,r′T

= νrS ,rT |BT
rT

whenever r′T < rT . Since µU
x,S×T |QrS,rT

is a (nonzero) product measure, we see furthermore that νr′S ,rT
∝ νrS ,rT

for any two positive r′S < rS . Therefore νU
x (A) =

(
νrS ,rT (BT

1 )
)−1

νrS ,rT (A)

defines a measure νU
x on T independent of rS , rT as long as A ⊆ BT ′

rT
. It

follows that µU
x,T ∝ µU

x,S × νU
x . ¤

The next lemma finishes the proof of Theorem 7.5, the proof follows
closely the second part of the proof of [21, Prop. 6.4].

Lemma 7.8. Under the assumptions of Theorem 7.5 the measure νU
x in

Lemma 7.7 equals µU
x,T a.e.

Proof. We set rS = 1, fix rT > 0, and choose r > 0 such that Q = Q1,rT =
BS

1 ×BT
rT
⊆ BS×T

r . Note that Definition 7.4 and Lemma 7.6 are symmetric in
S and T . So we can apply Lemma 7.6 to S×T and T to find countably many
r, S × T -flowers and σ-rings with T -plaques as atoms, such that the centers
of the former cover almost all of X. If A× and A(T ) are two such σ-rings
with maximal element A, then the decomposition of µA×x into conditional
measures with respect to A(T ) is given by

µA
×

x |f(Q) =
∫

f(Q)

(
µ
A(T )
x′ (f(Q))

)−1
µ
A(T )
x′

∣∣∣
f(Q)

dµA
×

x (x′) for a.e. x ∈ C

by Lemma 7.6, where as before f(s, t) = tU ((s, t), x) and C is the center of
A×.

Fix some x satisfying this, (5.3), and (7.16). Note that Q ⊆ f−1[x]A× .
We conclude from (7.16) that

µU
x,S×T |Q =

∫

Q

(
µ
A(T )
f(s,t)(f(Q))

)−1
f−1
∗ µ

A(T )
f(s,t)

∣∣∣
Q

dµU
x,S×T (s, t),

where we showed equality by evaluating both sides on the set Q (and using
the fact that the measure in the integrant is normalized to be a probability
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measure). Furthermore, this is the decomposition of µU
x,S×T |Q into condi-

tional measures with respect to the σ-algebra BBS
1
× {∅, BT

rT
}.

By Lemma 7.7 we have µU
x,S×T = µU

x,S × νU
x a.e. for some measure νU

x on
T . This shows that

µU
x,S×T |Q =

∫

Q

(
νU

x (BT
rT

)
)−1

δs × νU
x

∣∣∣
BT

rT

dµU
x,S×T (s, t).

Clearly this is also a decomposition of µU
x,S×T |Q into conditional measures

with respect to BBS
1
× {∅, BT

rT
}. Therefore

(
µ
A(T )
f(s,t)(f(Q))

)−1
f−1
∗ µ

A(T )
f(s,t)

∣∣∣
Q

=
(
νU

x (BT
rT

)
)−1

δs × νU
x |BT

rT
for µU

x,S×T -a.e. (s, t) ∈ Q. (7.21)

For the lemma we need to know (7.21) also for (s, t) = (e, e). Here we
use Luzin’s theorem, for every ε > 0 there exists a compact set K ⊆ C \N

with µ(K) > (1 − ε)µ(C) such that µ
A(T )
x′ depends continuously on x′ ∈ K

(using the weak∗ topology on the space of probability measures). It is easy
to see that µ|K has conditional measures proportional to µU

x,S×T |tU (·,x)−1K

with respect to the (S × T, H)-space structure. By Lemma 5.8

(e, e) ∈ supp(µU
x,S×T |tU (·,x)−1K) for a.e. x ∈ K.

Suppose x ∈ K satisfies the above, (7.21), Proposition 5.6 (2), and Lemma 5.8
for the (T, Isom(T ))-space structure. Then µU

x,S×T

(
BS×T

δ ∩ f−1K
)

> 0
for every δ > 0, so there exists a sequence (sn, tn) → (e, e) such that
f(sn, tn) ∈ K and (7.21) holds for these particular values of (s, t). By
continuity

µA(T )
x = lim

n→∞µ
A(T )
f(sn,tn).

Let g : X → [0, 1] be continuous with g(x) = 1 and [x]A× ∩ supp g ⊆
f(Q). By Lemma 5.8

∫
g dµ

A(T )
x > 0. It follows that an = µ

A(T )
f(sn,tn)(f(Q))

cannot converge to zero. We assume without loss of generality that a =
limn→∞ an > 0 exists. Since f is a homeomorphism between Q and f(Q) it
follows from (7.21) that

f−1
∗ µA(T )

x |Q ∝ δe × νU
x |BT

rT
.

However, Proposition 5.6 (2) now shows that

µU
x,T |BT

rT
∝ νU

x |BT
rT

.

Varying rT shows the lemma and Theorem 7.5. ¤
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8. The coarse Lyapunov decomposition and the product
structure of the conditional measure

8.1. The abelian case. The results from the last section can be applied for
higher rank actions as follows. Although we will not use the particular case
of this section in the remainder of this paper, we start with the case where
S0, . . . , S` are second countable, locally compact, abelian groups with trans-
lation invariant metrics dSi(·, ·) for i = 0, . . . , `. We define T = S0× · · ·×S`

and use dT (t, t′) = maxi dSi(ti, t
′
i) as its metric. We will give conditions

which force the conditional measures µx,T to be a product measure of con-
ditional measures. This situation appears for instance for a Zk-action on
Tm by commuting automorphisms where the spaces Si are (certain sums
of) common eigenspaces of the defining matrices (see [18] and [8]). This
illustrates how we will use Theorem 7.5 in the more complex situation of
homogeneous spaces.

Definition 8.1. Let T = S0 × · · · × S` be as above, let X be a T -space,
and let α be a Zk-action which preserves the T -leaves and the induced Si-
leaves for i = 0, . . . , `. We say T = S0 × · · · × S` is the coarse Lyapunov
decomposition of T with central subspace S0 and coarse Lyapunov subspaces
Si for i = 1, . . . , ` if there exist linear functionals λi for i = 1, . . . , ` with the
following properties:

(1) For T ′ = {e} × S1 × · · · × S` the T ′-leaves are uniformly contracted
by some αn, n ∈ Zk.

(2) Every αn, n ∈ Zk acts isometrically on the S0-leaves
(3) The functionals λi and λj are linearly independent for 1 ≤ i < j ≤ `.
(4) For 1 ≤ i ≤ ` the induced Si-space has λi as its coarse Lyapunov

weight (in the sense of Definition 7.1).

Note that Condition (4) implies that αnj acts asymptotically isometrically
on Si for any sequence nj with λi(nj) → 0 for j → ∞. Unfortunately, this
means that the above definition and the theorem below do not apply to the
most general case of actions by commuting automorphisms of Tm together
with sums of generalized eigenspaces. A separate argument is needed in this
case to move from the eigenspaces to the generalized eigenspaces, see also
[16].

We can now formulate our first generalization of [21, Prop. 6.4] to higher
rank actions and the coarse Lyapunov decomposition.

Theorem 8.2. Suppose T = S0×· · ·×S` is the product of second countable,
locally compact, metric, and abelian groups, and let the metric dT on T be
defined as above. Let X be a T -space. Let α be a Zk-action that preserves
the T -leaves. Suppose T has a coarse Lyapunov decomposition with central
subspace S0 and coarse Lyapunov subspaces Si for i = 1, . . . , `. Let µ be an
α-invariant measure with conditional measures µx,T . Then for a.e. x

µx,T = µx,S0 × · · · × µx,S`
.
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By assumption the leaves corresponding to T ′ = {e} × S1 × · · · × S` are
contracted by some αn which acts isometrically on the (S0, Isom(S0))-leaves.
By Theorem 7.5 we immediately get that µx,T = µx,S0 × µx,T ′ a.e. The fact
µx,T ′ = µx,S1 × · · · × µx,S`

follows similarly by induction. For this we only
need to find some w ∈ Rk satisfying the assumptions of Theorem 7.5 for one
of the remaining Sj (with 1 ≤ j ≤ `).

Lemma 8.3. Suppose λi for i = 1, . . . , ` are pairwise linearly independent
linear functionals on Rk such that there exists some n ∈ Zk with λi(n) < 0
for i = 1, . . . , `. Then there exist an index i and a vector w ∈ Rk such that
λi(w) = 0 and λj(w) < 0 for j 6= i.

Proof. Define the convex set

C =
{
λ ∈

∑

i∈E

R+λi : λ(n) = −1
}

of linear functionals. Then C has at least one extremal point.
Let i be such that 1

|λi(n)|λi is an extremal point of C. Then there exists
a linear functional on C – which we identify with some w ∈ Rk – such that
λ(w) < 0 for all λ ∈ C \ {λi} and λi(w) = 0. This proves the lemma. ¤
Proof of Theorem 8.2. We already showed that we only have to consider
the case of T ′ = S1 × · · · × S`. By Lemma 8.3 we can find some i and
w ∈ Rk with λi(w) = 0 but λj(w) < 0 for j 6= i. We assume without loss of
generality (using that T is a direct product) that i = 1. Theorem 7.5 shows
µx,T ′ = µx,S1 × µx,T ′′ where T ′′ = S2 × · · · × S`. Induction concludes the
proof. ¤

8.2. The homogeneous case and invariance resulting from non-
commuting foliations. In this section we show that the conditional mea-
sures with respect to an m-stable subgroup are product measures. This is
similar to the result obtained above, but if the different coarse Lyapunov
subgroups of H do not commute with each other we are able to obtain some
invariance of the conditional measure.

Theorem 8.4. Let X be a GS-space and suppose the Zk-action α preserves
the GS-leaves. Assume that the adjoint action A on the S-Lie algebra gs is
semisimple. Let H = exp h be an m-stable subgroup of GS, let HΛ1 , . . . , HΛ`

be the different coarse Lyapunov subgroups of H, and let φ : HΛ1 × · · · ×
HΛ` → H be defined by φ(g1, . . . , g`) = g1 · · · g`. Then any α-invariant
probability measure µ on X satisfies

µH
x ∝ φ∗

(
µΛ1

x × · · · × µΛ`
x

)
a.e., (8.1)

where µH
x and µΛi

x are the conditional measures for the H-space and the
HΛi-space X for i = 1, . . . , ` respectively.

Notice that we did not give any restrictions on the order of the coarse
Lyapunov subgroups. A priori the measure on the right of (8.1) depends on
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the order. As we will see later this independence is related to the following
theorem.

Theorem 8.5. Let X, α, and H be as in Theorem 8.4. For any α-invariant
probability measure µ there exist for a.e. two subgroups

Hx ⊆ Px ⊆ H

with the following properties:

(1) µH
x is supported by Px.

(2) µH
x is left- and right-invariant under multiplication with elements of

Hx.
(3) Hx and Px allow a weight decomposition, see Definition 6.1.
(4) Hx is a normal subgroup of Px and any elements g ∈ Px ∩HΛr and

h ∈ Px ∩HΛs of different coarse Lyapunov subgroups (r 6= s) satisfy
that gHx and hHx commute with each other in Px/Hx.

(5) µΛi
x is left- and right-invariant under multiplication with elements of

Hx ∩HΛi for i = 1, . . . , `.

Note that in the case of commutative coarse Lyapunov subgroups HΛi for
i = 1, . . . , ` the statement in (4) is equivalent to Px/Hx being commutative
as well.

8.3. Theorem 8.4 for a particular order of the subgroups. In this
section we prove by induction the following weaker version of Theorem 8.4.

Lemma 8.6. There exists a reordering of HΛ1 , . . . , HΛ` such that (8.1)
holds for that order.

Proof. Suppose we already showed the lemma for less than ` coarse Lya-
punov subgroups. Let λi be Lyapunov weights with Λi = (0,∞)λi for
i = 1, . . . , `. By Lemma 8.3 we can reorder the weights such that there
exists w ∈ Rk with λ1(w) = 0 and λj(w) < 0 for j > 1. Therefore
h′ = hΛ2 + · · ·+ hΛ` satisfies [h, h′] ⊆ h′ by Proposition 4.9, and H ′ = exp h′

is an m-stable normal subgroup of H. Let φ′ : HΛ2×· · ·×HΛ` → H ′ be the
corresponding product map. By the inductive assumptions we can reorder
these weights and obtain (8.1) for µH′

x .
Let ψ : HΛ1×H ′ → H be defined by ψ(g1, g

′) = g1g
′. Let d be the metric

on H found in Section 4.5. Recall that d is right invariant (as required in
Definition 5.3). Lemma 4.14 shows that λ1 is a coarse Lyapunov weight of
the HΛ1-space with respect to α in the sense of Definition 7.1. Furthermore,

d(θnj (g′), θnj (h′)) → 0

if g′, h′ ∈ H ′ and nj ∈ Zk diverges with bounded distance to R+w. By
Theorem 7.5 this shows that µH

x ∝ ψ∗(µΛ1
x × µH′

x ) a.e., and together with
the inductive assumptions the lemma follows. ¤
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8.4. The proof of Theorem 8.5. Note that the order of the subgroups is
not important for Theorem 8.5, so that we can use here the order found in
Lemma 8.6.

Lemma 8.7. For a.e. x and r 6= s we have
(
Rg−1h−1gh

)
∗µ

H
x = µH

x (8.2)

whenever g ∈ suppµΛr
x and h ∈ suppµΛs

x . Here Rg : H → H is right
multiplication Rg(g′) = g′g.

Recall that Lemma 5.10 states that a.s. the notions of affine invariance
and invariance of the conditional µH

x are equivalent.

Proof. Let N be a null set such that Proposition 5.6 (3), Lemma 5.8 and
5.10, Proposition 7.3 (for several vectors w specified below), and Lemma 8.6
hold for the conditional measures µΛi

x for i = 1, . . . , `. Again by Proposi-
tion 5.6 (3) we can ensure that

µH
gx ∝ (R−1

g )∗µH
x (8.3)

holds for any x, gx /∈ N where g ∈ H. By Lemma 5.9 we can assume that
µΛr

x ({g : gx ∈ N}) = 0 for all x /∈ N and similarly for µΛs
x .

Let g, h ∈ H be as in the lemma. Then µΛs
x

(
BΛs

ε (h)
)

for any ε > 0
(where BΛs

ε (h) denotes the ε-ball around h ∈ HΛs). Therefore there exists
a sequence hn ∈ HΛs with hn → h and hnx /∈ N . Note that the conditional
measure for the HΛs-leaves change

(R−1
hn

)∗µΛs
x ∝ µΛs

hnx

according to Proposition 5.6 (3), while µΛi
hnx = µΛi

x for i 6= s. The latter
follows from Proposition 7.3 if we use some wi ∈ Rk satisfying λi(wi) = 0
and λs(wi) < 0. In particular g ∈ suppµΛr

hnx and again there exists a
sequence gn ∈ HΛr with gn → g and yn = gnhnx /∈ N . As before we see
that

(R−1
gn

)∗µΛr
x ∝ µΛr

yn
and (R−1

hn
)∗µΛs

x ∝ µΛs
yn

. (8.4)

Since e ∈ suppµΛr
x by Lemma 5.8, this implies that g−1

n ∈ suppµΛr
yn

and
similarly h−1

n ∈ suppµΛs
yn

. Just as above we now construct two sequences
g′n ∈ HΛr and h′n ∈ HΛs such that g′n → g−1, h′n → h−1, h′nyn /∈ N , and
zn = g′nh′nyn /∈ N . The analogue to (8.4) is now

(R−1
g′n

)∗µΛr
yn
∝ µΛr

zn
and (R−1

h′n
)∗µΛs

yn
∝ µΛs

zn
. (8.5)

For i 6= r, s it follows similarly that

µΛi
x = µΛi

hnx = µΛi
yn

= µΛi
h′nyn

= µΛi
zn

. (8.6)

We claim that this implies that µΛi
zn

converges (possibly after going to a
subsequence) to a measure proportional to µΛi

x for any i. For i 6= r, s this
is trivial because of (8.6). For i = r it follows from (8.4)–(8.5) that µΛr

zn
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is proportional to (R−1
g′ngn

)∗µΛr
x . By Proposition 5.6 (1) the proportionality

constant is just
(
µΛr

x

(
BΛr

1 g′ngn
))−1. Since g′ngn → e we have

BΛr

1/2 ⊆ BΛr
1 g′ngn ⊆ BΛr

2

for large enough n, and so all of the proportionality constants allow a uni-
form bound. Therefore, we can choose a subsequence and achieve that µΛi

zn

converges to a measure proportional to µΛi
x by Lemma 6.3. The case i = s

is similar.
By Lemma 8.6 we know that

µH
zn
∝ φ∗

(
µΛ1

zn
× · · · × µΛ`

zn

)
.

As before the proportionality constants are bounded, so that µH
zn

converges
(possibly after going to a subsequence) to a measure proportional to µH

x .
However, by (8.3)

µH
zn
∝ (

R−1
g′nh′ngnhn

)
∗µ

H
x ,

where the right hand side converges to
(
R−1

g−1h−1gh

)
∗µ

H
x . We conclude that

µH
x ∝ (

R−1
g−1h−1gh

)
∗µ

H
x ,

but by Lemma 5.10 the proportionality constant has to equal one. ¤
We will now strengthen Lemma 8.7 using the Lie algebra h. For this it

will be convenient to say that u ∈ hΛ is a support vector (for the coarse
Lyapunov weight Λ) if expu ∈ suppµΛ

x . Moreover, v is a weight component
(of a support vector for Λ) if u =

∑
λi∈Λ ui with expu ∈ suppµΛ

x , ui ∈ hλi ,
λi 6= λj for i 6= j, and v = ui for some i. We will consider [·, ·]-monomials w
in weight components, and say that w is mixed if it is defined using weight
components for at least two different coarse Lyapunov weights.

Proposition 8.8. Let X, α, and H be as in Theorem 8.4. Then for a.e.
x ∈ X the following holds. Suppose w is a mixed [·, ·]-monomial in weight
components. Then (

Rexp(w)

)
∗µ

H
x = µH

x (8.7)
In particular, (

Rexp[u,v]

)
∗µ

H
x = µH

x

whenever u and v are weight components of support vectors for two different
coarse Lyapunov weights.

The following will be useful in the proof of Proposition 8.8.

Lemma 8.9. Every mixed higher order [·, ·]-monomial can be expressed as
a finite linear combination of [·, ·]-monomials of the form w = [v′, v′′] ∈ hζ

such that either
(a) v′ and v′′ are both mixed [·, ·]-monomial, or
(b) v′ ∈ hξ′ is a single weight component of a support vector, v′′ ∈ hξ′′

is a mixed [·, ·]-monomial, and ξ′, ξ′′ are linearly independent.
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Proof. We will use the Jacobi identity (3.1) in the form

[w′, [v′, v′′]] = −[v′, [v′′, w′]]− [v′′, [w′, v′]]. (8.8)

For instance, we can use this (repeatedly if necessary) to write every higher
order monomial as a finite sum of monomials w = [w′, w′′] such that w′ is
a single weight component and w′′ is a monomial in weight components.
Starting with a mixed monomial it is clear that we actually get a sum of
mixed monomials since every term on the right of (8.8) uses all the vectors
w′, v′, v′′ of the original expression. We have two cases to study, either w′′
is mixed or not.

Suppose w′′ = [v′, v′′] is mixed. Let w′ ∈ hζ′ , w′′ ∈ hζ′′ , v′ ∈ hξ′ , and
v′′ ∈ hξ′′ . If ζ ′ and ζ ′′ are linearly independent then w = [w′, w′′] is as in (b).
So assume ζ ′ = cζ ′′ = c(ξ′ + ξ′′) for some c > 0. In this case w′′ has to be a
mixed monomial. If w′′ is a higher order monomial itself we use induction
and assume without loss of generality that w′′ = [v′, v′′] is an expression as
in (a) or (b). In any case we use (8.8) again. If w′′ is as in (a) then it is
clear that both expressions on the right of (8.8) are also as in (a). If w′′ is
as in (b) then ξ′ and ξ′′ are linearly independent and v′′ is mixed. Therefore
[v′, [v′′, w′]] is as in (b) since ξ′ and ξ′′ + ζ ′ = (1 + c)ξ′′ + cξ are linearly
independent, and [v′′, [w′, v′]] is as in (a) since ζ ′ = cξ′ + cξ′′ and ξ′ are
linearly independent. If w′′ is a degree two monomial then it follows quite
similarly that both terms on the right of (8.8) are as in (b).

Suppose w′′ = [v′, v′′] is not mixed, i.e. w′′ is defined using weight compo-
nents in hR

+ζ′′ . Then ζ ′ and ζ ′′ are linearly independent since w = [w′, w′′]
is mixed and w′ is a single weight component. Applying (8.8) we get two
expressions of the form [v, u] where v is defined using weight components
in hR

+ζ′′ , u ∈ hλ is a mixed monomial, and ζ ′′ and λ are linearly indepen-
dent. If v is a single weight component then [v, u] is as in (b). Otherwise
v = [v1, v2] and we can apply (8.8) (repeatedly if necessary) to get a sum of
expressions as in (b). ¤

Proof of Proposition 8.8. We first prove (8.7) inductively for all possible
choices of weight components for two different coarse Lyapunov weights. We
start by describing the inductive argument, which at its heart uses Propo-
sition 6.2 and Lemma 8.7. We fix some inner product on Rk and use it
to identify Lyapunov weights λ with elements of Rk and coarse Lyapunov
weights Λ with rays in Rk. In this sense we can speak about the angle
between two coarse Lyapunov weights. Choose some m ∈ Zk such that
ξ(m) > 0 for all weights ξ of H. Our inductive assumption is that (8.7)
already holds for mixed [·, ·]-monomials w ∈ hξ

(i) whenever ξ(m) < t,
(iii) whenever ξ(m) = t and w is defined using weight components for

two coarse Lyapunov weights such that the angle between them is
less than γ.
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Since there are only finitely many weights, both assumptions are trivial for
small enough t resp. for any t and small enough γ. For the inductive step
we assume that ξ satisfies ξ(m) = t and that w ∈ hξ is defined using weight
components for two different coarse Lyapunov weights Λ1 and Λ1 such that
the angle between them is equal to γ.

We first show (8.7) for every higher order [·, ·]-monomial expression w.
By Lemma 8.9 we can write w as a linear combination of [·, ·]-monomial
expressions v = [v′, v′′] of special natural. By Proposition 6.2 it is enough
to show (8.7) for each of these expressions separately. Here we use mainly
the inductive assumptions.

Suppose v is as in Lemma 8.9 (a). Then right multiplication by exp(v′)
and exp(v′′) fixes µH

x by the inductive assumption in (i), and v = [v′, v′′]
satisfies the same by Proposition 6.2.

Assume now v is as in Lemma 8.9 (b). Again by (i) (Rexp(v′′))∗µH
x = µH

x ,
and so exp(v′′) ∈ suppµH

x (using that e ∈ suppµH
x by Lemma 5.8). However,

since µH
x is a product measure by Lemma 8.6 we conclude from this that

v′′ ∈ hζ′′ is a support vector. Therefore v = [v′, v′′] is a [·, ·]-monomial
expression in the weight components v′ and v′′ of support vectors. Note that
v′′ is defined using weight components for Λ1 and Λ2 and so ζ ′′ ∈ Λ1 + Λ2.
Therefore, the angle between R+ζ ′′ and Λi for i = 1, 2 is less than the angle
between Λ1 and Λ2. By the assumption in (ii) we conclude that v = [v′, v′′]
satisfies (8.7) .

It remains to consider the quadratic case w = [u′, v′] ∈ hξ where u′ ∈ hλ

and v′ ∈ hζ are weight components of support vectors u and v for different
coarse Lyapunov weights R+λ and Rζ. By Lemma 8.7 we already know
that w̃ = (−u) ∗ (−v) ∗ u ∗ v satisfies (8.7). By Proposition 6.2 this already
shows that the weight component w̃ξ ∈ hξ of w̃ corresponding to the weight
ξ satisfies (8.7). By (3.2)

u ∗ v = u + v +
1
2
[u, v] + · · ·

(−u) ∗ (−v) = −u− v +
1
2
[u, v] + · · ·

and
w̃ = (−u) ∗ (−v) ∗ u ∗ v = [u, v] + . . . , (8.9)

where the dots indicate other higher order [·, ·]-monomial expressions in u
and v with both appearing at least once in every expression. We can use this
and Proposition 4.9 to find a similar expression for the weight component

w̃ξ = [u′, v′] + . . . ∈ hx ∩ hξ. (8.10)

where ξ = λ + ζ and the dots indicate various other higher order [·, ·]-
monomial expressions in different weight components of u and v. Note that
w = [u′, v′] is the only quadratic term here, since ξ = ζ ′ + ζ ′′ can only be
written in this way as a linear combination of ζ ′ and ζ ′′. We already showed
that w̃ξ and all higher order terms in (8.10) (indicated by the dots) satisfy
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(8.7). This implies the same for w by Proposition 6.2 and concludes the
induction in the case of two coarse Lyapunov weights.

The case where w is defined using weight components to more than two
coarse Lyapunov weights follows again by induction. In this case w is nec-
essarily a higher order monomial, so we can use Lemma 8.9. Case (a) again
follows from Proposition 6.2 and case (b) follows from the case of two coarse
Lyapunov weights considered above. ¤

Our last preparation to the proof of Theorem 8.5 is the next lemma.

Lemma 8.10. Suppose ν is a locally finite measure on H, and suppose
H ′ ⊆ P ′ ⊆ H are subgroups allowing a weight decomposition. If supp ν ⊆ P ′,
H ′ is normal in P ′, and right multiplication with elements of H ′ leaves ν
invariant, then the same is true for left multiplication. The same implication
holds for reversed sides.

Proof. Note first that the Haar measure m′ on H ′ is bi-invariant since H ′ is
a nilpotent S-Lie group. Fix some R > 0 and restrict ν to BP ′

R . Since this
restriction is finite, there exist conditional measures νAg for the σ-algebra

A =
{
A ∈ B : A ⊆ BP ′

R , AH \A ⊆ P ′ \BP ′
R

}
.

In other words, A contains all measurable subsets A ⊆ BP ′
R that are intersec-

tions of BP ′
R and unions of left cosets gH ′. Because of right invariance of ν

the conditional measures νg are almost surely proportional to the restriction
of the Haar measure on gH ′. Since H ′ is normal in P ′, left multiplication by
h ∈ H ′ maps gH ′ into itself and leaves the Haar measure on gH ′ invariant.
Therefore νg(hB) = νg(B) almost surely whenever B, hB ⊆ BP ′

R . This im-
plies ν(hB) = ν(B). Since R > 0 was arbitrary, it follows that ν is invariant
under left multiplication by elements of H ′. ¤

Proof of Theorem 8.5. Suppose x satisfies Lemma 8.6 and Proposition 8.8.
Let

px =
∑

σ∈S

〈
wσ : w is a [·, ·]-monomial in weight components

〉
Qσ

,

where wσ ∈ hσ for every σ ∈ S and w =
∑

σ wσ. It is clear that the above
linear hull over Qσ is a Lie algebra over Qσ. Therefore, Px = exp px is a sub-
group of H that allows a weight decomposition. Suppose g = φ(g1, . . . , g`) ∈
suppµH

x . Since µH
x ∝ φ∗(µΛ1

x × · · · × µΛ`
x ) it follows that gi ∈ suppµΛi

x for
i = 1, . . . , `. Therefore log gi is a support vector and gi ∈ Px for all i, which
shows that g ∈ Px.

We define hx similarly but use only mixed [·, ·]-monomials w as in Propo-
sition 8.8, i.e. we require that w is defined using support vectors to at least
two different Lyapunov weights. Again Hx = exp hx is a subgroup of Px

which allows a weight decomposition. Moreover, it follows at once that
[hx, px] ⊆ hx and therefore Hx is a normal subgroup of Px by (3.2). By



50 MANFRED EINSIEDLER AND ANATOLE KATOK

Proposition 8.8 µH
x is invariant under multiplication from the right by ele-

ments of Hx, by Lemma 8.10 the same is true for multiplication from the
left also.

Suppose now g ∈ Px ∩ HΛr and h ∈ Px ∩ HΛs with r 6= s. Then
[log(g), log(h)] ∈ hx and the same holds similarly for all higher order [·, ·]-
monomials. By (8.9) this shows that g−1h−1gh ∈ Hx, in other words that
gHx and hHx commute with each other in Px/Hx.

For the last statement suppose first i = 1. Since µH
x ∝ φ∗(µΛ1

x ×· · ·×µΛ`
x )

is left-invariant by multiplication with elements of Hx ∩HΛ1 , it follows that
the same is true for µΛ1

x . Furthermore, µΛ1
x is supported by Px ∩ HΛi and

Hx ∩HΛ1 is normal in this subgroup. Lemma 8.10 implies invariance under
multiplication from the right for i = 1. Let H ′ = HΛ2 · · ·HΛ` . Then we
show similarly that µH′

x is invariant under multiplication from the right by
elements of Hx ∩H ′, and secondly that the same is also true from the left
by Lemma 8.10. Induction completes the proof. ¤

8.5. The proof of Theorem 8.4. Recall that we already showed a re-
stricted version of Theorem 8.4 in Lemma 8.6. The first lemma we need
for the extension is the following generalization of the fact that the Haar
measure on H is the image of the Haar measure on its Lie group h = log H
under the exponential map exp : h → H.

Lemma 8.11. Let H ′ ⊆ P ⊆ H be subgroups that allow weight decomposi-
tions. Suppose that H ′ is a normal subgroup of P . Let ν be a locally finite
measure on P and suppose that ν is right-invariant by multiplication with
elements of H ′. Then p = p̃ ⊕ h′ for some closed subgroup p̃ ⊆ p of the
Lie algebra p = log P where h′ = log H ′. In that decomposition of p we have
log∗ ν = ν̃×mh′ for some locally finite measure ν̃ on p̃ and the Haar measure
mh′ of h′.

Proof. Let p̃ =
∑

σ∈S p̃σ where p̃σ ⊆ pσ is a linear complement of h′σ ⊆ pσ.
Suppose H is m-unstable.

We claim that νp = log∗ ν is invariant under translation by elements of
h′. If we normalize mh′ such that mh′(B

h′
1 ) = 1, then it is easy to see that

the claim implies that νp = ν̃ × mh′ where ν̃(A) = νp̃(A + Bh′
1 ) for any

measurable A ⊆ p̃.
For any weight λ such that λ(m) is maximal, we have [v, p] = 0 for any

v ∈ hλ. If additionally v ∈ h′, then w 7→ w ∗ v = w + v preserves νp.
Suppose now the claim has been shown for all vectors v ∈ h′ ∩ hξ whenever
ξ(m) > r, and let v ∈ h′ ∩ hλ with λ(m) = r. Let h≥r =

∑
ξ:ξ(m)≥r h′ ∩ hξ

and h<r =
∑

ξ:ξ(m)<r h′ ∩ hξ. Then p = (p̃ + h≥r) ⊕ h<r and as above we
already know that νp = ν≥r ×mh<r for some measure ν≥r on p + h≥r. By
assumption w 7→ w ∗ v preserves νp. By (3.1) w ∗ v = w + v + 1

2 [w, v] + · · ·
where [w, v], . . . ∈ h<r since H ′ ⊆ P is a normal subgroup. Proposition 4.9
shows that the additional terms can be viewed as a shear along the directions
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in h<r. It is easily checked that this does not affect the measure, so that νp

is in fact invariant under translation by v. ¤
Proof of Theorem 8.4. By Lemma 8.6 we already know that the theorem
holds for a particular order of the coarse Lyapunov subgroups. So suppose
we have them in this order and let π be a permutation of {1, . . . , `}. Then
we wish to show that µH

x ∝ (φπ)∗(µ
Λπ(1)
x × · · · × µ

Λπ(`)
x ), where

φπ : HΛπ(1) × · · · ×HΛπ(`) → H

is the homeomorphism defined by φπ(gπ(1), . . . , gπ(`)) = gπ(1) · · · gπ(`).
Let

χ : HΛ1 × · · · ×HΛ` → HΛ1 × · · · ×HΛ`

be the homeomorphism that satisfies χ(g1, . . . , g`) = (g′1, . . . , g′`) if and only
if g′1 · · · g′` = gπ(1) · · · gπ(`). Then the theorem follows if we know that χ

preserves µΛ1
x × · · · × µΛ`

x . To see this let ν = µΛ1
x × · · · × µΛ`

x , let νπ =
µ

Λπ(1)
x × · · · × µ

Λπ(`)
x , and let

π̂ : HΛ1 × · · · ×HΛ` → HΛπ(1) × · · · ×HΛπ(`)

be the map that permutes the coordinates according to π. Then π̂∗ν = νπ

and φπ ◦ π̂ = φ ◦ χ. So if χ∗ν = ν, we conclude that

(φπ)∗νπ = (φπ ◦ π̂)∗ν = (φ ◦ χ)∗ν = φ∗ν ∝ µH
x

as claimed in Theorem 8.4.
Suppose χ(g1, . . . , g`) = (g′1, . . . , g′`) where gi, g

′
i ∈ Px ∩ HΛi for i =

1, ldots, `. By Theorem 8.5 (4) we already know that giHx = g′iHx for
i = 1, . . . , `. Moreover, it follows from (3.2) and Proposition 4.9 that the
weight components to any weight λ satisfy

(log(g′i))
λ = (log(gi))λ + · · · ,

where the dots indicate [·, ·]-monomials that depend only on the weight
components log(gj)ξ for ξ(m) < λ(m) and at least two different j (assuming
that H is m-unstable). Therefore all of the additional terms belong to
hx = log Hx, so the map induced by χ on px is just a shear along the
subgroup hx.

We apply Lemma 8.11 for each of the coarse Lyapunov subgroups HΛi and
the measure µΛi

x which by Theorem 8.5 (5) is invariant under multiplication
from the right by elements of Hx∩HΛi . Then the logarithmic image log∗ µΛi

x

is invariant under translation by elements of hx ∩ hΛi . Therefore and from
the description of χ above, it follows that χ preserves ν as claimed. ¤

9. Linking conditional measures with entropy, and the high
entropy case for rigidity of measures

9.1. Volume decay and entropy. In this section we give a formula relat-
ing entropy and conditional measures. We will use and slightly reformulate
the results from [25, Sect. 9].
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Lemma 9.1. Let X be a GS-space for an S-Lie group GS. Let α be a Zk-
action on X that preserves the GS-leaves (as in Definition 3.1), and let θ
be the corresponding Zk-action by automorphisms of GS. Assume that the
adjoint action A on the S-Lie algebra gS is semisimple. Let H ⊂ GS be an
m-stable subgroup for some m ∈ Zk (as in Definition 4.10). Then for any
α-invariant probability measure µ on X the limit

volµ(αm,H, x) = − lim
n→∞

log µH
x

(
θnm(BH

1 )
)

n

exists for a.e. x ∈ X. If furthermore µH
x is supported by a subgroup Px ⊆ H

that allows a weight decomposition, then

volµ(αm,H, x) ≤ mod(αm, Px) = −
∑

σ∈S

∑

λ

λ(m) dimQσ

(
px ∩ hλ

σ

)
(9.1)

for a.e. x ∈ X. Here px = log Px and λ are all possible weights of H.

We call the expression volµ(αm,H, x) volume decay entropy at x – it
can be thought of as a combination of the dimension of µH

x at x and the
contraction rates of θm (see Ledrappier-Young’s entropy formula [20]). In
case Px is invariant under θ, mod(αm, Px) is the negative logarithm of the
module of the restriction of θm to Px. More generally, there exist c1, c2 > 0
such that

c1 ≤ mPx

(
Px ∩ θnm(BH

1 )
)
en mod(αm,Px) ≤ c2

where mPx is the Haar measure of Px.

Proof. Let f(x) = µH
x (θm(BH

1 )). Then (5.6) and Proposition 5.6 (1) show
that

f(α−jmx) = µH
α−jmx

(
θm(BH

1 )
)

=
µH

x

(
θ(j+1)m(BH

1 )
)

µH
x

(
θjm(BH

1 )
)

for a.e. x and all j ∈ Z, and so

−
n−1∑

j=0

log f(α−jmx) = − log µH
x

(
θnm(BH

1 )
)
.

Furthermore, − log f(x) ≥ 0 and so

− 1
n

log µH
x

(
θnm(BH

1 )
) → volµ(αm,H, x) a.e. (9.2)

by the ergodic theorem, where volµ(αm,H, ·) : X → [0,∞] is measurable.
By Luzin’s theorem there exists a compact set K with measure almost

equal to one such that vol(αm,H, x) in (9.2) exists and is continuous for
x ∈ K. Furthermore, we can assume by Proposition 5.6 (3) and Lemma 5.9
that

(Rg)∗µH
gx ∝ µH

x (9.3)

holds for x ∈ K and µH
x -a.e. g ∈ H. We claim that every x ∈ K with

µH
x ({g ∈ BH

δ : gx ∈ K}) > 0 for every δ > 0 satisfies (9.1) if µH
x is supported
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by Px. We show this by showing that gx satisfies (9.1) for µH
x -a.e. g ∈ BH

1 .
The claim then follows by continuity.

Let ε ≥ 0, let n be a positive integer, and define

Mε =
{
g ∈ BH

1 : volµ(αm,H, gx) > mod(α, Px) + ε
}

and

Mε,n =
{
g ∈ BH

1 : − 1
n

log µH
x

(
θnm(BH

1 )g
)

> mod(α, Px) + ε
}
.

Let g ∈ Mε such that (9.2) and (9.3) hold for gx. Then µH
x (Ag) = CµH

gx(A)
for some C > 0 and all measurable A ⊆ H. Therefore,

− 1
n

log µH
x (θnmBH

1 g) → volµ(αm,H, gx)

and g ∈ Mε,n for large enough n.
Fix for every weight λ a basis vλ

1 , . . . , vλ
d(λ) of px ∩ hλ∞ and let

Dn = exp
(∑

λ

d(λ)∑

i=1

eλ(nm)[−δ, δ)vλ
i +

∑

λ

B
hλ

Sf

eλ(nm)δ

)
.

Then for small enough δ (independently of n) the set Px ∩ θnm
(
BH

1

)
con-

tains DnD−1
n . It is easy to find a partition of Px consisting of right trans-

lates Dng for g in some index set I. Since the Haar measure of Px is the
image of the Haar measure of px (see Lemma 8.11), we have mPx(Dn) =
e−n mod(αm,Px)mPx(D1) for all n. Let I ′ = {g ∈ I : Dng ⊆ BPx

2 }, then
BPx

1 ⊆ ⋃
g∈I′ Dng ⊆ BPx

2 for large enough n. Therefore,

|I ′| ≤ cen mod(αm,Px) with c =
mPx(BPx

2 )
mPx(D1)

.

Furthermore, let J = {g ∈ I ′ : Dng ∩ Mε,n 6= ∅}. If g ∈ J and h ∈
Dng ∩Mε,n, then

µH
x

(
θnm(

BH
1

)
h
)

< e−n mod(αm,Px)e−nε

by definition of Mε,n. Clearly Dng ⊆ DnD−1
n h ⊆ θnm(BH

1 )h, and using the
above estimate for every g ∈ J we obtain µH

x (Mε,n) < ce−nε. Therefore

µH
x (Mε) ≤ µH

x

( ∞⋃

`=n

Mε,`

)
<

ce−nε

1− e−ε

which shows that Mε is a null set for every ε > 0. Therefore, µH
x (M0) = 0

as claimed. ¤
Definition 9.2. Let H be as above. A σ-algebra A of Borel subsets of X
is subordinate to H if A is countably generated, for every x ∈ X the atom
[x]A of x with respect to A is contained in the leaf Hx, and for a.e. x

BH
ε x ⊆ [x]A ⊆ BH

ρ x for some ε > 0 and ρ > 0.

A σ-algebra A is m-decreasing if α−mA ⊆ A.
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Lemma 9.3. Assume in addition to the assumptions of Lemma 9.1 that A
is an m-decreasing σ-algebra that is subordinate to H. Then

Hµ(A|α−mA) =
∫

volµ(αm,H, x) dµ.

Proof. Recall that Hµ(A|α−mA) =
∫

Iµ(A|α−mA)(x) dµ and that

Iµ(A|α−mA)(x) = − log µα−mA
x ([x]A) = − log

µH
x ({g : gx ∈ [x]A})

µH
x ({g : gx ∈ [x]α−mA})

where we used Proposition 5.6 (2) in the last equation. We define k(x) =
µH

x ({g : gx ∈ [x]A}). It is easy to check that k is measurable. By (5.6)

k(αm(x)) = µH
αm(x)({g : gαm(x) ∈ [αm(x)]A})

= µH
x ({θ−mg : gαm(x) ∈ [αm(x)]A})µH

αm(x)(θ
mBH

1 )

= µH
x ({h : θm(h)αm(x) ∈ [αm(x)]A})f(αm(x))

= µH
x ({h : hx ∈ [x]α−mA})f(αm(x)),

where f is as in the proof of Lemma 9.1. Therefore

Iµ(A|α−mA)(x) = − log k(x) + log k(αmx)− log f(αmx)

and

1
n

n−1∑

j=0

Iµ(A|α−mA)(αjmx) =
1
n

(log k(αnmx)− log k(x))− 1
n

n−1∑

j=0

log f(αjmx).

Here the left hand side converges to a measurable function whose integral is
Hµ(A|α−mA). The sum on the right converges to volµ(αm, H, x) by (9.2).
For the remaining two terms on the right Poincarè recurrence shows that
for a.e. x the difference is close to zero for arbitrarily large n. The lemma
follows. ¤
Proposition 9.4. Let GS be an S-Lie group, let Γ ⊂ GS be a discrete
subgroup, and let X = GS/Γ. Let α be an algebraic Zk-action on X that
is either defined by left translation on X or induced by automorphisms of
GS. Assume that the adjoint action on the Lie algebra gS is semisimple.
Fix some m ∈ Zk and let H be the maximal m-stable subgroup of GS. Then

hµ(αm) =
∫

volµ(αm,H, x) dµ

for any α-invariant probability measure on X. If additionally µ is α-ergodic,
then

hµ(αm) = volµ(αm,H, x)
for a.e. x ∈ X.

Proof. For the second statement it is enough to check that volµ(αm,H, x) =
volµ(αm, H, αnx) whenever x satisfies (5.6) for αn. More generally, if C ⊆ H

is measurable and θ`1mBH
1 ⊆ C ⊆ θ`2mBH

1 , then it is easy to check that
volµ(αm, H, x) = limn→∞− 1

n log µH
x (θnmC).
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For the first statement assume first that µ is an αm-invariant and ergodic
measure µ. By [25, Prop. 9.2] there exists a σ-algebra A that is subordinate
to H and is m-decreasing. Moreover, hµ(αm) = Hµ(A|α−mA). Lemma 9.3
shows the first statement of the proposition in the αm-ergodic case.

Let now µ be any α-invariant measure, and let µ =
∫

µEx dµ be the ergodic
decomposition of µ with respect to αm. Here E is the σ-algebra of αm-
invariant sets, see also [21, Sect. 5]. Then hµ(αm) =

∫
W hµEx (αm) dµ. On

the other hand, the first paragraph above shows that volµ(αm,H, x) is αm-
invariant, and therefore E-measurable. This implies that

volµ(αm,H, x) = volµ(αm,H, y) for µEx-a.e. y

holds for a.e. x. Recall that volµ(αm,H, x) is defined by the conditional
measure µH

x . By [21, Cor. 5.4] the conditional measures of the ergodic
components satisfy (µEx)H

y = µH
y for µ-a.e. x and µEx-a.e. y. Suppose x

satisfies all of this and that µEx is an αm-invariant and ergodic measure. Then
we have already shown that hµEx (αm) = volµEx (αm,H, y) = volµ(αm,H, y) for
µEx-a.e. y, which implies that hµEx (αm) = volµ(αm,H, x) by our assumption
on x above. ¤
9.2. Applying Theorem 8.5 in the high entropy case.

Theorem 9.5. Let X be a GS-space for an S-Lie group GS, and let α be
a Zk-action on X that preserves the GS-leaves whose adjoint action on the
Lie algebra gS is semisimple. Let H ⊆ GS be an m-stable subgroup for some
m ∈ Zk. There exists some q < 1 and an S-Lie subgroup H ′ ⊆ H that is
invariant under the induced action θ on GS and is the image under exp of
an S-Lie subalgebra h′ with the following properties for every α-invariant
probability measure µ on X.

(1) If Λ1 6= Λ2, then [log HΛ1 , log HΛ2 ] ⊆ log H ′.
(2) For a.e. x ∈ X if

volµ(αm,H, x) > q mod(αm,H), (9.4)

then µH
x is invariant under left and right multiplication by elements

of H ′.
(3) If (9.4) holds a.e., then µ is invariant under left multiplication by

elements of H ′.

Note that the above does not assume that the adjoint action has no rank
one factors. Because of this, Theorem 9.5 can also be applied in the case of
a higher rank action by automorphisms of a nilmanifold.

Proof. Let

q = max
P

mod(αm, P )
mod(αm,H)

where the maximum is taken over all proper subgroups P ⊆ H that allow
a weight decomposition. Let h′ be the S-Lie ideal of h that is generated
by all [hΛ1 , hΛ2 ] for different coarse Lyapunov weights Λ1 6= Λ2 of h. Then
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H ′ = exp h′ satisfies (1). Suppose x satisfies Theorem 8.5, Lemma 9.1, and
(9.4). Then the choice of q shows that Px = H. Since Hx allows a weight
decomposition, it follows that h′ ⊆ hx = log Hx. This shows (2). The last
statement follows from Proposition 5.7 applied to the H ′-space X. ¤

We conclude the paper by the proofs of our results from Section 2. For
this we will need the following lemma.

Lemma 9.6. Let A be the restriction of an adjoint action to an invariant
S-Lie algebra h, and let V be a subspace of the dual of Rk. Then h′ =
〈hζ , [hζ , hξ] : ζ, ξ /∈ V 〉 is an A-invariant S-Lie ideal in h.

Therefore, if there are no rank one factors, then every element of hλ is a
sum of expressions [v, w] with v ∈ hζ , w ∈ hξ and ζ, ξ /∈ Rλ.

Proof. Clearly h′ =
∑

σ∈S h′ ∩ gσ. Moreover, it is clear that h′ is invariant
under A. It remains to show that [hη, h′] ⊆ h′ for all η.

Suppose first that u ∈ hη and v ∈ hζ with ζ /∈ V . If η /∈ V then [u, v] ∈ h′,
and otherwise [u, v] ∈ hη+ζ ⊆ h′ because η + ζ /∈ V .

Let u ∈ hη, v ∈ hζ , and w ∈ hξ with ζ, ξ /∈ V . Again, if η + ζ + ξ /∈ V
then there is nothing to show. So assume η + ζ + ξ ∈ V . If η /∈ V then
ζ + ξ /∈ Rλ and we are again done. The remaining case is η, η + ζ + ξ ∈ V .
By the Jacobi identity (3.1) [u, [v, w]] = −[v, [w, u]]− [w, [u, v]] and the two
expressions on the right belong to h′ since ζ, ξ + η, ξ, η + ζ /∈ V .

For the final statement let V = Rλ. Then h′ satisfies (1)–(3) of Defin-
ition 2.3. Since there are no rank one factors, we have h′ = h and every
u ∈ hλ belongs to h′. By restricting the sum that expresses u to those terms
that belong to hλ the lemma follows. ¤

Proof of Theorem 2.4. By Proposition 9.4 we have volµ(αm,H−, x) = hµ(αm)
for a.e. x. As in the proof of Theorem 9.5 this implies for large enough q < 1
that Px = H− for a.e. x, where Px is as in Theorem 8.5. Let Λ be a coarse
Lyapunov weight of H−. Then, moreover, µΛ

x is not supported by any proper
subgroup of GΛ

S that allows a weight decomposition. The same applies sim-
ilarly for H+.

We claim for a.e. x that µR
+ζ

x is left invariant under multiplication by
exp(w) for any w ∈ hR

+ζ whenever ζ(m) = 0 but ζ 6= 0. By definition h

is the Lie algebra generated by h− and h+, so every element of hRζ can be
written as a sum of [·, ·]-monomials w in vectors u ∈ h− ∪ h+. Moreover, by
Lemma 9.6 applied to V = {ζ : ζ(m) = 0} it is enough to consider quadratic
monomials w = [u1, u2]. By Proposition 6.2 it is enough to show the claim
for every individual such w.

Let w = [u1, u2] with ui ∈ gλi
S , λ1(m) < 0 and λ2(m) > 0. Then ζ =

λ1+λ2 6= 0, λ1 and λ2 are linearly independent, and we can find n ∈ Zk with
ζ(n), λ1(n), λ2(n) < 0. We apply Theorem 8.5 for the maximal n-stable S-
Lie subgroup H−

n that satisfies log H−
n ⊆ hm. Since µRλi

x are not supported
by any smaller subgroup then GRλi

S , the claim follows for w.
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Now let Λ be a coarse Lyapunov weight such that Λ = Rλ and λ(m) < 0.
Let w ∈ hλ

m. By Lemma 9.6 we can assume that w is (a finite sum of [·, ·]-
binomials) [v1, v2] ∈ hλ

m where vi ∈ h
ξi
m and ξ1, ξ2 /∈ Rλ. Clearly ξ1 and ξ2

are linearly independent and there exists a n ∈ Zk with ξ1(n), ξ2(n), λ(n) <
0. We apply Theorem 8.5 for the maximal n-stable S-Lie group H−

n that
satisfies log H−

n ⊆ hm. If ξ1(m) 6= 0 then we know exp v1 ∈ Px a.e., since
µRξ1

x is not supported by any smaller subgroup. If ξ1(m) = 0 then we already
showed (Lexp(v1))∗µRξ1

x = µRξ1
x which implies that exp v1 ∈ suppµRξ1

x ⊆ Px

a.e. The same holds similarly for v2. It follows that (Lexp(w))∗µΛ
x = µΛ

x a.e.
Since w ∈ hΛ

m and Λ was arbitrary, it follows that µ is left invariant under
H− by Proposition 5.7. ¤

Lemma 9.7. The Lie algebra of Gtw is gtw = Rnog where g = g1×· · ·×gr

is the Lie algebra of G and gi for i = 1, . . . , r are the simple factors of g.
The commutator in gtw is given by

[
(u, a), (v, b)

]
=

(
Dρ(a)(v)−Dρ(b)(u), [a, b]

)
(9.5)

where Dρ : g → sl(n,R) is the derivative of ρ (at the identity element).
Therefore, Dρ(h ∩ g)(Rn) ⊂ h for every Lie ideal h ⊂ gtw.

Proof. Recall that the multiplication in Gtw is defined by

(u, g) · (v, h) = (u + ρ(g)(v), gh).

From this it is easy to check that (9.5) holds. The last statement follows
from (9.5). ¤

Proof of Theorem 2.7. We assume that the twisted Weyl chamber flow αtw

on Xtw has no local rank one factors and acts without center on the torus
fibers (in the sense of Definition 2.5–2.6). Furthermore, let t ∈ Rk be as in
the theorem, so that for every simple factor of G there exists a root λ with
Reλ(α)(t) 6= 0.

We are going to apply Theorem 2.4 for the restriction α̃ of α to some
lattice in Rk that contains t. Since α embeds Rk into a Cartan subgroup
of G and G is semisimple, it follows easily that the adjoint action to α acts
by semisimple elements on gtw. Furthermore, notice that ξ = Re λ(α) are
the Lyapunov weights of α̃ when λ goes through the roots λ of g and the
weights λ of the representation ρ.

Now let h ⊆ gtw be the Lie algebra generated by the t-stable and t-
unstable Lie algebras h− and h+. Let V = {ξ : ξ(t) = 0}. Then h is the Lie
algebra generated by all Lyapunov weight spaces g

ξ
tw with ξ /∈ V . Lemma 9.6

shows h is in fact a Lie ideal in gtw. By the choice of t we have gi ∩ h 6= 0
for all i, and so g ⊂ h since h ⊆ gtw is an ideal. By Lemma 9.7 we have
W = Dρ(g)(Rn) ⊂ h. Clearly W is invariant under Dρ(a) for any a ∈ g.
Since g is semisimple, this implies that there exists an invariant complement
W⊥ ⊂ Rn to W . Clearly Dρ(g)(W⊥) ⊆ W⊥ ∩W = {0} and so Dρ(a) acts
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trivially on W⊥. This contradicts the fact that α acts without center on the
torus fibers unless W⊥ = 0. Therefore, we conclude that h = gtw.

Next we show that the adjoint action on gtw has no rank one factors. So
assume that the Lie ideal h′ ⊂ gtw is as in Definition 2.3. If for some i the
simple Lie algebra gi is not part of h′, then our assumption on α contradicts
Definition 2.3 (3). Therefore, g ⊂ h′ and just as above Rn ⊂ h′ as well which
shows that there are no rank one factors.

Finally, let µ be a measure on Xtw as in Theorem 2.7. Then µ is invariant
under α̃ but possibly not ergodic. However, it is easy to see that almost
all of its ergodic components ν have the same entropy for the element αt,
i.e. hν(αt) = hµ(αt). We choose q as in Theorem 2.4, and conclude that
ν is invariant under H− = exp h− and H+ = exp h+. Let Hν ⊆ Gtw be
the maximal subgroup such that µ is left invariant under all of its elements.
Clearly Hν is closed, and since H−,H+ ⊂ Hν it follows that the Lie algebra
to Hν is gtw. Since Gtw is connected, Hν = Gtw and ν is the Haar measure of
Xtw. Since this holds for almost all ergodic components ν of µ, we conclude
that µ must be the Haar measure of Xtw. ¤

Proof of Theorem 2.8. For m ∈ Zk we define mk+1 = −(m1 + · · · + mk).
Suppose σ = p is a rational prime. Then αm

p is the diagonal matrix with
entries pm1 , . . . , pmk+1 and it is easy to check that

αm
p (Ik+1 + tEab)α−m

p = Ik+1 + pma−mbtEab (9.6)

for every t ∈ Qp and every pair a 6= b of indices between 1 and k + 1.
Similarly αm∞ is the diagonal matrix with entries em1 , . . . , emk+1 and

αm
∞(Ik+1 + tEab)α−m

∞ = Ik+1 + ema−mbtEab (9.7)

for every t ∈ R.
It follows from (9.6) resp. (9.7) that H

(i,j)
σ for 1 ≤ i, j ≤ k+1 and i 6= j are

the coarse Lyapunov subgroups for ασ. We will show that the corresponding
conditional measures µ

σ,(i,j)
x are almost surely invariant under H

(i,j)
σ . Then

the well-known Proposition 5.7 will show that µ is invariant under H
(i,j)
σ , and

the theorem will follow since SL(k +1,Qσ) is generated by these subgroups.
Let ` be another index between 1 and k + 1 (by assumption k ≥ 2) and

choose m ∈ Zk such that mi > m` > mj . Then (9.6) and (9.7) show
that H = H

(i,j)
σ H

(i,`)
σ H

(`,j)
σ is an m-stable subgroup if σ = p and is an

m-unstable subgroup if σ = ∞. By assumption there exists a null set N

such that for x /∈ N none of the conditional measures µ
σ,(i,j)
x , µ

σ,(i,`)
x and

µ
σ,(`,j)
x are supported by the identity element alone. If x /∈ N satisfies in

addition Theorem 8.4 and 8.5 then Px = H, Hx contains H
(i,j)
σ , and µ

σ,(i,j)
x

is invariant under H
(i,j)
σ as claimed. ¤

Proof of Corollary 2.9. By Theorem 2.8 the first condition implies that µ is
invariant under SL(k + 1,Qσ). So does the second condition; this can be
seen just as in the real case [6, Thm. 4.1(iv)].
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Since µ is ergodic under ασ and αm
σ ∈ SL(k + 1,Qσ) for m ∈ Zk, µ is

in fact invariant and ergodic under SL(k + 1,Qσ). By [25, Thm. 2] or [31,
Thm. 1] it follows that µ is algebraic. ¤
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