

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Family name:	Department:
First name:	ETH ID No.:

For the grading:

	1K	2K	Points	Comments:
1				
2				
3				
4-13				
Total				

ETH Zürich

MATHEMATICS I EXAM

for students of Agricultural Science, Earth Sciences, Environmental Sciences, and Food Science

Important:

- Please fill the header on the cover page and lay your ETH-card visible on the table.
- Please write neatly with a non erasable blue or black pen, in particular not with a pencil. Beware that something that is too hard to read could be ignored.
- Please leave some empty space on the margins for the correction.
- This exam has 13 questions and lasts for 90 minutes.

For questions 1-3:

- Please write down all intermediate steps of your calculations and solutions.
- Write your name and ETH ID / Legi-Nr. on each additional sheet.
- The maximal score of each exercise part is given in the right margin.

For questions 4-13:

- Mark your answers clearly.
- There is always only one correct answer and 2 points per question.

Permitted aids:

- Written notes up to 20 A4-Pages, one English dictionary,
- no calculator, no mobile phone, no laptop.
- Please switch off your mobile phone and stow it away.

Good Luck!

1. Consider the function

$$f(x) = \frac{e^{3x}}{x}$$
 for x positive.

a) Determine and classify the local extrema of f(x).

Mathematics I

- **b)** Determine the range of f(x).
- c) Let F(x), x > 0 be a function with

$$\begin{cases} F'(x) = f(x) \\ F(1) = 0 \end{cases}$$

and let G(x) be the inverse function of F(x). Then we have that G(0) = 1. Determine G'(0). You **do not** have to determine F(x).

2. Determine the general solution of each of the following differential equations:

a)
$$y'' + 2\sqrt{2}y' + 2 = 0$$
 5 points
b) $y' - 2xy - x = 0$ für $x > 0$. 5 points

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 4 & 1 \end{pmatrix}.$$

- a) Determine the eigenvalues of A. 4
- **b)** Is A diagonalizable?
- c) For which vectors \vec{x}_0 is

a solution of

 $\dot{\vec{x}} = A\vec{x}$?

 $\vec{x}(t) = e^t \vec{x}_0$

4	points
4	points

4 points3 points

4 points

2 points

For exercises 4-13: Each question gives 2 points. Wrong or multiple answers give 0 points. Mark your answers on these exam sheets by circling the right answer.

4. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$

What are the rank and the dimension of the kernel of A?

- (a) $\operatorname{rank}(A) = 2$ und $\dim(\ker(A)) = 0$.
- (b) $\operatorname{rank}(A) = 2$ und $\dim(\ker(A)) = 1$.
- (c) $\operatorname{rank}(A) = 3$ und $\dim(\ker(A)) = 0$.
- (d) $\operatorname{rank}(A) = 3$ und $\dim(\ker(A)) = 1$.

5. Let

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ -4 & 5 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & 5 & 0 \\ 0 & 3 & -4 \\ 0 & -1 & 2 \end{pmatrix}.$$

Which of the following claims is wrong?

- (a) $\det(2B^{-1}A^{-1}) = -1.$
- (b) $\det(-B^{-1}A^2) = 1.$
- (c) $\det(2AB^{-1}) = -4.$
- (d) $\det(-2A^{-1}) = 4.$

6. Which picture shows the phase portrait of the system

$$\frac{d\vec{x}}{dt} = \begin{pmatrix} 2 & 1\\ -1 & 0 \end{pmatrix} \vec{x} \quad ?$$

- 7. Which of the following limits exist?
 - (I) $\lim_{x \to 0} \frac{e^{2x} 2e^x + 1}{x^2}$
 - (II) $\lim_{x\to+\infty} \frac{\cos(x)}{\ln(x)}$
 - (a) Both limits exist.
 - (b) Limit (I) exists, but limit (II) does not exist.
 - (c) Limit (I) does not exist, but limit (II) exists.
 - (d) Both limits do not exist.

- 8. The expression $\frac{(2-4i)^2}{i-3}$ can be transformed into (a) -2-6i. (c) 2-6i.
 - (b) -2+6i. (d) 2+6i.

9. Let $z = \frac{1}{2} - \frac{\sqrt{3}}{2}i$. What is the real part of z^9 ? (a) $-\frac{\sqrt{3}}{2}$ (c) 0 (b) -1 (d) $\frac{1}{2}$

10. What is the derivative of the function

$$f(x) = \int_{e^{-x}}^0 \cos(t^2) dt$$

at the point x = 0?

- (a) -1. (c) $\cos(1)$. (b) $-\cos(1)$. (d) 1.
- **11.** Which is the general solution of the following differential equation:

$$2y'' + 2y = 2x + 1 ?$$

- (a) $k_1 \cos(x) + k_2 \sin(x) + 2x + 1$
- (b) $k_1 \cos(x) + k_2 \sin(x) + x + \frac{1}{2}$
- (c) $k_1 \cos(2x) + k_2 \sin(2x) + x + \frac{1}{2}$
- (d) $k_1 \cos(2x) + k_2 \sin(2x) + 2x + 1$

12. The integral	$\int_{-\pi}^{\pi} x \cdot \cos^2(x) dx ?$
is equal to	
(a) 0	(c) π
(b) 2π	(d) 1

13. For which value k is the function

$$f(x) = \begin{cases} e^{k^3x} & \text{for } x \ge 0,\\ \sin(8x) + 1 & \text{for } x < 0, \end{cases}$$

differentiable at every point in $\mathbb{R}?$

- (a) -2 (c) There is no such value k.
- (b) k can be arbitrary (d) 2