

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Family name:	Department:
First name:	ETH ID No.:

For the grading:

	1K	2K	Points	Comments:
1				
2				
3				
4				
5-12				
Total				

MATHEMATICS I EXAM

for students of Agricultural Science, Earth Sciences, Environmental Sciences, and Food Science

Important:

- Please fill the header on the cover page and lay your ETH-card visible on the table.
- Please write neatly with a non erasable blue or black pen, in particular not with a pencil. Beware that something that is too hard to read could be ignored.
- Please leave some empty space on the margins for the correction.
- This exam has 12 questions and lasts for 90 minutes.

For questions 1-4:

- Please write down all intermediate steps of your calculations and solutions.
- Write your name and ETH ID / Legi-Nr. on each additional sheet.
- The maximal score of each exercise part is given in the right margin.

For questions 5-12:

- Mark your answers clearly.
- There is always only one correct answer and 2 points per question.

Permitted aids:

- Written notes up to 20 A4-Pages, one English dictionary,
- no calculator, no mobile phone, no laptop.
- Please switch off your mobile phone and stow it away.

Good Luck!

1. Consider the function

$$f(x) = \frac{1}{1 - \tan(x)}.$$

- **a)** Determine the derivative f'(x). 2 points
- **b)** Determine the linearization of f(x) in $x_0 = 0$. 2 points
- c) Determine the range of tan(x) for $-\frac{\pi}{2} < x < \frac{\pi}{4}$. 2 points
- **d)** Determine the range of f(x) for $-\frac{\pi}{2} < x < \frac{\pi}{4}$. 3 points
- 2. Determine the general solution of the the following differential equations:
 - a) y'' = 4y' 4y. 4 points

b)
$$3xy' - y = x + 1$$
 for $x > 0$. 4 points

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 4 & 1 & 4 \\ 3 & 6 & 3 & 9 \end{pmatrix}.$$

a) Determine the rank of the matrix A. 3 points

- **b)** Determine a basis for the solution set of the matrix equation $A\vec{x} = \vec{0}$. 3 points
- c) Let \vec{b} be the sum of all four columns of A. Determine the general solution of the system $A\vec{x} = \vec{b}$. 2 points

3

4. Consider the following system of differential equations:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & -1 \\ 4 & 0 \end{pmatrix}}_{A} \begin{pmatrix} x \\ y \end{pmatrix}.$$

- a) Determine the eigenvalues and the corresponding eigenvectors of the coefficient matrix A of the system. 3 points
- b) Determine the solution of the system with the initial value

$$\begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

3 points

c) Find all values k such that every solution of the system

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ k & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

is bounded for all $t \in \mathbb{R}$.

3 points

For questions 5-12: Each question gives 2 points. Wrong or multiple answers give 0 points. Mark your answers on this exam.

- 5. What is the limit $\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$? (a) $-\infty$. (b) $\frac{1}{2}$. (c) 0. (d) $+\infty$.
- 6. On which interval does the function

$$f(x) = (x-1)^3(4-x)^2$$

attain an extremum?

- (a)]0,1[.
- (b)]1,2[.
- (c)]2,3[.
- (d)]3,4[.

7. The differential equation

$$f' = (f+2)(f+3)$$

is

(a) non-linear of order 1.

- (b) linear homogeneous of order 1.
- (c) non-linear of order 2.
- (d) linear homogeneous of order 2.

8. A curve with measured data has the form $b = \frac{2}{3}a$ in a log-log plot (i.e. instead of x and y we use $a = \log_{10} x$ and $b = \log_{10} y$ on both, the horizontal and vertical axes). Which function y = f(x) does the curve represent?

(a) $y = x^{\frac{2}{3}}$.	(c) $y = 10^{\frac{3x}{2}}$.
(b) $y = x^{\frac{3}{2}}$.	(d) $y = 10^{\frac{2x}{3}}$.

9. The expression

	$\frac{-i-7}{2+i}$
is equal to	
(a) $-3 - i$.	(c) $3-i$.
(b) $-3+i$.	(d) $3+i$.

10. The zeros of the polynomial

$$p(\lambda) = \lambda^3 + 8$$

are

(a) -2, 2*i*, -2*i*. (b) -2, $\sqrt{2} + \sqrt{2}i$, $\sqrt{2} - \sqrt{2}i$. (c) -2, $2e^{i\frac{2\pi}{3}}$, $2e^{i\frac{4\pi}{3}}$. (d) -2, $2e^{i\frac{\pi}{3}}$, $2e^{i\frac{5\pi}{3}}$. 11. The determinant of the matrix

	1 2 3 4 5	2 3 4 5 6	0 0 1 0 0	0 0 5 2 0	0 0 2 3 1	
is						
(a) −3.	(c) 2.					
(b) −2.			(d) 3		

12. Let

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}$$

Which of the following statements is false?

- (a) The matrix A is diagonalizable.
- (b) The matrix A has two distinct eigenvalues.
- (c) The columns of A build a basis of \mathbb{R}^2 .
- (d) The columns of A form an eigenbasis for A.