EH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Family name:	Department:
First name:	ETH ID No.:

For the grading:

	1K	2K	Points	Comments:
1				
2				
3				
4				
$5-12$				
Total				

MATHEMATICS I EXAM
 for students of Agricultural Science, Earth Sciences, Environmental Sciences, and Food Science

Important:

- Please fill the header on the cover page and lay your ETH-card visible on the table.
- Please write neatly with a non erasable blue or black pen, in particular not with a pencil. Beware that something that is too hard to read could be ignored.
- Please leave some empty space on the margins for the correction.
- This exam has 12 questions and lasts for 90 minutes.

For questions 1-4:

- Please write down all intermediate steps of your calculations and solutions.
- Write your name and ETH ID / Legi-Nr. on each additional sheet.
- The maximal score of each exercise part is given in the right margin.

For questions 5-12:

- Mark your answers clearly.
- There is always only one correct answer and 2 points per question.

Permitted aids:

- Written notes up to 20 A4-Pages, one English dictionary,
- no calculator, no mobile phone, no laptop.
- Please switch off your mobile phone and stow it away.

Good Luck!

1. Consider the function

$$
f(x)=\frac{1}{1-\tan (x)} .
$$

a) Determine the derivative $f^{\prime}(x)$.

2 points

2 points

2 points

3 points
2. Determine the general solution of the the following differential equations:
a) $y^{\prime \prime}=4 y^{\prime}-4 y$.

4 points
b) $3 x y^{\prime}-y=x+1 \quad$ for $x>0$.

4 points
3. Consider the matrix

$$
A=\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 4 & 1 & 4 \\
3 & 6 & 3 & 9
\end{array}\right)
$$

a) Determine the rank of the matrix A.
b) Determine a basis for the solution set of the matrix equation $A \vec{x}=\overrightarrow{0}$.
c) Let \vec{b} be the sum of all four columns of A. Determine the general solution of the system $A \vec{x}=\vec{b}$.
4. Consider the following system of differential equations:

$$
\binom{\dot{x}}{\dot{y}}=\underbrace{\left(\begin{array}{cc}
0 & -1 \\
4 & 0
\end{array}\right)}_{A}\binom{x}{y} .
$$

a) Determine the eigenvalues and the corresponding eigenvectors of the coefficient matrix A of the system.
b) Determine the solution of the system with the initial value

$$
\binom{x(0)}{y(0)}=\binom{1}{2}
$$

c) Find all values k such that every solution of the system

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
0 & -1 \\
k & 0
\end{array}\right)\binom{x}{y} .
$$

is bounded for all $t \in \mathbb{R}$.

For questions 5-12: Each question gives 2 points. Wrong or multiple answers give 0 points. Mark your answers on this exam.
5. What is the limit

$$
\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}} ?
$$

(a) $-\infty$.
(c) 0 .
(b) $\frac{1}{2}$.
(d) $+\infty$.
6. On which interval does the function

$$
f(x)=(x-1)^{3}(4-x)^{2}
$$

attain an extremum?
(a) $] 0,1[$.
(b) $] 1,2[$.
(c) $] 2,3[$.
(d) $] 3,4[$.
7. The differential equation

$$
f^{\prime}=(f+2)(f+3)
$$

is
(a) non-linear of order 1 .
(b) linear homogeneous of order 1 .
(c) non-linear of order 2 .
(d) linear homogeneous of order 2 .
8. A curve with measured data has the form $b=\frac{2}{3} a$ in a $\log -\log$ plot (i.e. instead of x and y we use $a=\log _{10} x$ and $b=\log _{10} y$ on both, the horizontal and vertical axes). Which function $y=f(x)$ does the curve represent?
(a) $y=x^{\frac{2}{3}}$.
(c) $y=10^{\frac{3 x}{2}}$.
(b) $y=x^{\frac{3}{2}}$.
(d) $y=10^{\frac{2 x}{3}}$.
9. The expression

$$
\frac{-i-7}{2+i}
$$

is equal to
(a) $-3-i$.
(c) $3-i$.
(b) $-3+i$.
(d) $3+i$.
10. The zeros of the polynomial

$$
p(\lambda)=\lambda^{3}+8
$$

are
(a) $-2,2 i,-2 i$.
(b) $-2, \sqrt{2}+\sqrt{2} i, \sqrt{2}-\sqrt{2} i$.
(c) $-2,2 e^{i \frac{2 \pi}{3}}, 2 e^{i \frac{4 \pi}{3}}$.
(d) $-2,2 e^{i \frac{\pi}{3}}, 2 e^{i \frac{5 \pi}{3}}$.
11. The determinant of the matrix

$$
\left(\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
3 & 4 & 1 & 5 & 2 \\
4 & 5 & 0 & 2 & 3 \\
5 & 6 & 0 & 0 & 1
\end{array}\right)
$$

is
(a) -3 .
(c) 2 .
(b) -2 .
(d) 3 .
12. Let

$$
A=\left(\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right) .
$$

Which of the following statements is false?
(a) The matrix A is diagonalizable.
(b) The matrix A has two distinct eigenvalues.
(c) The columns of A build a basis of \mathbb{R}^{2}.
(d) The columns of A form an eigenbasis for A.

