EM

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Family name:	Department:
First name:	ETH ID No.:

For the grading:

	1K	2K	Points	Comments:
1				
2				
3				
$4-13$				
Total				

MATHEMATICS I EXAM
 for students of Agricultural Science, Earth Sciences, Environmental Sciences, and Food Science

Important:

- Please fill the header on the cover page and lay your ETH-card visible on the table.
- Please write neatly with a non erasable blue or black pen, in particular not with a pencil. Beware that something that is too hard to read could be ignored.
- Please leave some empty space on the margins for the correction.
- This exam has 13 questions and lasts for 90 minutes.

For questions 1-3:

- Please write down all intermediate steps of your calculations and solutions.
- Write your name and ETH ID / Legi-Nr. on each additional sheet.
- The maximal score of each exercise part is given in the right margin.

For questions 4-13:

- Mark your answers clearly.
- There is always only one correct answer and 2 points per question.

Permitted aids:

- Written notes up to 20 A4-Pages, one English dictionary,
- no calculator, no mobile phone, no laptop.
- Please switch off your mobile phone and stow it away.

Good Luck!

1. Consider the function

$$
f(x)=\sqrt{x^{2}+5} \quad \text { for } x \in \mathbb{R}
$$

a) Determine the linearization of $f(x)$ in $x_{0}=2$.

4 points
b) Determine the range of $f(x)$.
c) Let $F(x)$ be the solution of the initial value problem

$$
\left\{\begin{array}{l}
F^{\prime}(x)=f(x) \\
F(0)=33
\end{array}\right.
$$

Is $F(1)$ bigger or smaller than 33 ? You do not have to compute $F(x)$.
3 points
2. Determine the general solution of each of the following differential equations:
a) $y^{\prime \prime}=6 y^{\prime}-10 y$
b) $3 y^{\prime}=(y-1)(y+2)$
3. Consider the matrix

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 4 & 4 & 4 \\
0 & 0 & 1 & 2 & 3
\end{array}\right)
$$

a) Is the system

$$
A \vec{x}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

solvable?
3 points
b) Determine a basis of the solution set of the matrix equation $A \vec{x}=\overrightarrow{0}$.
c) Determine a basis of the space of all vectors \vec{v} for which the matrix equation $A \vec{x}=\vec{v}$ is solvable.

4 points

For exercises 4-13: Each question gives 2 points. Wrong or multiple answers give 0 points. Mark your answers on this exam.
4. The determinant of the matrix

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 3 & 0 & 1 \\
4 & 5 & 1 & 3 \\
2 & 6 & 0 & 0
\end{array}\right)
$$

is
(a) -2 .
(b) -1 .
(c) 1 .
(d) 2 .
5. The vector $\vec{v}=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$ is an eigenvector of the matrix

$$
\left(\begin{array}{ccc}
4 & 1 & 1 \\
-5 & 0 & -3 \\
-1 & -1 & 2
\end{array}\right)
$$

What is the eigenvalue belonging to \vec{v} ?
(a) -2
(b) -1
(c) 1
(d) 2
6. Which picture shows the phase portrait of the system

$$
\frac{d \vec{x}}{d t}=\left(\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right) \vec{x} \quad ?
$$

7. Consider the discrete system

$$
\left\{\begin{array}{l}
a(N+1)=3 a(N)+4 b(N) \\
b(N+1)=2 a(N)+b(N)
\end{array} \quad \text { mit } N=0,1,2, \ldots\right.
$$

For which initial value does the solution Lösung $\vec{x}(N)=\binom{a(N)}{b(N)}$ of the corresponding initial value problem stay bounded?
(a) $\left\{\begin{array}{l}a(0)=-1 \\ b(0)=1\end{array}\right.$
(b) $\left\{\begin{array}{l}a(0)=2 \\ b(0)=0\end{array}\right.$
(c) $\left\{\begin{array}{l}a(0)=2 \\ b(0)=1\end{array}\right.$
(d) $\left\{\begin{array}{l}a(0)=0 \\ b(0)=-1\end{array}\right.$
8. The limit

$$
\lim _{x \rightarrow+\infty} x^{\frac{2}{x}}
$$

is given by
(a) 0
(c) 2
(b) 1
(d) $+\infty$
9. Consider the function

$$
f(x)=\int_{0}^{x} \ln \left(t^{2}+e^{3}\right) d t
$$

Then $f^{\prime}(0)$ is given by
(a) 0
(c) 2
(b) 1
(d) 3
10. Let $g(y)$ be the inverse function of the function

$$
y=f(x)=e^{(3-x)^{3}-1} .
$$

Consider $g(y)$ at the point $y=f(2)=1$. Then the derivative $g^{\prime}(1)$ is given by
(a) -3
(c) $\frac{1}{3}$
(b) $-\frac{1}{3}$
(d) 3
11. The expression $\frac{3+i}{2-i}$ is equal to:
(a) $\sqrt{2} e^{-i \frac{\pi}{3}}$
(c) $\sqrt{2} e^{i \frac{\pi}{4}}$
(b) $\sqrt{2} e^{-i \frac{\pi}{4}}$
(d) $\sqrt{2} e^{i \frac{\pi}{2}}$
12. The zeros of the polynomial $p(\lambda)=\lambda^{4}+1$ are given by:
(a) $-1,1,-i, i$
(b) $-1,1, e^{i \frac{\pi}{4}}, e^{-i \frac{\pi}{4}}$
(c) $e^{i \frac{\pi}{4}}, e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}$
(d) $e^{i \frac{\pi}{4}}, e^{i \frac{5 \pi}{4}},-i, i$
13. Let $f(x)$ be a function that is differentiable for all $x \in \mathbb{R}$. Which of the following statements are always true?
(I) If f is not injective, then there exists a c with $f^{\prime}(c)=0$.
(II) If there exists a c with $f^{\prime}(c)=0$, then f is not injective.
(a) Both statements (I) and (II) are true.
(b) Statement (I) is true, but statement (II) is false.
(c) Statement (II) i true, but statement (I) is false.
(d) Both statements (I) and (II) are false.

