1. Consider the function

$$
f(x)=e^{1+x^{2}}-20 \quad \text { for } x \in \mathbb{R}
$$

a) Determine the linearization of $f(x)$ in $x_{0}=1$.
b) Determine the range of $f(x)$.
c) Let $F(x)$ be the solution of the initial value problem

$$
\left\{\begin{array}{l}
F^{\prime}(x)=f(x) \\
F(0)=2
\end{array}\right.
$$

Is $F(1)$ bigger or smaller than 2? You do not have to compute $F(x)$.
Do not forget to justify your solution.
2. a) Determine the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+5 y=8 e^{-x} .
$$

b) Solve the initial value problem

$$
2 y y^{\prime}=y^{2}+3, \quad y(0)=2 .
$$

3. Consider the matrix

$$
A=\left(\begin{array}{llll}
1 & 2 & 2 & 1 \\
2 & 6 & 6 & 6 \\
0 & 0 & 1 & 2
\end{array}\right) .
$$

a) Is the system

$$
A \vec{x}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

solvable? If yes, determine a special solution.
If no, explain why no solution exists.
b) Determine a basis of the solution set of the matrix equation $A \vec{x}=\overrightarrow{0}$.
c) What is the dimension of the space of vectors \vec{v}, for which the matrix
equation $A \vec{x}=\vec{v}$ is solvable?

2 points
4. Consider the function

$$
f(x, y)=x^{2}+2 y^{3}-3 y^{2}+1 \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

a) Determine and classify the critical points of f (as local maximum, local minimum or saddle point).
b) We consider the composition $f(x(t), y(t))$ of $f(x, y)$ with the following parametrization of the unit circle:

$$
\left\{\begin{array}{l}
x(t)=\cos t \\
y(t)=\sin t
\end{array} \quad \text { for } t \in[0,2 \pi] .\right.
$$

Determine the derivative of this composition for $t=\pi$.
c) Let $\vec{F}=\operatorname{grad}(f)$. Determine the line integral of the vector field \vec{F} along the quarter circle parametrized by

$$
\left\{\begin{array}{l}
x(t)=\cos t \\
y(t)=\sin t
\end{array} \quad \text { for } t \in\left[0, \frac{\pi}{2}\right]\right.
$$

5. The plane with the equation $y=2 z$ intersects the solid straight circular cylinder $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 4\right\}$ in a surface S.
a) Parametrize S using cylindrical coordinates.
b) Determine the area of S.
c) Using Stokes Theorem, determine the work $\oint_{C} \vec{F} \cdot d \vec{r}$ done by the vector field

$$
\vec{F}(x, y, z)=\left(\begin{array}{c}
y z \\
2 x z \\
x
\end{array}\right) \quad \text { for }(x, y, z) \in \mathbb{R}^{3},
$$

when going once around S along the boundary curve C of S in positive direction, when observed from above.
6. Consider the following vector field

$$
\vec{F}(x, y)=\binom{y-\frac{y}{x^{2}+y^{2}}}{x+\frac{x}{x^{2}+y^{2}}},
$$

which is defined for $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
a) Is \vec{F} a gradient field on the first quadrant

$$
Q:=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y>0\right\} ?
$$

Yes: \square
Justification:
b) Is \vec{F} a gradient field on $\mathbb{R}^{2} \backslash\{(0,0)\}$?

No:

Yes: \square No: \square
Justification:

For exercises 7-31: Each question gives two points. Wrong or multiple answers give zero points. Only answers on the answer sheet count.
7. Consider the twice differentiable function f with the following graph. Choose the correct statement:

(a) f^{\prime} has at least 5 zeros.
(b) f^{\prime} has at least 2 saddle points.
(c) It holds: $f^{\prime}(e) \cdot f^{\prime \prime}(e) \leq 0$.
(d) It holds: $f^{\prime \prime}(d) \geq f^{\prime \prime}(b)$.
8. What is the limit

$$
\lim _{x \rightarrow 0^{+}} x^{\frac{4}{x}} ?
$$

(a) 0
(b) 1
(c) 2
(d) $+\infty$
9. Let $g(y)$ be the inverse of the function

$$
y=f(x)=x^{3}+e^{(x+1)^{5}-1} .
$$

What is the value of the derivative of g at the point $y=f(0)=1$?
(a) $g^{\prime}(1)=-5$
(c) $g^{\prime}(1)=-\frac{1}{5}$
(b) $g^{\prime}(1)=\frac{1}{5}$
(d) $g^{\prime}(1)=5$
10. Determine the number of zeros of the function $f(x)=2 e^{x}-x-2$ for $x \in \mathbb{R}$.
(a) 0
(b) 1
(c) 2
(d) 3
11. What is the value of the derivative of the function

$$
f(x)=\int_{0}^{2 x} \ln \left(t^{4}+e^{4}\right) d t
$$

in the origin?
(a) $f^{\prime}(0)=0$
(c) $f^{\prime}(0)=4$
(b) $f^{\prime}(0)=2$
(d) $f^{\prime}(0)=8$
12. Which of the following statements about the function

$$
f(x)=x^{4}+x^{3}
$$

on the interval $[-1,0]$ is true?
(a) f attains on $[-1,0]$ its global minimum in the point $x=-\frac{1}{3}$.
(b) f attains on $[-1,0]$ its global minimum in the point $x=-\frac{3}{4}$.
(c) f attains on $[-1,0]$ its global maximum in the point $x=-\frac{3}{4}$.
(d) f attains on $[-1,0]$ its global maximum in the point $x=-\frac{1}{3}$.
13. The zeros of the polynomial $p(\lambda)=\lambda^{4}+81$ are:
(a) $-3,3,-3 i, 3 i$
(c) $-9,9,-9 i, 9 i$
(b) $3 e^{i \frac{\pi}{4}}, 3 e^{i \frac{3 \pi}{4}}, 3 e^{i \frac{5 \pi}{4}}, 3 e^{i \frac{7 \pi}{4}}$
(d) $9 e^{i \frac{\pi}{4}}, 9 e^{i \frac{3 \pi}{4}}, 9 e^{i \frac{5 \pi}{4}}, 9 e^{i \frac{7 \pi}{4}}$
14. The determinant of the matrix $\left(\begin{array}{llll}2 & 2 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 2 & 2 & 3 & 1 \\ 1 & 3 & 0 & 0\end{array}\right)$ is
(a) -4 .
(b) -1 .
(c) 1 .
(d) 4 .
15. Which equation characterizes the plane in \mathbb{R}^{3}, which goes through the point $(1,0,-1)$ and is orthogonal to the vector $(6,5,4)$?
(a) $x+2 y+3 z=0$
(c) $6 x+5 y+4 z=0$
(b) $x+2 y+3 z=-2$
(d) $6 x+5 y+4 z=2$
16. For which value of the parameter $c \in \mathbb{R}$ does the matrix

$$
A=\left(\begin{array}{ccc}
c & 1 & 0 \\
-1 & 0 & 0 \\
\pi & 2 & 3
\end{array}\right)
$$

have at least one eigenvalue, which is not real?
(a) $c=1$
(b) $c=2$
(c) $c=3$
(d) $c=4$
17. We consider the initial value problem

$$
\dot{\vec{y}}(t)=A \vec{y}(t), \quad \vec{y}(0)=\binom{1}{1},
$$

where the coefficient matrix A is real and $3 i-4$ is an eigenvalue of A. Which of the following statements about the solution $\vec{y}(t)$ of this IVP is true?
(a) $|\vec{y}(t)|$ stays for sufficiently large t always bigger than 10 .
(b) $|\vec{y}(t)|$ stays for sufficiently large t always smaller than $\frac{1}{10}$.
(c) $|\vec{y}(t)|$ stays always constant equal to $\sqrt{2}$.
(d) $|\vec{y}(t)|$ oscillates between values bigger than 10 and smaller than $\frac{1}{10}$.
18. What is the value of the solution of the following initial value problem at time $t=1$?

$$
\dot{\vec{r}}(t)=\binom{-4\left(e^{-4 t}+t\right)}{6 t^{2}-1}, \quad \vec{r}(0)=\binom{1}{5} .
$$

(a) $\vec{r}(1)=\binom{-e^{4}-2}{1}$
(c) $\vec{r}(1)=\binom{\frac{1}{e^{4}}-2}{1}$
(b) $\vec{r}(1)=\binom{-e^{4}-2}{6}$
(d) $\vec{r}(1)=\binom{\frac{1}{e^{4}}-2}{6}$
19. Which integral computes the arc length of the helix with polar equation

$$
r=\theta^{2}, \quad 0 \leq \theta \leq 3 ?
$$

(a) $\int_{0}^{3} \theta \sqrt{\theta^{2}+4} d \theta$
(c) $\int_{0}^{9} \theta \sqrt{9-\theta} d \theta$
(b) $\int_{0}^{3} \theta^{2} \sqrt{\theta^{2}+4} d \theta$
(d) $\int_{0}^{9} \theta^{2} \sqrt{9-\theta} d \theta$
20. Which picture shows the graph of the function

$$
f(x, y)=e^{-x-y} ?
$$

(a)

(c)

(b)

(d)

21. For which value of the parameter b does the equation

$$
2 x+b y+3 z=11
$$

describe the tangent plane of the graph of the function

$$
f(x, y)=4-\sqrt{1+x^{2}+y^{2}}
$$

at the point $\left(x_{0}, y_{0}\right)=(2,-2)$?
(a) $b=-4$
(c) $b=3$
(b) $b=-2$
(d) $b=5$
22. The following picture shows the level sets of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Which of the following functions has level sets as in the picture?
(a) $f(x, y)=|x|+|y|$
(c) $f(x, y)=|x+y|+|x-y|$
(b) $f(x, y)=|x|-|y|$
(d) $f(x, y)=|x+y|-|x-y|$
23. The lemiscate $y^{2}\left(1-y^{2}\right)=x^{2}$ can be described...
(a) near the point $(1,0)$ as a graph of a function in x.
(b) near the point $(1,0)$ as a graph of a function in y.
(c) near the point $(0,1)$ as a graph of a function in x.
(d) near the point $(0,1)$ as a graph of a function in y.
24. What is the coefficent c in the quadratic Taylor polynom

$$
1+x-y+c x y+\frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

of the function $f(x, y)=e^{x-y}$ at the point $(0,0)$?
(a) $c=-1$
(b) $c=-\frac{1}{2}$
(c) $c=\frac{1}{4}$
(d) $c=2$
25. For which of the following differential equations is the function

$$
f(t, x)=\cos (x-3 t)+e^{x+3 t}
$$

a solution?
(a) $f_{t t}-3 f_{x}=0$
(c) $f_{t t}-9 f_{x x}=0$
(b) $f_{t t}+3 f_{x}=0$
(d) $f_{t t}+9 f_{x x}=0$
26. Which expression computes the integral of an arbitrary integrable function $f(x, y)$ over the domain B showed in the picture?

(a) $\int_{0}^{1} \int_{1-x}^{2} f(x, y) d y d x$
(c) $\int_{0}^{2} \int_{x}^{2-x} f(x, y) d y d x$
(b) $\int_{0}^{1} \int_{y}^{1+y} f(x, y) d x d y$
(d) $\int_{0}^{2} \int_{1}^{y-1} f(x, y) d x d y$
27. Which integral is in general equal to

$$
\int_{0}^{\sqrt{2}} \int_{0}^{x} f(x, y) d y d x ?
$$

(a) $\int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\sqrt{2}}{\cos \theta}} r f(r \cos \theta, r \sin \theta) d r d \theta$.
(b) $\int_{0}^{\frac{\pi}{4}} \int_{\frac{\sqrt{2}}{\sin \theta}}^{2} r f(r \cos \theta, r \sin \theta) d r d \theta$.
(c) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\frac{\sqrt{2}}{\sin \theta}} r f(r \cos \theta, r \sin \theta) d r d \theta$.
(d) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{\frac{\sqrt{2}}{\cos \theta}}^{2} r f(r \cos \theta, r \sin \theta) d r d \theta$.
28. Which of the following equations is satisfied by the surface parametrized by

$$
\vec{r}(u, t)=\left(\begin{array}{c}
1+u \cos t \\
-1+u \sin t \\
\ln \left(u^{2}+1\right)
\end{array}\right), \quad \text { for } u \geq 0,0 \leq t \leq 2 \pi ?
$$

(a) $(x+1)^{2}+(y-1)^{2}=e^{z-1}$.
(c) $\sqrt{(x-1)^{2}+(y+1)^{2}}=e^{z}-1$.
(b) $(x-1)^{2}+(y+1)^{2}=e^{z}-1$.
(d) $\sqrt{(x+1)^{2}+(y-1)^{2}}=e^{z-1}$.
29. The three-dimensional domain V is described in cartesian coordinates by the following inequalities:

$$
2 \leq x^{2}+y^{2}+z^{2} \leq 4, \quad z^{2} \leq x^{2}+y^{2} .
$$

Which of the following inequalities describes V in spherical coordinates?
(a) $2 \leq \rho \leq 4, \quad \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}, \quad 0 \leq \theta \leq 2 \pi$.
(b) $2 \leq \rho \leq 4, \quad \frac{\pi}{4} \leq \varphi \leq \frac{3 \pi}{4}, \quad 0 \leq \theta \leq 2 \pi$.
(c) $\sqrt{2} \leq \rho \leq 2, \quad \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}, \quad 0 \leq \theta \leq 2 \pi$.
(d) $\sqrt{2} \leq \rho \leq 2, \quad \frac{\pi}{4} \leq \varphi \leq \frac{3 \pi}{4}, \quad 0 \leq \theta \leq 2 \pi$.

30．Which picture shows the vector field

$$
\vec{F}(x, y)=\binom{x}{-y} ?
$$

11111

11111111
11111111
ノノノノノノノ
（c）

（b）

（d）

31. Let S be the square with boundary curve C as shown in the picture.

Let \vec{F}_{a} be the a-dependent vector field

$$
\vec{F}_{a}(x, y)=\binom{x-4 x y-2 y}{2 a(3 x-y)}
$$

For which a is the work of \vec{F}_{a} along the curve C in counter-clockwise direction equal to 4? That is, for which a is $\oint_{C} \vec{F}_{a} \cdot d \vec{r}=4$?
(a) $a=-\frac{1}{2}$
(c) $a=\frac{1}{6}$
(b) $a=-\frac{1}{6}$
(d) $a=\frac{1}{2}$

