

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Family name:	Department:	
First name:	ETH ID No.:	

For the grading:

	1K	2K	Points	Comments:
1				
2				
3				
4				
5				
6				
7-26				
Total				

MATHEMATICS I AND II EXAM

for students of Agricultural Science, Earth Sciences, Environmental Sciences, and Food Science

Important:

- Please fill the header on the cover page and lay your ETH-card visible on the table.
- Please write neatly with a non erasable blue or black pen, in particular not with a pencil. Beware that something that is too hard to read could be ignored.
- Please leave some empty space on the margins for the correction.
- This exam has 26 questions and lasts for 180 minutes.

For questions 1-6:

- Please write down all intermediate steps of your calculations and solutions.
- Write your name and ETH ID / Legi-Nr. on each additional sheet.
- The maximal score of each exercise part is given in the right margin.

For questions 7-26:

- Mark your answers clearly.
- There is always only one correct answer and 2 points per question.

Permitted aids:

- Written notes up to 40 A4-Pages, one English dictionary,
- no calculator, no mobile phone, no laptop.
- Please switch off your mobile phone and stow it away.

Good Luck!

1. Consider the function

$$f(x) = \frac{e^{3x}}{x}$$
 for x positive.

- **a)** Determine and classify the local extrema of f(x).
- **b)** Determine the range of f(x).
- c) Let F(x), x > 0 be a function with

$$\begin{cases} F'(x) = f(x) \\ F(1) = 0 \end{cases}$$

and let G(x) be the inverse function of F(x). Then we have that G(0) = 1. Determine G'(0). You **do not** have to determine F(x).

2. Determine the general solution of each of the following differential equations:

a)
$$y'' + 2\sqrt{2}y' + 2 = 0$$
 5 points
b) $y' - 2xy - x = 0$ für $x > 0$. 5 points

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 4 & 1 \end{pmatrix}.$$

- a) Determine the eigenvalues of A. 4
- **b)** Is A diagonalizable?
- c) For which vectors \vec{x}_0 is

a solution of

 $\dot{\vec{x}} = A\vec{x}$?

 $\vec{x}(t) = e^t \vec{x}_0$

4 points

4 points

4 points

2 points

3 points

4. Consider the vector field

$$f(x,y) = \ln(x-y^2)$$
 for $x > y^2$

and its gradient $\vec{F} = \operatorname{grad}(f)$.

- **a)** Determine the vector field \vec{F} .
- **b)** In which direction does f increase most rapidly at the point (x, y) = (2, 0)?
- c) Does the equation

$$f(x,y) = 0$$

define a differentiable function of the form x = x(y) or of the form y = y(x)in a neighborhood of the point (x, y) = (1, 0)?

d) Determine the line integral of \vec{F} along the straight line C from the point (1,0) to the point (3,1).

\

5. Consider the vector field

$$\vec{F}(x,y,z) = \begin{pmatrix} -y \\ x \\ z^2 \end{pmatrix}$$

and the sphere

$$A: x^2 + y^2 + z^2 = 5.$$

- a) Determine $\operatorname{div}(\vec{F})$. 2 points
- **b)** Determine the flux of \vec{F} through A outwards.
- c) Parametrize the intersection curve of A with the plane z = 1 (in an arbitrary direction). 3 points
- d) Determine the circulation of \vec{F} along the curve from part c) in positive direction when looking from above. 4 points

2 points

2 points

3 points

3 points

6. Consider problems of the form

Ana Cannas

$$\begin{cases} u_t = u_{xx} \\ u_x(0,t) = u_x(1,t) = 0 \\ u(x,0) = f(x) \end{cases}$$

for an unknown function u(x, y) and $0 \le x \le 1$, t > 0.

a) Determine the solution u(x, y) of the problem with

$$f(x) = 33 - 2\cos(5\pi x).$$

You may use relevant eigenfunctions **without** deriving them.

b) With the ansatz u(x,y) = X(x)T(t) the PDE can be separated into a system of ODEs

$$X'' - kX = 0$$
 and $T' - kT = 0$.

Which boundary conditions does the function X(x) have to fulfill? Determine all functions X(x) that fulfill the boundary condition.

For exercises 7-26: Each question gives 2 points. Wrong or multiple answers give 0 points. Mark your answers on this exam.

7. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$

What are the rank and the dimension of the kernel of A?

(a) $\operatorname{rank}(A) = 2$ und $\dim(\ker(A)) = 0$.

- (b) $\operatorname{rank}(A) = 2$ und $\dim(\ker(A)) = 1$.
- (c) $\operatorname{rank}(A) = 3$ und $\dim(\ker(A)) = 0$.
- (d) $\operatorname{rank}(A) = 3$ und $\dim(\ker(A)) = 1$.

4 points

4 points

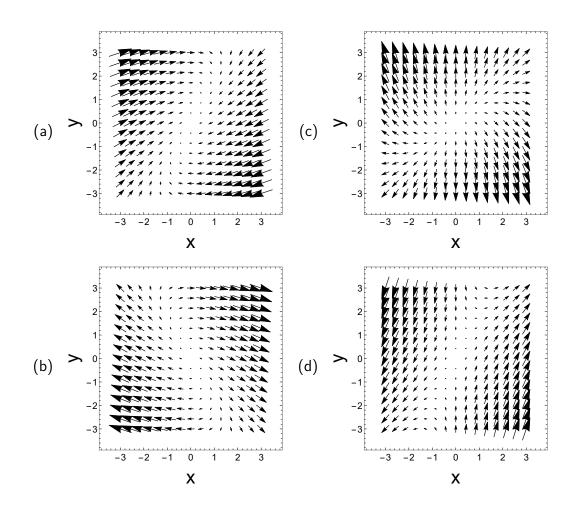
8. Let

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ -4 & 5 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & 5 & 0 \\ 0 & 3 & -4 \\ 0 & -1 & 2 \end{pmatrix}.$$

Which of the following claims is **wrong**?

- (a) $det(2B^{-1}A^{-1}) = -1.$ (c) $det(2AB^{-1}) = -4.$ (b) $det(-B^{-1}A^2) = 1.$ (d) $det(-2A^{-1}) = 4.$
- 9. Which picture shows the phase portrait of the system

$$\frac{d\vec{x}}{dt} = \begin{pmatrix} 2 & 1\\ -1 & 0 \end{pmatrix} \vec{x} \quad ?$$



10. A relationship between two measurements x and y has the following form in double logarithmic representation (i.e. instead of x and y, the quantities $a = \log_{10}(x)$ and $b = \log_{10}(y)$ are plotted against the axes):

$$b = 3a - 1.$$

Which function y = f(x) represents this relationship?

(a) $y = 10^{1-3x}$. (b) $y = 10^{3x-1}$. (c) $y = \frac{1}{10}x^3$. (d) $y = 10x^3$.

- **11.** Which of the following limits exist?
 - (I) $\lim_{x\to 0} \frac{e^{2x}-2e^x+1}{x^2}$
 - (II) $\lim_{x\to+\infty} \frac{\cos(x)}{\ln(x)}$
 - (a) Both limits exist.
 - (b) Limit (I) exists, but limit (II) does not exist.
 - (c) Limit (I) does not exist, but limit (II) exists.
 - (d) Both limits do not exist.

12. The expression $\frac{(2-4i)^2}{i-3}$ can be transformed into (a) -2-6i. (b) -2+6i. (c) 2-6i. (d) 2+6i.

- **13.** Let $z = \frac{1}{2} \frac{\sqrt{3}}{2}i$. What is the real part of z^9 ? (a) $-\frac{\sqrt{3}}{2}$ (b) -1 (c) 0 (d) $\frac{1}{2}$
- **14.** What is the derivative of the function

$$f(x) = \int_{e^{-x}}^0 \cos(t^2) dt$$

at the point x = 0?

(a) -1. (b) $-\cos(1)$. (c) $\cos(1)$. (d) 1.

15. Which is the equation in polar coordinates of the following parabola branch?

$$y = x^2, \quad x > 0$$

- (a) $r = \frac{\sin(\theta)}{\cos^2(\theta)}, \ \frac{\pi}{4} < \theta < \frac{\pi}{3}.$ (b) $r = \frac{\sin(\theta)}{\cos^2(\theta)}, \ 0 < \theta < \frac{\pi}{2}.$ (c) $r = \cos^2(\theta) - \sin(\theta), \ \frac{\pi}{4} \le \theta < \frac{\pi}{2}.$ (d) $r = \cos^2(\theta) - \sin(\theta), \ 0 < \theta \le \frac{\pi}{3}.$
- **16.** The trajectory of a particle satisfies the following initial value problem:

$$\begin{cases} \frac{d\vec{r}}{dt} = \begin{pmatrix} -2\sin(t)\\\cos(t) \end{pmatrix}\\ \vec{r}(0) = \begin{pmatrix} 2\\1 \end{pmatrix} \end{cases}$$

Which of the following points does not lie on the trajectory of the particle?

(a)
$$\begin{pmatrix} -2\\ 1 \end{pmatrix}$$
 (c) $\begin{pmatrix} 1\\ 0 \end{pmatrix}$
(b) $\begin{pmatrix} 0\\ 2 \end{pmatrix}$ (d) $\begin{pmatrix} 0\\ 0 \end{pmatrix}$

17. The domain D of the function

$$f(x,y) = \sqrt{x^2 + y^2 - 3}$$

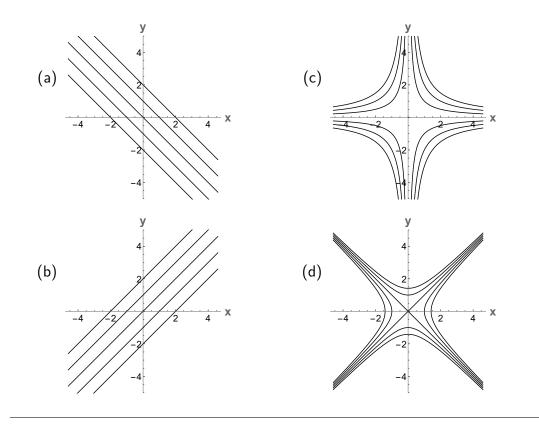
is

- (a) open and bounded.
- (b) open and unbounded.
- (c) closed and bounded.
- (d) closed and unbounded.

18. Which of the following pictures shows the level curves of the function

$$f(x,y) = e^{x+y+4}$$

?



19. Consider the composition of the function

$$f(x,y) = x^2 y$$

with differentiable functions x(u) and y(u). Calculate the derivative

$$\frac{d}{du}f(x(u), y(u)).$$

(a)
$$2x(u)x'(u)y'(u)$$
.
(b) $2x(u)x'(u) + y'(u)$.
(c) $2(x(u))^2 x'(u)y(u)y'(u)$.
(d) $2x(u)x'(u)y(u) + (x(u))^2 y'(u)$.

20. Which point is a saddle point of

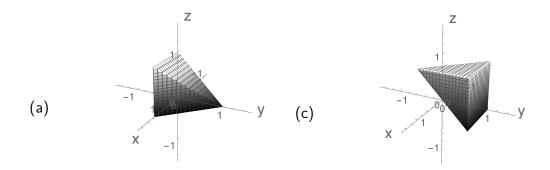
$$f(x,y) = 3x^2 - 3y^2 + 2y^3 + 6xy \quad ?$$

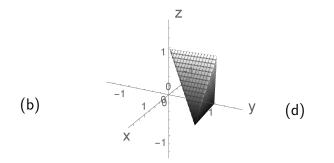
(a) (-2,2). (b) (-1,-1). (c) (0,-1). (d) (0,0).

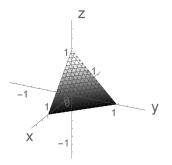
21. Consider an integral of the form

$$\int_0^1 \int_0^{1-z} \int_0^{1-y-z} f(x,y,z) \, dx \, dy \, dz.$$

What is the corresponding domain of integration?







22. Which of the following inequalities describes the solid $V\subseteq \mathbb{R}^3$ given by

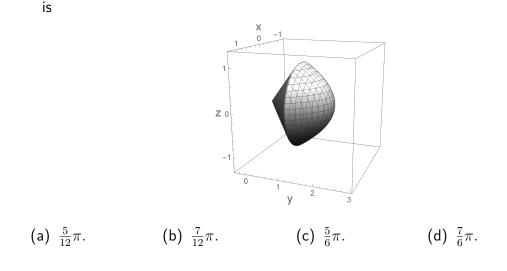
$$z \le \sqrt{3(x^2 + y^2)}$$

in spherical coordinates?

(a) $0 \le \varphi \le \frac{\pi}{6}$.(c) $\frac{\pi}{6} \le \varphi \le \pi$.(b) $0 \le \varphi \le \frac{\pi}{3}$.(d) $\frac{\pi}{3} \le \varphi \le \pi$.

23. The volume of the bounded solid defined by

$$\sqrt{x^2 + z^2} \le y \le 2 - x^2 - z^2$$



24. What is the outwards flux of the vector field

$$\vec{F} = \begin{pmatrix} x - x^2 + 3xy^2 \\ 2x - y^3 - y \end{pmatrix}$$

through the boundary curve of the rectangle

$$0 \le x \le 1, \quad -1 \le y \le 1 \quad ?$$

(a)
$$-2$$
. (b) -1 . (c) 1. (d) 2.

- **25.** Let C be a closed curve in \mathbb{R}^3 and let $\vec{F}(x, y, z)$ be a vector field, whose work along C is 2π . Which of the following properties can \vec{F} **not** have?
 - (a) \vec{F} is divergence-free. (c) \vec{F} is a gradient.
 - (b) \vec{F} is curl-free. (d) \vec{F} is a curl.

26. Which of the following surfaces in \mathbb{R}^3 is **not** simply connected?

- (a) The ellipsoid $x^2 + 2y^2 + 3z^2 = 1$.
- (b) The cylinder segment $x^2 + y^2 = 1, -1 \le z \le 1$.
- (c) The hemisphere $x^2 + y^2 + z^2 = 1, \ z \le 0.$
- (d) The cone segment $z^2 = x^2 + y^2$, $-1 \le z \le 1$.