

Family name:	Department:
First name:	ETH ID No.:

For the grading:

	1K	2K	Points	Comments:
1				
2				
3				
4				
5				
6				
7-26				
Total				

MATHEMATICS I AND II EXAM

for students of Agricultural Science, Earth Sciences, Environmental Sciences, and Food Science

Important:

- Please fill the header on the cover page and lay your ETH-card visible on the table.
- Please write neatly with a non erasable blue or black pen, in particular not with a pencil. Beware that something that is too hard to read could be ignored.
- Please leave some empty space on the margins for the correction.
- This exam has 26 questions and lasts for 180 minutes.

For questions 1-6:

- Please write down all intermediate steps of your calculations and solutions.
- Write your name and ETH ID / Legi-Nr. on each additional sheet.
- The maximal score of each exercise part is given in the right margin.

For questions 7-26:

- Mark your answers clearly.
- There is always only one correct answer and 2 points per question.

Permitted aids:

- Written notes up to 40 A4-Pages, one English dictionary,
- no calculator, no mobile phone, no laptop.
- Please switch off your mobile phone and stow it away.

Good Luck!

1. Consider the function

$$f(x) = \sqrt{x^2 + 5}$$
 for $x \in \mathbb{R}$.

a) Determine the linearization of f(x) in $x_0 = 2$.

4 points

b) Determine the range of f(x).

3 points

c) Let F(x) be the solution of the initial value problem

$$\begin{cases} F'(x) = f(x) \\ F(0) = 33. \end{cases}$$

Is F(1) bigger or smaller than 33? You do not have to compute F(x).

3 points

- 2. Determine the general solution of each of the following differential equations:
 - **a)** y'' = 6y' 10y

5 points

b) 3y' = (y-1)(y+2)

5 points

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 4 & 4 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix}.$$

a) Is the system

$$A\vec{x} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

solvable?

3 points

b) Determine a basis of the solution set of the matrix equation $A\vec{x} = \vec{0}$.

4 points

c) Determine a basis of the space of all vectors \vec{v} for which the matrix equation $A\vec{x}=\vec{v}$ is solvable.

3 points

4. Consider the function

$$f(x,y) = x^2 + y^2 - xy + 2x + 2y + 5$$

and its gradient $\vec{F} = \operatorname{grad}(f)$.

a) Determine the vector field \vec{F} .

2 points

b) Determine and classify the critical points of f (as local minimum, local maximum or saddle point).

3 points

c) The equation

$$f(x,y) = 4$$

defines a differentiable function x = x(y) in a neighborhood of the point (x, y) = (1, 0). Calculate the derivative x'(0).

2 points

d) Calculate the line integral of \vec{F} along the straight line C from the point (1,0) to the point (1,1).

3 points

5. Consider the vector field

$$\vec{F}(x,y,z) = \begin{pmatrix} -y^3 \\ x^3 \\ z^3 \end{pmatrix}$$

and the surface A given by

$$z = x^2 + y^2, \ 0 \le z \le 1.$$

a) Parametrize A.

b) Parametrize the boundary curve of A (in an arbitrary direction).

c) Determine $rot(\vec{F})$.

d) Determine the flux of $rot(\vec{F})$ through A downwards (i.e. the z-component of the normal vector is negative),

$$\iint\limits_{A} \left(\operatorname{rot}(\vec{F}) \right) \cdot \vec{n} \ dA.$$

4 points

6. We consider problems of the form

$$\begin{cases} u_{xx} + u_{yy} = 0 \\ u(x,0) = u(0,y) = u(1,y) = 0 \\ u(x,1) = f(x) \end{cases}$$

for an unknown function u(x,y) and $0 \le x \le 1$, $0 \le y \le 1$.

a) With the ansatz u(x,y)=X(x)Y(y) the PDE can be separated into a system of ODEs for X(x) and Y(y) which depend on a parameter $k\in\mathbb{R}.$ Determine that system of ODEs.

You do not have to solve that system of ODEs.

4 points

b) Determine the solution u(x,y) of the problem with

$$f(x) = 5\sin(2\pi x).$$

You may use relevant eigenfunctions without deriving them.

4 points

For exercises 7-26: Each question gives 2 points. Wrong or multiple answers give 0 points. Mark your answers on this exam.

7. The determinant of the matrix

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 3 & 0 & 1 \\ 4 & 5 & 1 & 3 \\ 2 & 6 & 0 & 0 \end{pmatrix}$$
 is

is

- (a) -2.
- (b) -1.
- (c) 1.
- (d) 2.

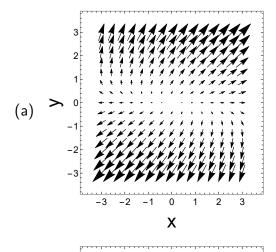
8. The vector $\vec{v} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ is an eigenvector of the matrix

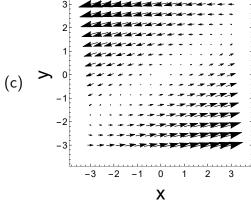
$$\begin{pmatrix} 4 & 1 & 1 \\ -5 & 0 & -3 \\ -1 & -1 & 2 \end{pmatrix}.$$

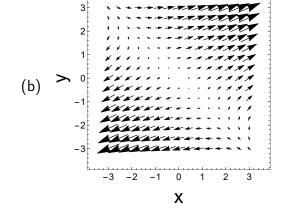
What is the eigenvalue belonging to \vec{v} ?

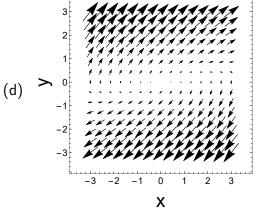
- (a) -2
- (b) -1
- (c) 1
- (d) 2
- 9. Which picture shows the phase portrait of the system

$$\frac{d\vec{x}}{dt} = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} \vec{x} \quad ?$$









10. The limit

$$\lim_{x \to +\infty} x^{\frac{2}{x}}$$

is given by

- (a) 0
- (b) 1
- (c) 2
- (d) $+\infty$

11. Consider the function

$$f(x) = \int_0^x \ln(t^2 + e^3) dt.$$

Then f'(0) is given by

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- 12. Let g(y) be the inverse function of the function

$$y = f(x) = e^{(3-x)^3 - 1}$$
.

Consider g(y) at the point y = f(2) = 1. Then the derivative g'(1) is given by

- (a) -3
- (b) $-\frac{1}{3}$ (c) $\frac{1}{3}$
- (d) 3
- 13. The zeros of the polynomial $p(\lambda) = \lambda^4 + 1$ are given by:
 - (a) -1, 1, -i, i
 - (b) $-1, 1, e^{i\frac{\pi}{4}}, e^{-i\frac{\pi}{4}}$
 - (c) $e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}$
 - (d) $e^{i\frac{\pi}{4}}, e^{i\frac{5\pi}{4}}, -i, i$

- **14.** Let f(x) be a function that is differentiable for all $x \in \mathbb{R}$. Which of the following statements are always true?
 - (I) If f is not injective, then there exists a c with f'(c) = 0.
 - (II) If there exists a c with f'(c) = 0, then f is not injective.
 - (a) Both statements (I) and (II) are true.
 - (b) Statement (I) is true, but statement (II) is false.
 - (c) Statement (II) i true, but statement (I) is false.
 - (d) Both statements (I) and (II) are false.
- **15.** The trajectory of a moving point mass satisfies the following initial value problem:

$$\begin{cases} \frac{d\vec{r}}{dt} = \begin{pmatrix} 4t\\ 1 - \sin(t) \end{pmatrix} \\ \vec{r}(0) = \begin{pmatrix} 1\\ 1 \end{pmatrix} \end{cases}$$

The position vector of the point mass at time t=1 is given by:

(a)
$$\vec{r}(1) = \begin{pmatrix} 2 \\ 1 - \cos(1) \end{pmatrix}$$

(c)
$$\vec{r}(1) = \begin{pmatrix} 3 \\ 1 - \cos(1) \end{pmatrix}$$

(b)
$$\vec{r}(1) = \begin{pmatrix} 2 \\ 1 + \cos(1) \end{pmatrix}$$

(d)
$$\vec{r}(1) = \begin{pmatrix} 3 \\ 1 + \cos(1) \end{pmatrix}$$

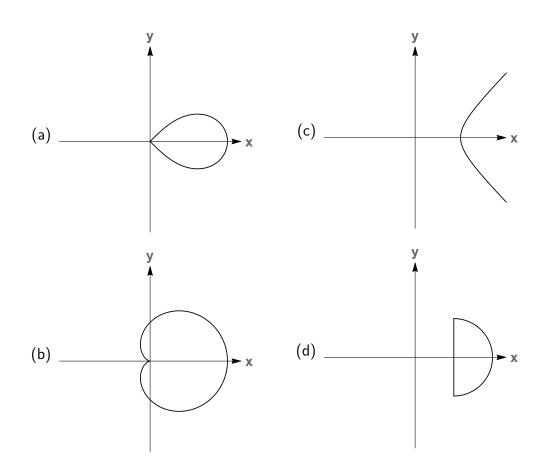
16. What is the arc length of the curve that is parametrized by

$$x = -e^t \sin(t), \qquad y = e^t \cos(t), \ 0 \le t \le 1$$
?

- (a) e-2.
- (b) $2\sqrt{2}e$.
- (c) $e \sqrt{2}$.
- (d) $\sqrt{2}e \sqrt{2}$.

17. Which of the following pictures shows the curve described by the following equations in polar coordinates

$$r^2 = 4\cos(2\theta), \qquad -\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$
?



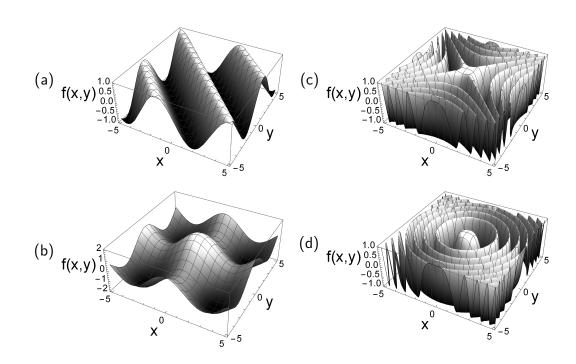
18. What is the domain D and the range W of the function

$$f(x,y) = \tan\left(\frac{1}{1+x^2+y^2}\right)$$
 ?

- (a) $D = \mathbb{R}^2$, $W =]0, \tan(1)]$.
- (b) $D = \mathbb{R}^2$, $W = [\tan(1), +\infty[$.
- (c) $D = \{(x, y) \mid \tan(1 + x^2 + y^2) \neq 1\}, W =]0, \tan(1)].$
- (d) $D = \{(x, y) \mid \tan(1 + x^2 + y^2) \neq 1\}, W = [\tan(1), +\infty[.$

- 19. The directional derivative of the function f(x,y)=xy at the point (1,3) in the direction of the vector (2,1) is equal to
 - (a) $\frac{1}{\sqrt{5}}$.
 - (b) $\frac{3}{\sqrt{5}}$.
 - (c) $\sqrt{5}$.
 - (d) $\frac{7}{\sqrt{5}}$.
- 20. Which picture shows the graph of the function

$$f(x,y) = \cos(x^2 - y^2) \quad ?$$



21. Let f(x,y) be a continuous real function that is defined on \mathbb{R}^2 . Which integral is in general equal to

$$\int_{-1}^{0} \int_{4+4x^{3}}^{4} f(x,y) \, dy \, dx \quad ?$$

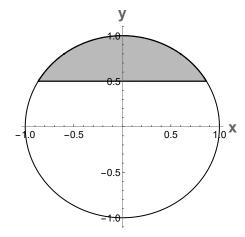
(a)
$$\int_0^4 \int_{-1}^{\sqrt[3]{\frac{y}{4}-1}} f(x,y) \, dx \, dy$$

(c)
$$\int_0^4 \int_{\sqrt[3]{\frac{y}{4}-1}}^0 f(x,y) \, dx \, dy$$

(b)
$$\int_0^4 \int_{\sqrt[3]{\frac{y}{4}-1}}^{-1} f(x,y) \, dx \, dy$$

(d)
$$\int_0^4 \int_0^{\sqrt[3]{\frac{y}{4}-1}} f(x,y) \, dx \, dy$$

22. Consider the part of the disc



that is defined by $x^2+y^2\leq 1$, $y\geq \frac{1}{2}.$ Which of the following inequalities describes the domain in polar coordinates?

(a)
$$\frac{1}{2\sin(\theta)} \le r \le 1, \ \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}.$$

(b)
$$\frac{1}{2\sin(\theta)} \le r \le 1, \ \frac{\pi}{6} \le \theta \le \frac{5\pi}{6}.$$

(c)
$$\frac{\sin(\theta)}{2} \le r \le 1, \ \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}.$$

(d)
$$\frac{\sin(\theta)}{2} \le r \le 1$$
, $\frac{\pi}{6} \le \theta \le \frac{5\pi}{6}$.

23. Consider the integral

$$I = \iiint\limits_V x\,dV$$

over the octant of the sphere with radius R

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le R^2, x, y, z \le 0\}.$$

Which of the following formulas is correct?

(a)
$$I = \int_{\pi}^{\frac{3\pi}{2}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{R} \rho^{2} \sin(\varphi) \cos(\theta) \, d\rho \, d\varphi \, d\theta$$

(b)
$$I = \int_{\frac{3\pi}{4}}^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{R} \rho^{2} \sin(\varphi) \cos(\theta) \, d\rho \, d\varphi \, d\theta$$

(c)
$$I = \int_{\pi}^{\frac{3\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} \int_{0}^{R} \rho^{3} \sin^{2}(\varphi) \cos(\theta) d\rho d\varphi d\theta$$

(d)
$$I = \int_{\frac{3\pi}{2}}^{2\pi} \int_{\frac{\pi}{2}}^{\pi} \int_{0}^{R} \rho^{3} \sin^{2}(\varphi) \cos(\theta) \, d\rho \, d\varphi \, d\theta$$

24. The volume of the bounded solid defined by

$$1 \le z \le \sqrt{2 - x^2 - y^2}$$

is equal to

(a)
$$\frac{4\sqrt{2}-5}{3}\pi$$
.

(b)
$$\frac{5\sqrt{2}-4}{3}\pi$$
.

(c)
$$(4\sqrt{2}-5)\pi$$
.

(d)
$$(5\sqrt{2}-4)\pi$$
.

- **25.** Let \vec{F} be a vector field that is at least twice differentiable in \mathbb{R}^3 . Which of the following formulas does not make sense?
 - (a) grad (div (\vec{F})).

(c) grad (grad (\vec{F})).

(b) div (rot (\vec{F})).

- (d) rot (rot (\vec{F})).
- 26. What is the circulation to the vector field

$$\vec{F} = \begin{pmatrix} xy^2 - y \\ x^4 + x^2y + x \end{pmatrix}$$

along the boundary curve of the rectangle

$$-1 \le x \le 1, \ 0 \le y \le 1$$

in counterclockwise direction?

- (a) -8.
- (b) -4. (c) 4.
- (d) 8.