EM

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Family name:	Department:
First name:	ETH ID No.:

For the grading:

	1K	2K	Points	Comments:
1				
2				
3				
$4-13$				
Total				

MATHEMATICS II EXAM

for students of Agricultural Science, Earth Sciences, Environmental Sciences, and Food Science

Important:

- Please fill the header on the cover page and lay your ETH-card visible on the table.
- Please write neatly with a non erasable blue or black pen, in particular not with a pencil. Beware that something that is too hard to read could be ignored.
- Please leave some empty space on the margins for the correction.
- This exam has 13 questions and lasts for 90 minutes.

For questions 1-3:

- Please write down all intermediate steps of your calculations and solutions.
- Write your name and ETH ID / Legi-Nr. on each additional sheet.
- The maximal score of each exercise part is given in the right margin.

For questions 4-13:

- Mark your answers clearly.
- There is always only one correct answer and 2 points per question.

Permitted aids:

- Written notes up to 20 A4-Pages, one English dictionary,
- no calculator, no mobile phone, no laptop.
- Please switch off your mobile phone and stow it away.

Good Luck!

1. Consider the function

$$
f(x, y)=x^{2}+y^{2}-x y+2 x+2 y+5
$$

and its gradient $\vec{F}=\operatorname{grad}(f)$.
a) Determine the vector field \vec{F}.

2 points
b) Determine and classify the critical points of f (as local minimum, local maximum or saddle point).
c) The equation

$$
f(x, y)=4
$$

defines a differentiable function $x=x(y)$ in a neighborhood of the point $(x, y)=(1,0)$. Calculate the derivative $x^{\prime}(0)$.
d) Calculate the line integral of \vec{F} along the straight line C from the point $(1,0)$ to the point $(1,1)$.
2. Consider the vector field

$$
\vec{F}(x, y, z)=\left(\begin{array}{c}
-y^{3} \\
x^{3} \\
z^{3}
\end{array}\right)
$$

and the surface A given by

$$
z=x^{2}+y^{2}, 0 \leq z \leq 1
$$

a) Parametrize A.
b) Parametrize the boundary curve of A (in an arbitrary direction).

2 points

3 points
c) Determine $\operatorname{rot}(\vec{F})$.

3 points
d) Determine the flux of $\operatorname{rot}(\vec{F})$ through A downwards (i.e. the z-component of the normal vector is negative),

$$
\iint_{A}(\operatorname{rot}(\vec{F})) \cdot \vec{n} d A .
$$

3. We consider problems of the form

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0 \\
u(x, 0)=u(0, y)=u(1, y)=0 \\
u(x, 1)=f(x)
\end{array}\right.
$$

for an unknown function $u(x, y)$ and $0 \leq x \leq 1,0 \leq y \leq 1$.
a) With the ansatz $u(x, y)=X(x) Y(y)$ the PDE can be separated into a system of ODEs for $X(x)$ and $Y(y)$ which depend on a parameter $k \in \mathbb{R}$.
Determine that system of ODEs.
You do not have to solve that system of ODEs.
b) Determine the solution $u(x, y)$ of the problem with

$$
f(x)=5 \sin (2 \pi x) .
$$

You may use relevant eigenfunctions without deriving them.

For exercises 4-13: Each question gives 2 points. Wrong or multiple answers give 0 points. Mark your answers on this exam.
4. The trajectory of a moving point mass satisfies the following initial value problem:

$$
\left\{\begin{array}{l}
\frac{d \vec{r}}{d t}=\binom{4 t}{1-\sin (t)} \\
\vec{r}(0)=\binom{1}{1}
\end{array}\right.
$$

The position vector of the point mass at time $t=1$ is given by:
(a) $\vec{r}(1)=\binom{2}{1-\cos (1)}$
(c) $\vec{r}(1)=\binom{3}{1-\cos (1)}$
(b) $\vec{r}(1)=\binom{2}{1+\cos (1)}$
(d) $\vec{r}(1)=\binom{3}{1+\cos (1)}$
5. What is the arc length of the curve that is parametrized by

$$
x=-e^{t} \sin (t), \quad y=e^{t} \cos (t), 0 \leq t \leq 1 \quad ?
$$

(a) $e-2$.
(b) $2 \sqrt{2} e$.
(c) $e-\sqrt{2}$.
(d) $\sqrt{2} e-\sqrt{2}$.
6. What is the domain D and the range W of the function

$$
f(x, y)=\tan \left(\frac{1}{1+x^{2}+y^{2}}\right) ?
$$

(a) $\left.\left.D=\mathbb{R}^{2}, W=\right] 0, \tan (1)\right]$.
(b) $D=\mathbb{R}^{2}, W=[\tan (1),+\infty[$.
(c) $\left.\left.D=\left\{(x, y) \mid \tan \left(1+x^{2}+y^{2}\right) \neq 1\right\}, W=\right] 0, \tan (1)\right]$.
(d) $D=\left\{(x, y) \mid \tan \left(1+x^{2}+y^{2}\right) \neq 1\right\}, W=[\tan (1),+\infty[$.
7. The directional derivative of the function $f(x, y)=x y$ at the point $(1,3)$ in the direction of the vector $(2,1)$ is equal to
(a) $\frac{1}{\sqrt{5}}$.
(b) $\frac{3}{\sqrt{5}}$.
(c) $\sqrt{5}$.
(d) $\frac{7}{\sqrt{5}}$.
8. Let $f(x, y)$ be a continuous real function that is defined on \mathbb{R}^{2}. Which integral is in general equal to

$$
\int_{-1}^{0} \int_{4+4 x^{3}}^{4} f(x, y) d y d x \quad ?
$$

(a) $\int_{0}^{4} \int_{-1}^{\sqrt[3]{\frac{y}{4}-1}} f(x, y) d x d y$
(c) $\int_{0}^{4} \int_{\sqrt[3]{\frac{y}{4}-1}}^{0} f(x, y) d x d y$
(b) $\int_{0}^{4} \int_{\sqrt[3]{\frac{y}{4}-1}}^{-1} f(x, y) d x d y$
(d) $\int_{0}^{4} \int_{0}^{\sqrt[3]{\frac{y}{4}-1}} f(x, y) d x d y$
9. Consider the part of the disc

that is defined by $x^{2}+y^{2} \leq 1, y \geq \frac{1}{2}$. Which of the following inequalities describes the domain in polar coordinates?
(a) $\frac{1}{2 \sin (\theta)} \leq r \leq 1, \frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$.
(b) $\frac{1}{2 \sin (\theta)} \leq r \leq 1, \frac{\pi}{6} \leq \theta \leq \frac{5 \pi}{6}$.
(c) $\frac{\sin (\theta)}{2} \leq r \leq 1, \frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$.
(d) $\frac{\sin (\theta)}{2} \leq r \leq 1, \frac{\pi}{6} \leq \theta \leq \frac{5 \pi}{6}$.
10. Consider the integral

$$
I=\iiint_{V} x d V
$$

over the octant of the sphere with radius R

$$
V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq R^{2}, x, y, z \leq 0\right\} .
$$

Which of the following formulas is correct?
(a) $I=\int_{\pi}^{\frac{3 \pi}{2}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{R} \rho^{2} \sin (\varphi) \cos (\theta) d \rho d \varphi d \theta$
(b) $I=\int_{\frac{3 \pi}{2}}^{2 \pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{R} \rho^{2} \sin (\varphi) \cos (\theta) d \rho d \varphi d \theta$
(c) $I=\int_{\pi}^{\frac{3 \pi}{2}} \int_{\frac{\pi}{2}}^{\pi} \int_{0}^{R} \rho^{3} \sin ^{2}(\varphi) \cos (\theta) d \rho d \varphi d \theta$
(d) $I=\int_{\frac{3 \pi}{2}}^{2 \pi} \int_{\frac{\pi}{2}}^{\pi} \int_{0}^{R} \rho^{3} \sin ^{2}(\varphi) \cos (\theta) d \rho d \varphi d \theta$
11. The volume of the bounded solid defined by

$$
1 \leq z \leq \sqrt{2-x^{2}-y^{2}}
$$

is equal to
(a) $\frac{4 \sqrt{2}-5}{3} \pi$.
(b) $\frac{5 \sqrt{2}-4}{3} \pi$.
(c) $(4 \sqrt{2}-5) \pi$.
(d) $(5 \sqrt{2}-4) \pi$.
12. Let \vec{F} be a vector field that is at least twice differentiable in \mathbb{R}^{3}. Which of the following formulas does not make sense?
(a) $\operatorname{grad}(\operatorname{div}(\vec{F}))$.
(c) $\operatorname{grad}(\operatorname{grad}(\vec{F}))$.
(b) $\operatorname{div}(\operatorname{rot}(\vec{F}))$.
(d) $\operatorname{rot}(\operatorname{rot}(\vec{F}))$.
13. What is the circulation to the vector field

$$
\vec{F}=\binom{x y^{2}-y}{x^{4}+x^{2} y+x}
$$

along the boundary curve of the rectangle

$$
-1 \leq x \leq 1,0 \leq y \leq 1
$$

in counterclockwise direction?
(a) -8 .
(b) -4 .
(c) 4 .
(d) 8 .

