D. Normal Mixture Models and Elliptical Models

Normal Variance Mixtures
Normal Mean-Variance Mixtures
Spherical Distributions

Elliptical Distributions
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D1. Multivariate Normal Mixture Distributions
Pros of Multivariate Normal Distribution
e inference is “well known"” and estimation is “easy”.
e distribution is given by p and 2.

e linear combinations are normal (— VaR and ES calcs easy).

e conditional distributions are normal.
o For (Xl,XQ)T ~ NQ([,L, E),

p(X1,X2) =0 <= X; and X5 are independent.
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Multivariate Normal Variance Mixtures

Cons of Multivariate Normal Distribution

e tails are thin, meaning that extreme values are scarce in the normal
model.

e joint extremes in the multivariate model are also too scarce.

e the distribution has a strong form of symmetry, called elliptical
symmetry.

How to repair the drawbacks of the multivariate normal model?
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Multivariate Normal Variance Mixtures

The random vector X has a (multivariate) normal variance mixture
distribution if ]
X =pn+vWALZ, (1)

where
o 7 ~ Nk(O,Ik);
e W >0 is a scalar random variable which is independent of Z; and

e A € R¥™ and pu € RY are a matrix and a vector of constants,
respectively.

Set ¥ := AA'. Observe: X|W = w ~ Ng(p, wY).
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Multivariate Normal Variance Mixtures

Assumption: rank(A)=d < k, so X is a positive definite matrix.

If E(W) < oo then easy calculations give
E(X)=p and cov(X)=FEW)X.

We call p the location vector or mean vector and we call X the
dispersion matrix.

The correlation matrices of X and AZ are identical:

corr(X) = corr(AZ).

Multivariate normal variance mixtures provide the most useful
examples of elliptical distributions.
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Properties of Multivariate Normal Variance Mixtures

1. Characteristic function of multivariate normal variance mixtures

ox(t) = E (exp{it' X})
= E (E (exp{it' X}|W))

1
=F (exp{itTu - 5WtTZt}) .

Denote by H the d.f. of W. Define the Laplace-Stieltjes transform
of H

H(0) := E(e™ ") = / e VUdH (u).
0
Then |
ox(t) = exp{itTu}ﬁ (§tTZt> .
Based on this, we use the notation X ~ My(u, X, H).
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Properties of Multivariate Normal Variance Mixtures

2. Linear operations. For X ~ My(p, %, H) and Y = BX + b,
where B € R¥*? and b € R*, we have

A

Y ~ M, (Bu+b,BEB', H).
As a special case, if a € R,

a'X ~ M (a'p,a'¥a, ﬁ)

Proof:
LT T
CbY(t) — FE (ezt (BX—|—b)) _ ezt bqu(BTt)
1

— ot (b+BL) f <§tTBZBTt> |
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Properties of Multivariate Normal Variance Mixtures

3. Density. If P[W = 0] =0 then as X|W = w ~ Ny(p, w),
el = [ o) (w)
0
Y e (x —p) "X (x — p)
_/0 CSUESRE exp{— . }dH(w)

The density depends on x only through (x — ) 'S71(x — ).
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Properties of Multivariate Normal Variance Mixtures

4. Independence.
If 32 is diagonal, then the components of X are uncorrelated.

But, in general, they are not independent,

A

e.g. for X ~ My(p, I, H),
p(X1,X3) =0 = X; and X5 are independent.

Indeed, X7 and X5 are independent iff W is a.s. constant.

i.e. when X = (X1, X5) ' is multivariate normally distributed.
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Examples of Multivariate Normal Variance Mixtures

Two point mixture

ky with probabilit
W:{lWl PIODADIALY P, ky ko > 0, ky 2 ko.

ko with probability 1 — p
Could be used to model two regimes - ordinary and stress.
Multivariate t
W has an inverse gamma distribution, W ~ Ig(v/2,v/2).
Equivalently, % ~ X2,
This gives multivariate t with v degrees of freedom.
Symmetric generalised hyperbolic

W has a GIG (generalised inverse Gaussian) distribution.
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The Multivariate t Distribution

Density of multivariate t

(v+d)

f(x) =ksua (1 L x- p)'SH (x — u)) — 3

vV

where p € R ¥ € R4%d jg 5 positive definite matrix, v is the
degrees of freedom and kyx , 4 is @ normalizing constant.

o F(X)=p.

o As E(W) = %5, we get cov(X) = Z5X. For finite
variances/correlations, v > 2.

Notation: X ~ t4(v, @, 22).
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Bivariate Normal and t
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Left plot is bivariate normal, right plot is bivariate t with v = 3.
Mean is zero, all variances equal 1 and p = —0.7.
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Fitted Normal and ¢3; Distributions
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Simulated data (2000) from models fitted by maximum likelihood to
BMW-Siemens data. Left plot is fitted normal, right plot is fitted t¢s.
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Simulating Normal Variance Mixture Distributions
To simulate X ~ My(p, X, H).
1. Generate Z ~ N4(0,%), with ¥ = AAT.

2. Generate W with df H (with Laplace-Stieltjes transform FI)
independent of Z.

3.5et X =pu+vWAZ
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Simulating Normal Variance Mixture Distributions

Example: ¢ distribution

To simulate a vector X ~ t4(v, i, X).
1. Generate Z ~ N4(0,%), with ¥ = AA".
2. Generate V ~ x2 and set W = &.

3. Set X =p+ vWAZ.
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Symmetry in Normal Variance Mixture Distributions

Elliptical symmetry means 1-dimensional margins are symmetric.

Observation for stock returns: negative returns (losses) have heavier
tails than positive returns (gains).

Introduce asymmetry by mixing normal distributions with different
means as well as different variances.

This gives the class of multivariate normal mean-variance mixtures.
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D2. Multivariate Normal Mean-Variance Mixtures

The random vector X has a (multivariate) normal mean-variance
mixture distribution if

X £ m(W) + VW AZ, (2)
where
o Z ~ Ni(0,Iy);
e W > 0 is a scalar random variable which is independent of Z; and

o A c¢ R¥™* and pu € R? are a matrix and a vector of constants,
respectively.

e m: [0,00) — R? is a measurable function.
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Normal Mean-Variance Mixtures

Normal mean-variance mixture distributions add asymmetry.
In general, they are no longer elliptical and corr(X) # corr(AZ).

Set ¥ := AAT. Observe:

X|[W =w ~ Ng(m(w),wd).

A concrete specification of m(W) is m(W) = pu + W.

Example: Let W have generalized inverse Gaussian distribution to
get X generalised hyperbolic.

~ = 0 places us back in the (elliptical) normal variance mixture
family.
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D3. Spherical Distributions

Recall that a map U € R%*? js orthogonal if UU' =U'U = 1.

A random vector Y = (Y1,...,Y;) " has a spherical distribution if
for every orthogonal map U € R4*¢
d
Y =UY.
Use ||-|| to denote the Euclidean norm, i.e. for t € R¢,

[l = (83 + - + 1212
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Spherical Distributions

THEOREM The following are equivalent.

1. Y is spherical.

2. There exists a function 9 of a scalar variable such that

by (t) = E(e™ V) = (|[t]?), VteR™

3. For every a € R4
d
a'Y = ||a||Y;.

We call ¢ the characteristic generator of the spherical distribution.

Notation: Y ~ S;(%).
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Examples of Spherical Distributions
e X ~ Ny4(0,1;) is spherical. The characteristic function is
bx(t) = B %) = exp (-%ﬂ:) |
Then X ~ Sg(v) with ¢ (t) = exp (—3t).

o X ~ My(0,1,, H) is spherical, i.e. X < VWZ

The characteristic function is

ox(t) = H (%tTt) .

Then X ~ Sg(v) with () = H(3t).
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D4. Elliptical distributions

A random vector X = (X1,...,X,)" is called elliptical if it is an
affine transform of a spherical random vector Y = (Y7,...,Y%) ', ie.
d
X=u+AY,

where Y ~ Si(¢)) and A € RY** u € R? are a matrix and vector of
constants, respectively.

Set X = AAT.

Example: Multivariate normal variance mixture distributions

X 2+ VIWAZ
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Properties of Elliptical Distributions
1. Characteristic function of elliptical distributions

The characteristic function is

¢X(t) _ E(ez’tTX) _ E(eitT([L—i—AY)) _ ez'tTy,w (tTZt)

Notation: X ~ E;(p, 3, ).

We call o the location vector, X the dispersion matrix and v the
characteristic generator.

Remark: o Is unique but > and v are only unique up to a positive
constant, since for any ¢ > 0,

X ~ Eq(p,3,9) ~ Eg (""Cz’w ( ))

C
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Properties of Elliptical Distributions

2. Linear operations. For X ~ E4(u,,v) and Y = BX + b,
where B € R**4 and b € R*, we have

Y ~ E(Bu+b,BYB' ).
As a special case, if a € R,

a'X ~ FEi(a'p,a'Ya, ).

Proof:

_ eitT(b—i—Bl,l,) w (tTBZBTt) .

QRM 2010

97



Properties of Elliptical Distributions
3. Marginal distributions. For X ~ FE4(p, X, 1)), set

Xy =(X1,..., X)) and Xg= (Xpt1,...,Xq)"
Ly 211 Z12)
— and Y = :
a (“2> (221 2199

Xy~ Ep(py, 211,9) Xo ~ Eq_p(pg, X22, 7).

Then
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Properties of Elliptical Distributions

4. Conditional distributions. The conditional distribution of
X| X1 = x7 is elliptical, but in general with a different
characteristic generator 1.

In the special case of multivariate normality, the characteristic
generator remains the same.
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Properties of Elliptical Distributions
5. Convolutions. Let X and Y be independent and
X ~ Ed(u’azﬂvb) Y ~ Ed([l’aiﬂ;)

If ¥, =X then
X—I—YNEd(,Uf—F[],E,w),

where ¥ (u) := ¥ (u)(u).
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Properties of Elliptical Distributions

e The density of an elliptical distribution is constant on ellipsoids.

e Many of the nice properties of the multivariate normal are preserved.
In particular, all linear combinations a1 X1 + ... + a4X4 are of the
same type.

e All marginal distributions are of the same type.

Two rvs X and Y (or their distributions) are of the same type if
there exist constants a > 0 and b € R such that X < a¥ + 0.
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References

o | | (generalized hyperbolic
distributions)

o | ] (NIG distribution)

o | ] ) (hyperbolic distributions)
o | ] (GH distributions - PhD thesis)

o | | (elliptical distributions)

o | | (elliptical distributions in RM)
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