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Abstract. We propose a problem in differential geometry, i.e., which de-
formed surfaces produce prescribed curvature induced quantum potentials.
We solve this inverse problem in the case of surfaces of revolution. We also
show that there exist rotational surfaces in the form of a circular strip around
the axis of symmetry which allow particles with generic angular momentum
to bind. The quantum physics of a collection of circular strips of curved sur-
faces glued together is discussed in the conclusion in view of the possibility
to engineer devices based on thin films.

1. Introduction

It is possible to produce very narrow two-dimensional conducting surfaces which
allow electrons to propagate in the channel formed by their boundaries, but require
the electron wave function to vanish on these boundaries. In this paper, we study
the possibility of creating an effective one dimensional quantum problem by con-
fining a particle to move in a collection of simple rotationally invariant surfaces
in the form of ribbons glued together. The interaction between quantum particles
and curvature in such a construction induces possible physical applications. Fur-
thermore, curvature leads to surprising effects in quantum systems, for example,
in [5] it was shown that a charged quantum particle trapped in a potential of quan-
tum nature due to bending of an elastically deformable thin tube travels without
dissipation like a soliton. Surprisingly, the twist of a strip plays a role of a mag-
netic field and is responsible for the appearance of localized states and an effective
transverse electric field thus reminisce the quantum Hall effect [6].
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136 Victor Atanasov and Rossen Dandoloff

The results of this paper are based on the exploration of the properties of the
Schrödinger equation on a submanifold of R3. Following da Costa [3] an effective
potential appears in the Schrödinger equation which has the following form

Vs(q1, q2) = − ~2

2µ
(M2 −K) = − ~2

8µ
(k1 − k2)2 (1)

where µ is particle’s mass, ~ is the Plank’s constant, q1 and q2 are the generalized
coordinates on the surface, k1 and k2 are the principal curvatures of the surface
while M = (k1 + k2)/2 and K = k1k2 are the mean and the Gauss curvatures
respectively.

The presence of the mean curvature (which cannot be obtained from the metric
tensor and its derivatives alone) in (1) results in an important consequence that
Vs(q1, q2) is not the same for two isometric surfaces and da Costa [3] notes: “thus
independent of how small the range of values assumed for q3 (the third coordi-
nate which measures the distance to the surface along the normal vector), the wave
function always moves in three-dimensional portion of space, so that the particle is
“aware” of the external properties of the limit surface.” The particle is also “aware”
of the manner in which it is confined to move to that limit surface [8, 9]. In view
of this, solving the inverse problem, we construct a deformed surface which corre-
sponds to an effective free one-dimensional motion. We also report the existence
of a circular strip surface creating conditions for a zero angular momentum particle
to bind in a harmonic potential.

2. Derivation of da Costa’s Quantum Potential Associated with a
Constrained Motion on a Surface Immersed in R3

R. C. T. da Costa’s approach towards the quantization of a constrained particle is
clearly the most viable since the particle is first thought of as being unconstrained,
i.e., described by three Cartesian coordinates of a flat R3 space (where quantum
mechanics is perfectly working theory), but subject to an external potential Vλ,
which in a certain suitable limit (that is λ → ∞) forces the system to remain on
a curved submanifold S of R3. In order to obtain a meaningful result the parti-
cle’s wave function is “uniformly compressed” onto a surface thus avoiding the
arising of tangential forces which correspond to dissipative constraints in classical
mechanics. The resulting Schrödinger equation can be separated into a part which
contains the surface variables and independent of the constraining potential Vλ.
The most striking feature of the result obtained in this way is the presence of a
potential of geometric origin that is not derived from the intrinsic properties of the
limit surface alone!
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This potential cannot be obtained in a usual quantization procedure starting from a
classical Lagrangian of the already constrained particle L = gij q̇

iq̇j/2m since the
Lagrangian depends only on the metric properties of the surface.
The following treatment is also most adequate in describing a “real-world” situ-
ation, in which every attempt to reduce the dimensions of the system is strongly
oppressed by Heisenberg’s uncertainty relations.
Now, consider a particle with mass m permanently attached to a surface with a
parametric equation ~r = ~r(q1, q2), where ~r is the position vector, with a confining
potential Vλ(q3), where λ is a “squeezing” parameter

lim
λ→∞

Vλ(q3) =

{
0 q3 = 0
∞ q3 6= 0.

(2)

Here q3 is a coordinate measuring the distance of a point with coordinates (q1, q2, q3)
from the surface along the unit normal ~N ∼ ∂~r

∂q1
∧ ∂~r

∂q2
. The coordinate system in

R3 associated with the surface is given by the radius vector

~R(q1, q2, q3) = ~r(q1, q2) + q3 ~N(q1, q2). (3)

If we turn our attention to the Schrödinger equation in the above curvilinear coor-
dinate system we can write

− ~2

2µ

3∑
i,j=1

1√
G

∂

∂qi

(
√
G(G−1)ij

∂Ψ
∂qj

)
+ Vλ(q3)Ψ = i~

∂Ψ
∂t

(4)

where G = det(Gij) is the determinant of the metric associated with the coordi-
nate system ~R

Gij = Gji =
∂ ~R

∂qi
· ∂

~R

∂qj
, i, j = 1, 2, 3 (5)

where

∂ ~R

∂q3
= ~N,

∂ ~R

∂qα
=

∂~r

∂qα
+ q3

∑
β

wαβ
∂~r

∂qβ
, α, β = 1, 2. (6)

Here wαβ are the matrix elements of the Weingarten map of the tangent space in
itself. Up to a sign they coincide with the second fundamental form. The invari-
ants of the Weingarten matrix W also up to a sign coincide with the Gaussian
(K = detW ) and the mean (M = −1/2 trW ) curvatures respectively. A simple
calculation yields

G2 = (detGij)2 =

∣∣∣∣∣ ∂ ~R∂q1 ∧ ∂
~R

∂q2

∣∣∣∣∣
2

=
(
1 + q3 trW + q23 detW

)2
g2 (7)
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where g is the determinant of the metric

gij =
∂~r

∂qi
· ∂~r
∂qj

, i, j = 1, 2 (8)

associated with the surface ~r(q1, q2).

From now on we introduce the notation f(q1, q2, q3) = 1 + q3 trW + q23 detW .

Due to the structure of the metric components Gij we can break up the Laplacian
into two parts: a surface part denoted by D(q1, q2, q3) and a normal part defined
by i = j = 3 to obtain

− ~2

2µ
D(q1, q2, q3)Ψ− ~2

2µ

[
∂2Ψ
∂q23

+
1√
G

(
∂
√
G

∂q3

)
∂Ψ
∂q3

]
+ Vλ(q3)Ψ = i~

∂Ψ
∂t
·

Let us work out the form of the normal part

− ~2

2µ
1√
G

(
∂

∂q3

√
G
∂Ψ
∂q3

)
= − ~2

2µ
1
f

(
∂

∂q3
f
∂Ψ
∂q3

)
(9)

after introducing

Ψ = f−1/2χ (10)

which takes into account the volume element in this coordinate system

dV = f(q1, q2, q3)dSdq3, dS =
√
gdq1dq2. (11)

In terms of χ we obtain

1
f

∂

∂q3

(
f
∂

∂q3

χ√
f

)
=

1√
f

{
∂2χ

∂q23
+

[
1
f2

(
1
2

trW
)2

− detW
f

]
χ

}
. (12)

We now take the limit Vλ(q3) = ∞ as q3 6= 0 so that the wave function is forced
to “see” two steep potential barriers on both sides and its value is significantly
different from zero only for infinitesimal range of values around q3 = 0. Thus, we
set q3 = 0 in the differential operator to end up with

− ~2

2µ

2∑
i,j=1

1
√
g

∂

∂qi

(
√
g(g−1)ij

∂χ

∂qj

)
− ~2

2µ

[(
1
2

trW
)2

− detW

]
χ

− ~2

2µ
∂2χ

∂q23
+ Vλ(q3)χ = i~

∂χ

∂t

(13)
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Separating the dependence on the variables χ = χt(q1, q2, t)χn(q3, t) we have a
set of two equations determining the quantum evolution

− ~2

2µ

2∑
i,j=1

1
√
g

∂

∂qi

(
√
g(g−1)ij

∂χt

∂qj

)
− ~2

2µ

(
M2 −K

)
χt = i~

∂χt

∂t
(14)

− ~2

2µ
∂2χn

∂q23
+ Vλ(q3)χn = i~

∂χn

∂t
· (15)

The normalization condition on χt is
∫
S |χt|2 dS = 1 where dS is given by (11)

and the normalization condition on χn is the usual one-dimensional norm∫
|χn|2 dq3 = 1.

3. Rotational Surfaces

Let us take a rotationally invariant surface ~r(q1, q2), parameterized in Cartesian
coordinates in Monge fashion

~r(q1, q2) = ~r(ρ, φ) = (ρ cosφ, ρ sinφ, f(ρ)) (16)

where ρ ∈ [0,∞) and φ ∈ [0, 2π].
From the first and the second fundamental forms of this surface the following ex-
pressions for the principal curvatures are obtained

k1(ρ) =
f̈(ρ)(

1 + ḟ(ρ)2
)3/2

, k2(ρ) =
ḟ(ρ)

ρ
(
1 + ḟ(ρ)2

)1/2
(17)

where hereafter the dot represents derivative with respect to ρ.
If the surface is not a plane but it is asymptotically planar and cylindrically sym-
metric then the Schrödinger operator can have at least one isolated eigenvalue of
finite multiplicity which guarantees the existence of a geometrically induced bound
state [7]. Looking for stationary modes in polar coordinates in which the rotational
invariance of the surface (16) is obvious, we separate the variables

χt(ρ, φ, t) = exp (−iEmt/~) exp (imφ)ψm(ρ)

to end up with a quasi-one-dimensional Sturm-Liouville equation for the ρ-depend-
ent part of the wave function

1

ρ
√

1 + ḟ2
∂ρ

 ρ∂ρψm√
1 + ḟ2

− m2

ρ2
ψm = −2µEm

~2
ψm +

2m
~2
Vs(ρ)ψm(ρ) (18)

where Vs(ρ) is given by (1) with (17). The normalization condition in ρ-space is

2π
∫ ∞
0
|ψm(ρ)|2√g dρ = 1 (19)
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with the determinant of the metric g given by

g = ρ2
(
1 + ḟ(ρ)2

)
. (20)

Due to the cylindrical symmetry and the conservation of the z-component of the
angular momentum, we may reduce the problem to a one-dimensional equation
for each angular momentum quantum number m along the Euclidean line length
along the geodesic on the surface with fixed φ. Introducing the changes [4]

x =
∫ ρ

0

√
1 + ḟ2(ρ̃) dρ̃, ψm(ρ) = Fm(x)/

√
ρ (21)

we obtain for the function Fm(x) a one-dimensional Schrödinger equation which
is the Liouville normal form (see the Appendix) of (18)

− d2

dx2
Fm(x) +

[
Wm(x)− κ2

m

]
Fm(x) = 0. (22)

Here we have introduced the wave vector instead of the energy κ2
m = 2µEm/~2.

The geometrical properties of the surface determine the quantum effects through
the geometry dependent term Wm(x) in equation (22)

Wm [x(ρ)] = −1
4
k2

1(ρ) +
m2 − 1/4

ρ2
(23)

where k1 is given by (17). The normalization condition in x-space is

2π
∫ ∞
0
|Fm(x)|2 dx = 1. (24)

The term in Wm, proportional to m2, is the potential that describes the familiar
centrifugal force. Less familiar is the negative correction term −1/4 which results
not from the angular motion but from the radial motion (and can be traced back to
the radial derivatives in the Laplacian expressed in the associated with the surface
coordinates (16)). This is a coordinate force that comes from the reduction of
space from three to two dimensions and was called quantum anti-centrifugal force
by Cirone et al [2] because it possesses binding power due to quantum mechanics.
Similar situation for the free radial motion of a particle was noticed in [1]. This
contribution is strengthened by the binding curvature induced potential −k2

1/4, a
geometric force.
The potential Wm may be repulsive for particles with non-vanishing angular mo-
mentum (m 6= 0) and no solutions with negative energy may exist.
The effect from different contributions in the potential Wm stands out most clearly
for particles with zero angular momentum, that is, m = 0. These are attracted
to the origin and are found in a ring-shaped region around the axis of symmetry,
while all particles with m 6= 0 could be repelled from the center. It is clear that
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curvature not only introduces scale but also breaks the symmetry of the R2 plane
and could act as a selector of particles with different angular momenta.

4. Inverse Problem. Rotational Surfaces Corresponding to Prescribed
Quantum Problems

Let us now turn our attention to the inverse problem or equivalently the question
“Which rotationally invariant surface leads to an effective geometry induced po-
tential Wm that equals prescribed negative function −U [x(ρ)], where U ≥ 0 for
all ρ?” (negative because we are primary interested in bound states). This is a
question of particular interest since for certain classes of negative potentials −U
we already know the exact wave functions which can readily be used in revealing
the particle’s distribution on the surface. The solution of the inverse problem goes
through the recognition of its equivalence with the following differential equation
(see equations (23) and (17))

1
4

f̈(ρ)2(
1 + ḟ(ρ)2

)3 = U(ρ) +
m2 − 1/4

ρ2
· (25)

From equations (17) and (25) one can easily deduce a condition on k1(ρ) in order
to have a binding potential for a particle with m 6= 0, i.e.,

k2
1 >

4m2 − 1
ρ2

·

For smooth surfaces at ρ = 0 this means that there will be just strips where this
condition holds. For flat surfaces where k1 = 0 this condition implies that only
particles with m = 0 bind, a fact previously noticed in [1, 2]. Now we try to solve
equation (25) using the substitution ḟ = sinh (ω) (here ω = ω(ρ)) to end up with
the linear equation

1
2

d tanh(ω)
dρ

= ±
√
U(ρ) +

m2 − 1/4
ρ2

(26)

which can be solved yielding a result for ḟ(ρ). We integrate to obtain the profile
of the surface

f(ρ) = ±
∫ ρ

ρ1

|A|√
1−A2

dρ̃ (27)

where

A(ρ) = ±2
∫ ρ

ρ0

√
U(ρ̃) +

m2 − 1/4
ρ̃2

dρ̃. (28)

Here ρ0 and ρ1 are constants of integration and are to be determined by the bound-
ary conditions due to the behavior of the function U representing the potential we
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want to model. Since f(ρ) takes only real values (the same is true for all of its
derivatives, i.e., dnf/dρn ∈ R for n = 0, 1, . . . ) as a function describing the pro-
file of a surface we impose 0 < |A| < 1. The A = 0 case is realized by a flat
surface. Using the theorem of the mean value in (28) and the above inequality we
obtain

ρ0 < ρ < ρ0 +
1
2

∣∣∣∣∣U(ξ) +
m2 − 1/4

ξ2

∣∣∣∣∣
−1/2

(29)

where the point ξ ∈ [ρ0, ρ]. In that manner we show that for generic angular mo-
mentum m and non-zero potential U the corresponding rotational surface creating
this potential and allowing a bound state of a quantum particle with m 6= 0 exists
only in a ribbon, a circular strip around the axis of symmetry.
Let us also note that for m 6= 0 the bump (a macroscopic structure) has a magnetic
moment, i.e., the macroscopic deformation of the surface acquires quantum num-
ber. Indeed the probability density current ~J (div ~J = 0) associated with the wave
function χt is given by

~J = (Jφ, Jρ, Jz) =
~
m

m |ψm|2
ρ

,Re
ψ∗m∂ρψm

i
√

1 + ḟ2
, 0


where Jφ, Jρ and Jz are the components of the vector ~J in the orthonormal right-
handed triad (~eρ, ~eφ, ~ez), has non-zero and quantized with m circulation along the
circumference of the bump.
Now let us give a couple of examples.

Example 1. Free motion, U = 0. From (28) and (27) it follows that

f free
m (ρ) = ±ρ0

∫ ρ/ρ0

ρ1/ρ0

√
|4m2 − 1| |ln (ρ̃)|√

1− (4m2 − 1) ln2 (ρ̃)
dρ̃. (30)

Here ρ0 determines the characteristic scale of the surface on which we consider this
free quantum problem. Its magnitude can be chosen in [µm] or [nm] depending
on the scale that we want to model. If we consider the shape of a surface allowing
a free motion of a particle with zero angular momentum, that is m = 0, we can
integrate (30) with ρ1 = ρ0 to produce Fig. (1). That surface is asymptotically flat
as it tends to a cone f free

m (ρ)→ ρ as ρ→∞.
Next we consider the strip of a surface allowing a free motion of a particle with
non-zero angular momentum, that is m 6= 0. We can impose also the condition
1 > (4m2 − 1) ln2 (ρ/ρ0) to find the extensions of the strip

ρ0 < ρ < ρ0 exp
[
(4m2 − 1)−1/2

]
. (31)
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Figure 1. The surface f(ρ)/ρ0 (vertical axis) with a cusp on which a
particle with m = 0 moves freely. On the horizontal axis is plotted
ρ/ρ0. At infinity that surface tends to a cone.

Since the problem is defined on a strip, we can quantize it in the usual finite volume
method, which would lead to standing wave solutions on the surface. Their energy
is

Emn (ρ0) =
2π2~2n2

mρ2
0

[
e(4m2−1)−1/2 − 1

]2 · (32)

Example 2. Harmonic oscillator potential U = ω2ρ2. From (28) it follows that

Aharm
m (ρ) = ±2

∫ ρ

ρ0

√
ω2ρ̃2 +

m2 − 1/4
ρ̃2

dρ̃. (33)

Here we consider only the m = 0 case. It yields for (33) the result

Aharm
0 (ρ) = ±1

2

{√
4ω2ρ4 − 1 + arctan

[(
4ω2ρ4 − 1

)−1/2
]
− π

2

}
(34)

where we have set the value of ρ0 = 1/
√

2|ω|. From the obvious requirement
0 < |Aharm

0 | < 1 we obtain the following estimate

ρ <

(
1 + (2 + ε)2

)1/4√
2|ω|

≈ 51/4 + ε/53/4√
2|ω|

(35)

where ε = π/2 − arctan
(
4ω2ρ4 − 1

)−1/2 � 1. Thus, we find an expression for
the extensions of the circular strip of a rotational surface creating harmonic poten-
tial and allowing a bound state of a particle with vanishing angular momentum in
a harmonic oscillator potential

1√
2|ω|

≤ ρ <
(

51/4 +
ε

53/4

)
1√
2|ω|
· (36)
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5. Conclusion

In conclusion we speculate that a classical object (the ribbon) exhibits quantum
characteristics (the magnetic moment due to non-vanishing quantized probabil-
ity current circulation along the circumference) acquired due to curvature. The
foundation of another speculation, namely, a collection of circular strips of curved
rotational surfaces glued together may lead to a new quantum device is to be found
in equation (22) which is the Schrödinger equation in terms of the Euclidean line
length on the surface. By appropriately choosing the curved ribbons we may, at
least in theory, model a desired potential (23) which would be a piece-wise func-
tion. At the places where the pieces are glued (that is at certain ρ = ρj) we
have to require continuity of the wave function and its derivative which is exactly
the condition which reproduces the energy eigenvalues Ej and the corresponding
eigenvectors |j〉. There is no a priori restriction on their number N . Thus, in the-
ory, we reproduce aN -level system on which transitions between levels can be felt
by the distribution of the particles on the surface. An N -level quantum system is
clearly a quantum device which sometimes is referred to as q-bit.

Appendix: Basic Facts on the Sturm-Liouville Equation

The Sturm-Liouville equation is an equation cast in the form

− d
dz

(
p(z)

dΨ
dz

)
+ q(z)Ψ(z) = εw(z)Ψ(z)

where ε = 2µE/~2. Introducing a new variable x as

x =
∫ z

dz̃

√
w(z̃)
p(z̃)

the above equation acquires a simpler form

−d2Y (x)
dx2

+W (x)Y (x) = εY (x)

where

Y (x) = (p(z)w(z))1/4 Ψ

and

W (x) =
q(z)
w(z)

+
1

(p(z)w(z))1/4
d2

dx2
(p(z)w(z))1/4 .
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