Distributed Assertion Retrieval

Christoph Benzmiiller, Andreas Meier and Volker Sorge
Fachbereich Informatik
Universitit des Saarlandes
D-66041 Saarbriicken, Germany
{chris|ameier|sorge} @ags.uni-sb.de
http://www.ags.uni-sb.de/~ {chris|ameier|sorge }

1 Motivation

HUANG has identified the assertion level as a well defined abstraction level for
natural deduction proofs [5, 6]. Proofs at assertion level are composed of the
direct application of assertions, like theorems, axioms, and definitions.

To clarify the notion of assertion application we pick one of HUANG’s ex-
amples as given in [6]. An assertion application is for instance the application
of the SubsetProperty

VS1.VS52.851 C So=Vo.z € S1 =z €89

in the following way:

acU UCF
a€eF

Assertion(Subset Property)

The direct application of the assertion is thus an abbreviation for a more de-
tailed reasoning process on the calculus level; that is, the explicit derivation
of the goal a € F from the two premises by appropriately instantiating and
splitting the SubsetProperty assertion.

In the QMEGA system [1] assertions are applied using a specialized Assertion
tactic. Its purpose is to derive a goal from a set of premises with respect to a
theorem or axiom. It thus enables the more abstract reasoning with respect to
given assumptions at the assertion level. We can depict the assertion tactic as
a general inference rule in the following way

Prems .
Coal Assertion(Ass)

where Prems is a list of premises, Goal is the conclusion and Ass is the assertion
that is applied.

Determining possible assertion applications for subsequent subgoals in a
proof attempt can easily become a very difficult task and a direct, sequential
interleaving of assertion applicability tests with the main theorem proving loop
is a rather ineligible option.

Firstly, there might be too many assertions in the database to be checked
sequentially in each proof step. This motivates a concurrent mechanism; opti-
mally one with any-time behavior, that allows to continue the proving process
regardless of termination of applicability checks for assertions but also to resume
those checks if necessary.

Secondly, each applicability check might call for costly, complex, and prob-
ably even undecidable algorithms. Omne problem is that an assertion or a
succedent of an assertion might not directly match with a focused open sub-
goal such that some deduction steps are needed to establish the applicabil-
ity. For instance, if a mathematical database entails a theorem of the form
A AN...NA, = (B & C) while the focused subgoal is C < B, then sym-
metry of < is crucial for the applicability of the theorem. Thus, in its most
general form the task of determining applicable assertions entails some, more or
less restricted, theorem proving as an undecidable side condition. In a higher-
order theorem proving environment (e.g., 2MEGA is based on a higher order
natural deduction variant, and thus higher order assertions and proof goals do
occur) even matching is already complex and generally undecidable!. On the
other hand many applicable assertions can already be detected by much simpler
algorithms such as first-order matching. This motivates a flexible and param-
eterizable assertion retrieval mechanism, where simple, efficient algorithms as
well as powerful, complex ones can be concurrently employed in a resource
adapted manner.

Thirdly, assertion retrieval should not rely on database dependend specifics
such as theory names or even assertion names. For instance, in some MEGA
proof methods such specific knowledge is employed to precisely search for re-
spective assertions. However, this database dependend knowledge contrasts
robustness of assertion retrieval as slight modification of the database may
compromise the success of these methods. It also contrasts the possibility of
interoperatibility with alternative databases.

In order to meet the above requirements we suggest a technique to separate
the search for applicable assertions from the the main proving process and to
supersede database dependencies by general search criterions. Our approach,
which employs the Q-ANTS blackboard mechanism [2, 3], serves for both auto-
mated (e.g., with QMEGA’s proof planner) and interactive theorem proving. The
idea is to view the applicability tests as little independent and resource bounded
processes that run in parallel in the background. This especially enables us to
employ powerful and even undecidable algorithms without directly affecting the
main theorem proving process in the foreground. Applicable theorems are dy-
namically signaled to the prover including information which particular subgoal
is addressed. Thus, whenever the prover is determining which step to perform
next it can take these options into account — this holds for new open subgoals
as well as for re-opened, backtracked subgoals in the proof process.

'Decidability of full higher-order matching is still an open question.

2 Modeling Assertion Retrieval in Q-ANTS

Q-ANTS [2] is a blackboard architecture that was originally developed to com-
pute applicable inference rules in interactive and automated theorem proving.
In this context inference rules (e.g., calculus rule, tactics, or planning methods)
are uniformly regarded as sets of premises, conclusions and additional param-
eters. The elements of these three sets comprise the arguments of an inference
rule and have generally certain dependencies amongst each other. In order for
an inference rule to be applicable at least some of its arguments have to be
instantiated with respect to the given proof context. The task of the Q-ANTS
architecture is now to determine the applicability of inference rules by comput-
ing instantiations for their arguments. The architecture consists of two layers:
The upper layer collects and evaluates data on instantiations of arguments for
the given inference rules and thereby compiles a set of applicable rules. This
information is computed on the lower layer of the architecture concurrently for
each inference rule. The lower layer consists of single societies of agents, one
society for each inference rules. These agents are independent processes that co-
operatively compute argument instantiations with respect to the current proof
state. Q-ANTS provides facilities to define and modify its distributed processes
at run-time and also facilities to employ resource reasoning to guide the search.

We currently examine an approach to model assertion retrieval in 2-ANTS,
which distributes the applicability checks for assertions to several agents. These
agents are arranged in agent societies realizing the following two principles: (1)
Each agent society is able to check a certain cluster of assertions. (2) Within an
agent society the checks are done in two phases: first a filter agent performs a
simple check, then further retrieval agents employ more fine grained, but prob-
ably more expensive applicability checks. The cluster of assertions associated
with an agent society consists of related assertions applicable to subgoals that
share a certain property which is simple to test. This test is performed by the
filter agent of the society. The retrieval agents of a society employ then different
further applicability checks such as first order matching, higher order matching,
or even full higher order theorem proving. This separation of preselection and
main check enables the exclusion of many available assertions already by rather
simple tests without having to carry out all possible matchings and unifications.

During the proof process, for an open subgoal first the filter agents iden-
tify promising theorem clusters. For societies whose filter agent succeeds the
retrieval agents become active. If successfull, these agents provide suggestions
about assertions that are applicable to the open subgoals. When there is a
suggestion about an applicable assertion a further agent, called premise agent,
is triggered which tries to identify whether the proof context already contains
support lines that can be employed to justify the premises of the assertion.
This premise agent is also part of every agent society. With the information
computed for the single agent societies 2-ANTS can compile a set of applicable
assertions on the top level and suggest them to the prover. Each individual
suggestion contains information on the investigated subgoal, an identified ap-
plicable assertion, and available support lines that can be used immediately to
weaken premises of the assertion.

Note, that the cluster of assertions associated with an agent society is formed
dynamically at run-time. Technically, this is realized by equipping the retrieval
agents with specifications, about which assertions the agent can process. Then
at run-time the retrieval agents first look-up the data-base of assertions and
form the clusters of assertions associated with the different agent societies,
respectively. Selecting the assertions via specifications enables a more refined
selection of assertions and makes this selection independent of explicit references
to assertions or a particular data-base. Furthermore, new assertions can be
dynamically added and fitted into the existing clusters.

3 Example

Our example is taken from a case study on the proofs of properties of residue
classes. In this case study we apply QMEGA’s proof planner to classify residue
class sets over the integers together with given binary operations in terms of
their basic algebraic properties. The case study is described in detail in [7]. We
concentrate here on how Q-ANTs determines the applicability of assertions in
this context. We consider the first step in the proof of the theorem

Conc. + Closed(Zs, \x. \y- (z¥y)+35).

It states that the given residue class set Zs is closed with respect to the oper-
ation \z.\y. (z¥y)+35. Here Zs is the set of all congruence classes modulo 5,
i.e., {05,15,25,35,45}. ¥ and + are the multiplication and addition on residue
classes.

Among the theorems we have for the domain of residue classes there are some
that are concerned with statements on the closure property. In particular, we
have the following six theorems:

ClosedConst : N1:72.N¥¢:Z2ns Closed(ZLy,, A Ay. c)

ClosedFV : Vn:7z.Closed(ZLy, Az. \y.)

ClosedSV : Vn:7z. Closed(Zy,, Az« Ay y)

ClComp+ : Vn:7zz.Yop1.Yopa. (Closed(Zn,, op1) N Closed(ZLy,, 0p2)) =
Closed(ZLy,, Az Ay- (z op1 y)+(x op2 y))

ClComp— : Vn:z.Nop1.Yopo. (Closed(Zy,, 0p1) N Closed(Zy,,0p2)) =
Closed(ZLy,, \x.Ay- (z op1 y)—(x op2 y))
ClComp* : Vn:z.Nop1.Yopa. (Closed(Zy,, 0p1) N Closed(Zn,,0p2)) =

Closed(ZLy,, Az \y- (z op1 y)*(x op2 y))

The theorems ClosedConst, ClosedF'V, and ClosedSV talk about residue
class sets with simple operations whereas ClComp+, ClComp—, and ClComp*
are concerned with combinations of complex operations. The difference between
the groups of theorems is that the applicability of former can be checked with
slightly adapted first order matching whereas for the latter we need higher order
matching. For example, when applying the theorem CIComp+ to our problem
at hand the required instantiations are op; < Az.A\y.x*¥y and ops < Az. \y. 35,
which cannot be found by first order matching. However, since we are concerned
with only a distinct set of binary operations and their combinations, we can
keep things decidable by using a special, decidable algorithm, which matches the

® = {Goal: Goal contains the Closed predicate}

§1 = {Thm: Conclusion matches Goal with first order matching}

Acquisition: Conclusion contains Closed as outermost
predicate and a constant operation
Fo = {Thm: Conclusion matches Goal with special algorithm}

Acquisition: Conclusion contains Closed as outermost
predicate and a binary operation

G = {Prem: The nodes matching the premises of Thm}

Figure 1: Agent society for the Closed theorem cluster.

statements of the theorems ClComp+, ClComp—, and ClComp* with nested
operations on congruence classes.

In Q-ANTS we have the agent society as depicted in Figure 1 for the cluster
comprising the theorems given above. The filter agent & searches for possi-
ble conclusions that contain an occurrence of the Closed predicate. & writes
respective suggestions of goals to the blackboard. We then have two retrieval
agents, §1 and §2, that try to match the theorems. §; tries to match the the-
orems ClosedConst, ClosedFV, and ClosedSV to the formulas suggested by
& using first order matching. §s uses the special algorithm instead of match-
ing the theorems CIComp+, ClComp—, and CIComp* conventionally. §; and
F2 have additional acquisition predicates specifying that the agents can ac-
quire theorems whose conclusions have Closed as the outermost predicate. §1
furthermore requires that the theorem conclusion contains a simple, constant
operation while §o expects a complex operation. The acquisition predicate
serves to retrieve appropriate theorems from the knowledge base initially and
dynamically at run-time if new theorems are added. For each applicable theo-
rem they detect §1 and §9 place new extended suggestions on the blackboard.
The last agent is the premise agent &, which has an algorithm to extract the
necessary premises from a theorem suggested by §1 or §2 and, if there are any,
tries to find appropriate proof lines containing them.

For our concrete example theorem the information that accumulates on the
command blackboard for the Closed theorem cluster is as follows:

Closed Closed Closed
(Goal:Conc) (Goal:Conc)
(Goal:Conc, Thm:ClComp+)

First & detects an occurrence of the Closed predicate in the given goal Conc
and adds an entry suggesting it as instantiation for Goal to the blackboard.
With this entry the F; and §o start matching their respective theorems to
Cone. F9 is successful with the CIComp+ theorem and adds the matched
theorem as suggestion. Then & starts its search; for our example it is looking
for premises of the form Closed(Zs, A\z.\y.35) and Closed(Zs, Ax. \y. T%y).

4 Outlook

Evaluation: An important aspect of our work will be to evaluate our current
modeling of goal directed theorem retrieval in Q2-ANTS and also to relate them
to both other possible modeling approaches in 2-ANTS and standard indexing
techniques.

A disadvantage of our current approach is that the predicates for forming
clusters as well as some of the agents for matching assertions have to be ex-
plicitely specified. This could be avoided if each theorem is directly identified
with an 2-ANTS agent that analyzes the theorem’s applicability. However, this
approach essentially only distributes the complete testing of all assertions with-
out effectively reducing the number and complexity of the tests. Nevertheless,
a thorough comparison between the two different approaches should be made.

Compared with standard indexing techniques our viewpoint of theorem re-
trieval goes beyond their capabilities. Indexing techniques rely typically on de-
cidable matching or unification contexts. Generally our mechanism aims at the
retrieval of theorems modulo more powerful filters as well. Apart from standard
matching or unification filters we also employ full theorem proving. Addition-
ally the checks for different theorems are executed in parallel. These processes
are controlled and bounded by the resource concepts of 2-ANTS. Moreover we
make use of 2-ANTS anytime character that allows to apply suggested theorems
without waiting for all applicability checks to have finished.

Integration: In the long run we aim to integrate our approach with the
services provided by a mathematical database like Mizar [8] or MBASE [4].
MBASE, for example, already supports simple queries based on first order
matching to retrieve theorems which are applicable to a subgoal at hand. More
powerful query services are planned but it is clear that there will be limits.
For instance, to employ full higher order theorem proving within the retrieval
of theorems is out of reach for a mathematical knowledge base project. Here
is where both approaches can be merged. Simple filter queries, for instance
the test of cluster properties, can probably be successfully mapped to database
services from within the (- ANTS agents. More powerful methods, such as the-
orem provers, should be employed in Q2-ANTS making use of the distribution
and resource mechanisms.

References

[1] C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and
V. Sorge. !Mega: Towards a Mathematical Assistant. In Proceedings of CADE—-1/,
volume 1249 of LNAI, pages 252-255. Springer Verlag, 1997.

[2] C.Benzmiiller and V. Sorge. Critical Agents Supporting Interactive Theorem Prov-
ing. In Proceedings of EPIA-99, volume 1695 of LNAI pages 208—221. Springer
Verlag, 1999.

[3]

[4]

C. Benzmiiller and V. Sorge. 2-ANTS — an open approach at combining interactive
and automated theorem proving. In Proceedings of the Calculemus Symposium
2000. AK Peters, 2001.

A. Franke and M. Kohlhase. MBase: Representing mathematical Knowledge in a
Relational Data Base. In CALCULEMUS 99, Systems for Integrated Computation
and Deduction, Electronic Notes in Theoretical Computer Science, pages 135-152.
Elsevier, 1999.

X. Huang. Human Oriented Proof Presentation: A Reconstructive Approach. PhD
thesis, Computer Science Department, Universitit des Saarlandes, Germany, 1994.

X. Huang. Reconstructing Proofs at the Assertion Level. In Proceedings of CADE-
12, volume 814 of LNAI, pages 738—752. Springer Verlag, 1994.

A. Meier, M. Pollet, and V. Sorge. Classifying Isomorphic Residue Classes. In
Proceedings of EuroCAST 2001, volume 2178 of LNCS. Springer Verlag, 2001.

A. Trybulec and H. Blair. Computer assisted reasoning with MIZAR. In Proceedings
of the 9th International Joint Conference on Artificial Intelligence, pages 26—28.
Morgan Kaufmann, 1985.

