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On the potential functions for the hyperbolic
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Abstract We explain how to construct certain potential functions for the
hyperbolic structures of a knot complement, which are closely related to
the analytic functions on the deformation space of hyperbolic structures.
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1 Introduction

Let M be the complement of a hyperbolic knot K in S$3. Through the study of
Kashaev’s conjecture, we have found a complex function which gives the volume
and the Chern—Simons invariant of the complete hyperbolic structure of M at
the critical point corresponding to the promised solution to the hyperbolicity
equations for M, see [2], 4] for details.

The purpose of this article is to explain how to construct such complex functions
for the non-complete hyperbolic structures of M. Such functions are closely
related to the analytic functions on the deformation space of the hyperbolic
structures of M , parametrized by the eigenvalue of the holonomy representation
of the meridian of K, which reveal a complex-analytic relation between the
volumes and the Chern—Simons invariants of the hyperbolic structures of M,
see [3, [5] for details.

In this note, we suppose K is 5y for simplicity which is represented by the
diagram D depicted in Figure
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Figure 1
2 Geometry of a knot complement

2.1 Ideal triangulations

We first review an ideal triangulation of M due to D. Thurston. Let M denote
M with two poles 00 of S removed. Then, M decomposes into 5 ideal octa-
hedra corresponding to the 5 crossings of D, each of which further decomposes
into 4 ideal tetrahedra around an axis, as shown in Figure

o0
®

Figure 2

In fact, we can reocover M by glueing adjacent tetrahedra as shown in Figure
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Figure 3

As usual, we put a hyperbolic structure on each tetrahedron by assigning a
complex number, called modulus, to the edge corresponding to the axis as shown
in Figure [ In what follows, we denote the tetrahedron with modulus z by
T(z).

Figure 4

Let B be the intersection between T'(a1)UT (b1) and T'(bs)UT(c3). Then, each
of

T(al), T(bl), T(bg), T(Cg)

intersects ON(BUK) in two triangles, and they are essentially one-dimensional
objects in S3\ N(B U K). On the other hand, each of

T(c1),T(d1),T(a2), T(be), T(d2),T(a3),T(ds),T(as),T(bs),T(ca),T(c5)

intersects ON (B U K) in two triangles and one quadrangle, and they are essen-
tially two-dimensional objects in S3\ N(B U K). Thus, by contracting these
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15 tetrahedra, we obtain an ideal triangulation & of M with
T(c2),T(da), T(as), T(bs), T (ds)-

Figure [5| exhibits the triangulation of ON(B U K) induced by S, where each
couple of edges labeled with the same number are identified.

2 3 4 5 6
- @
ds b ds 2a5 ds d4\’
bs
1 d4 as 1
as < b3 ds bs
AN} Ady 2 as C2
3 4 5 6 2
Figure 5

2.2 Hyperbolicity equations

If ¢o,dy,as,bs,ds above give a hyperbolic structure of M, the product of the
moduli around each edge in & should be 1, which is called the hyperbolicity
equations and can be read from Figure 5| as follows.

dsbs = asbsds = 1,
caa5(1 —1/dy) . (1-1/ds)(1 —1/c2)(1 —1/bs5)
1 —dy (1 —a5)(1—bs) -
co(1—1/as) (1—1/ds5)(1—1/bs)

. =1,
(1—d5)(1—62) (1 —d5)(1 —a5)(1—d4)
d4(1 - 1/@5)(1 — 1/d4) ) d5(1 — 1/02) _
1-— b5 1-— C2
It is easy to observe that these equations are generated by
Coay 1-— 1/&5 (1 — 1/&5)(1 — d4) Co
dabs = asbsds = 1 = = = =,
0 A = T T (U= 1ea)(1— ds) 1—bs ds

which suggests to put
C2 :yé-v d4 :x/gv as :x/ya b5 :é-/xa d5 :y/é-
and to rewrite the hyperbolicity equations as follows.

(1—y/x)A—=z/§) 1—y/x _ g2
1—¢/x (1 —y/)(1 —1/y8) '
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Figure 6

Note that the variables z,y correspond to the interior edges of a graph depicted
in Figure [6] which is D with some edges deleted.

A solution to the equations above determines a hyperbolic structure of M,
where ¢ is nothing but the eigenvalue of the holonomy representation of the
meridian of K. The set D of such solutions is called the deformation space of
the hyperbolic structures of M and can be parametrized by £ or the eigenvalue
1 of the holonomy representation of the longitude of K. In our example, 7 is
given by

_ v _ e 1-¢/x
n= s U = e v

Note that the factors 1 —xz/¢,1 —y/&,1 —&/x and 1 — 1/y€ correspond to the
corners of D which touch the unbounded regions.

3 Potential functions

Curious to say, we can always construct a potential function for the hyperbolicity
equations and 7 combinatorially by using Euler’s dilogarithm function

Lig(z) = —/Ozlog(l_w)dw,

w

where we remark that the volume of a tetrahedron with modulus z is given by

D(z) = ImLis(2) + log |2| arg(1 — z).
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3.1 Neumann—Zagier’s functions

In fact, we define V(x,y,&) by

z? 72

—Lig(1/y€) + Lig(y/€) — Lig(y/x) + Liz({/x) + Lig(x/¢) + log {log 266G
the principal part of which is nothing but the sum of dilogarithm functions
associated to the corners of the graph as shown in Figure

N 7

T y z y
Lis(y/x)—m2/6 72/6—Liz2(z/y)
Figure 7
Then, we have
LA 5 Gk L) AL Lo

Oz (I—y/n) (1 —=/€) Yoy = e —y/e)1 - 1/y8)
both of which vanish on D, and

A i (R0 S [ 713
3 V2ER(1— €/x)(1 — 1/y€)
b {x.l}z_gﬁV_ ov
I R Ry ox Yoy
B v (1—2/O—y/O\>, oV oV
Rt v e R T
that is, 5
y
5675:_10@72

on D, which shows V(z,y,e") coincides with ®(u) given in [3, Theorem 3].

3.2 Dehn fillings

Furthermore, for a slope a € Q, we put

N logﬁ(%xﬁ—plog&)?

Va(z,y,8) = V(z,y,$) .
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where p, ¢ € Z denote the numerator and the denominator of «. Then, we have

21y —1 —plog¢® _ 2my/~1 —plog&® — qlog’
LB ’
73 23 q q

and so a solution (z4,Ya,&q) to the equations

dVa(iL‘,y,f) =0

determines the complete hyperbolic structure of the closed 3-manifold M, ob-
tained from M by « Dehn filling. Note that, by choosing 7, s € Z such that
ps — qr = 1, we can compute the logarithm of the eigenvalue of the holonomy
representation of the core geodesic v, of M, which is related to the length and
the torsion of =y, as follows, see [3, Lemma 4.2].

smy/—1 —logé& length(va) ++/—1- torsion(~4)

1 ’I‘S:
og&'n . 5

Volumes and Chern—Simons invariants
3.3 Yoshida’s functions

As in [4], we can observe

Im Vo (z,9,8) = —D(l/y€)+D(y/§)— (y/$)+D(€/$)+D(l‘/§)

and so
Im Va(xm yonga) = VOl(MOL)'

To detect Re Vi (Za, Yo, &a), we shall consider
2

R(x.y,€) = —R(1/y€) + R(y/¢) — R(y/x) + R(§/2) + R(x/¢) - T

where R(z) denotes Roger’s dilogarithm function defined by
R(z) = Lia(z) + log zlog(1 — 2)/2.
Then, R(x,y,£) can be expressed as
~Lia(1/y€) + Lia (y/€) — Lia(y/a) + Lis(&/a) + Lia (x/€)

_logz 871/_ 2\ logy al 2\  log¢ z?
(o5 —1ou?) =5 (v +1oe¢ 3 1% g )

2 2 2
and so R(z,y,&) agrees with

V(z,y;§) +logé logn
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on D and with

log £(2mv/—1 — plog & mv/—1-logé
Va(@,y,8) — ( . )+10g§10gn=Va(:v,y,£)—q
at (T, Ya,&a) € D. Therefore, we have

st? + /=1 -logé&, n sm?
q q

V=1 2
T - {length(~,) + vV —1 - torsion(va) } + =
q

R(xaaya7§a> = Va(xouyomgoc)_

= Va(fﬂmymﬁa) +

In particular,

21o 2
)+i|§a| _ ;_Vol(Ma)—i—length(’Ya)?

which shows that, up to a pure imaginary constant,
2
R(z,y,e")
my/—1
must coincide with 27 f(u) of [3, Theorem 2], and that

2 2 2
Re — R(Za,Ya,&a) = Re — {Va(xa,ya,fa) + SZ} — torsion(vy)

2 2
Im ;'R(.Ta, Yooy §a) =Im ;'Va(xom Yo, fa

must coincide with —47C'S(M,,) — torsion(v,). Consequently, up to some con-
stant which is independent of «, we have

S7T2
Re {Va(:ca,ya,ga) + q} = —272CS(M,,).

4 Concluding remarks

We redefine V,,(z,y, &) as follows.

Valz,y,) = V(a,y,€) + IOgg(QW\ﬁ;plogf) +sm?

Then, dV,(z,y,&) = 0 gives the hyperbolicity equations for M, , and
Vo (Zas Yo, Ea) = —202CS(M,) + vol(My)v/—1
up to a real constant, where (x4, ¥n,&q) is a solution to the equations above.

We finally remark that such a construction always works, even for a link, and
the analytic functions in [3, 5] are now combinatorially constructed up to a
constant. For the figure-eight knot and « € Z, our potential function coincides
with the function in [I] which appears in the “optimistic” limit of the quantum
SU(2) invariants of M, .

Geometry € Topology Monographs, Volume 4 (2002)



On the potential functions for the hyperbolic structures of a knot complement 311

References

[1] H Murakami, Optimistic calculations about the Witten—Reshetikhin—Turaev
mwvariants of closed three-manifolds obtained from the figure-eight knot by inte-

gral Dehn surgeries, “Recent Progress Toward the Volume Conjecture”, RIMS
Kokyuroku 1172 (2000) 70-79

2] H Murakami, J Murakami, M Okamoto, T Takata, Y Yokota, Experi-
ment. Math. 11 (2002) 427-435

[3] WD Neumann, D Zagier, Volumes of hyperbolic 3-manifolds, Topology 24
(1985) 307-332

[4] Y Yokota, On the volume conjecture for hyperbolic knots, preprint available at
http://www.comp.metro-u.ac.jp/~jojo/volume-conjecture.ps

[5] T Yoshida, The n-invariant of hyperbolic 3-manifolds, Invent. Math. 81 (1985)
473-514

Department of Mathematics, Tokyo Metropolitan University
Tokyo, 192-0397, Japan

Email: jojo@Gmath.metro-u.ac.jp

URL: http://www.comp.metro-u.ac.jp/"jojo
Received: 5 December 2001 Revised: 19 February 2002

Geometry € Topology Monographs, Volume 4 (2002)


mailto:jojo@math.metro-u.ac.jp
http://www.comp.metro-u.ac.jp/~jojo

	1 Introduction
	2 Geometry of a knot complement
	2.1 Ideal triangulations
	2.2 Hyperbolicity equations

	3 Potential functions
	3.1 Neumann--Zagier's functions
	3.2 Dehn fillings
	3.3 Yoshida's functions

	4 Concluding remarks
	Bibliography

