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Introduction

This paper is a brief survey of my work on abelian torsions of 3-manifolds. In
1976 I introduced an invariant, 7(M), of a compact smooth (or PL-) manifold
M of any dimension (see [21] and references therein). This invariant is a sum
of several Reidemeister torsions of M numerated by characters of the (finite
abelian) group TorsH where H = H;y(M). This invariant lies in a certain
extension of the group ring Z[H] and is defined up to multiplication by +1 and
elements of H. In the case dimM = 3 one can be more specific: if by (M) > 2
then 7(M) € Z[H|/+ H; if by(M) = 0 then 7(M) € Q[H|/+ H; if by(M) =1,
then 7(M) can be expanded as a sum of an element of Z[H| and a certain
standard fraction. Classically, the Reidemeister torsions are used to distinguish
homotopy equivalent but not simply homotopy equivalent spaces like lens spaces
or their connected sums. The study of 7(M) was motivated by its connections
with the Alexander-Fox invariants of M. The present interest to this invariant
is motivated by its connections to the Seiberg-Witten invariants.

To get rid of the ambiguity in the definition of 7(M) one needs to involve
additional structures on M. In [I§] I introduced a refined version 7(M,e,w)
of 7(M) depending on the choice of a so-called Euler structure e on M and a
homology orientation w of M (this is an orientation in the real vector space
H,.(M;R)). An Euler structure on M is a non-singular tangent vector field
on M considered up to homotopy and an arbitrary modification in a small
neighborhood of a point. The set Eul(M) of Euler structures on M has a
natural involution e — e~! transforming the class of a non-singular vector
field to the class of the opposite vector field. If x(M) = 0, then the group
H = H (M) acts freely and transitively on Eul(M) so that |[Eul(M)| = |H|.
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The invariant 7(M, e,w) has no indeterminacy and 7(M) = +H 7(M,e,w) for
all e,w. The torsions of various Euler structures on M are computed from each
other via 7(M, he,w) = h7(M,e,w) for any h € H.

In this paper we shall assume that M is a closed connected oriented 3-manifold.
It has a homology orientation wys defined by a basis ([pt],b,b*,[M]) in
H,(M;R) where [pt| € Hyo(M;R) is the homology class of a point, b is an
arbitrary basis in Hy(M;R), b* is the basis in Hy(M;R) dual to b with re-
spect to the (non-degenerate) intersection form Hi(M;R) x Ho(M;R) — R,
and finally [M] € H3(M;R) is the fundamental class of M. The homology
orientation wps does not depend on the choice of b. We shall write 7(M,e) for
T(M,e,wyr) where e € Eul(M). If —M is M with opposite orientation, then
(=M, e) = (1) D+ (M e).

The torsion 7(M,e) satisfies a fundamental duality formula
T(M ) = 7(M,e™)

where the overbar denotes the conjugation in the group ring sending group
elements to their inverses.

The torsion 7(M) determines the first elementary ideal E(7) C Z[H] of the fun-
damental group 7 = 71 (M). In particular if by (M) > 1, then E(r) = 7(M, e)I?
where e is any Euler structure on M and I C Z[H]| is the augmentation
ideal. This implies that 7(M,e) determines the Alexander-Fox polynomial
A(M) = A(m) € Z[H/TorsH]. The torsion 7(M) can be viewed as a natural
lift of A(M) to Z[H]. In contrast to A(M), the torsion 7(M) in general is not
determined by 71 (M); indeed, it distinguishes lens spaces with the same 7.

The torsion 7(M) can be rewritten in terms of a numerical torsion function Thy
on the set Eul(M), see [19]. This function takes values in Z if by (M) # 0 and
in Qif by(M) =0. If by(M) # 1, then 7 and Tys are related by the formula
T(M,e) = Z Tr(he) b=t
heH
for any e € Eul(M). For b;(M) = 1, there is a similar but a little more

complicated formula. The torsion function has a finite support and satisfies the
identity Ths(e) = Ta(et) for all e € Eul(M).

For by (M) = 0, we have > cpy) Tm(e) = 0. For b1(M) > 1, the number
> ecrui(amr) Ta(e) is essentially the Casson-Walker-Lescop invariant A(M) € Q:

(=1)rMDFIN(M), if by (M) > 2,

Y Tule)= { _ 2
e€Eul(M) A(M) + |TorsH|/12, if by(M) = 1.
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Connections to the Seiberg-Witten theory

The Seiberg-Witten invariant of M is a numerical function, SWj;, on the set of
Spin®-structures on M, see for instance [14], [I1], [T2] and references therein.
For a Spin¢-structure e on M, the integer SW(e) is the algebraic number
of solutions, called monopoles, to a certain system of differential equations
associated with e. This number coincides with the 4-dimensional SW-invariant
of the Spin®-structure e x 1 on M x S*.

The invariants SWj, and 7(M) turn out to be equivalent (at least up to sign).
The first step in this direction was made by Meng and Taubes [14] who observed
that SWj, determines the Alexander-Fox polynomial A(M). The equivalence
between SWj; and 7(M) was established in [20] in the case by (M) > 1. The
Euler structures on M are identified there with Spin¢-structures on M and
it is proven that SWys(e) = Ty (e) for all e € Eul(M). A similar result for
rational homology spheres was recently obtained by Nicolaescu [15].

For any e € Spin®(M), the number Tys(e) = £SWis(e) can be viewed as
the Euler characteristic of the Seiberg-Witten-Floer monopole homology of M
associated with e (see [I2]). The same number appears also as the Euler char-
acteristic of the Floer-type homology of M associated with e by Ozsvath and
Szabd, see [16].

Surgery formulas

The definition of 7 is based on the methods of the theory of torsions, specifically,
cellular chain complexes, coverings, etc. The definition of SW is analytical.
These definitions are not always suitable for explicit computations. We outline
a surgery formula for T suitable for computations.

We first give a surgery description of Euler structures (= Spin©-structures) on
3-manifolds. To this end we introduce a notion of a charge. A charge on an
oriented link L = Ly U...U L,,, C S? is an m-tuple (k1, ..., k) € Z™ such that
forall i=1,...,m,
ki =1+ Ik(L;, Lj) (mod2)
J#i

where [k is the linking number in S3. A charge k on L determines an Euler
structure, efc\/‘[ , on any 3-manifold M obtained by surgery on L, see [22].

The surgery formula computes TM(e% ) in terms of the framing and linking

numbers of the components of L, and the Alexander-Conway polynomials of L
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and its sublinks. Thus, the algebraic number of monopoles can be computed
(at least up to sign) in terms of classical link invariants. For simplicity, we state
here the surgery formula only in the case of algebraically split links and the first
Betti number > 2.

Let L = LiU..UL, C S be an oriented algebraically split link (i.e.,
Ik(L;,Lj) =0 for all i # j). Recall the Alexander-Conway polynomial Vp, €
Z[tEY, . tE1, see [B]. Since L is algebraically split, V7, is divisible by [T7, (t7 —
1) in Z[t{, ..., tE1]. We have a finite expansion

VL/ﬁ(ﬁ —1)= > z(L) th . g
i=1

I=(l1,....lm)EZ™
where z;(L) € Z.

Let M be obtained by surgery on L with framing f = (f1,...,fm) € Z™.
Denote by Jy the set of all j € {1,...,m} such that f; = 0. For a set J C
{1,...,m}, denote the link U;jc;L; by L. Put |J| = card(J) and suppose that
|Jo| > 2. Then for any charge k = (ki,..., k) on L,

Thr(ex') (1)

= (-nmtt Y (=)l TT sign(f)) > a(L7).
JoCJC{1,...,m} j€JI\Jo l€Z” l=—Fk (mod 2f)

Here the sum goes over all sets J C {1,...m} containing Jy. The sign
sign(f;) = £1 of f; is well defined since f; # 0 for j € J\Jy. The formula
1 € Z7,1 = —k (mod 2f) means that [ runs over all tuples of integers numerated
by elements of J such that {; = —k; (mod 2f;) for all j € J. By [J| > |Jo| > 2,
the algebraically split link L7 has > 2 components so that z(L”) is a well de-
fined integer. Only a finite number of these integers are non-zero and therefore
the sum in (1) is finite. This sum obviously depends only on k(mod2f); the
Euler structure e}! also depends only on k(mod 2f).

For a link L = Ly U ... U L,, which is not algebraically split, the polynomial
V1, can be divided by [[7,(t? —1) in a certain quotient of Z[t;", ..., t;5!]. This
leads to a surgery formula for an arbitrary L, see [22]. Formula (1) and its
generalizations to non-algebraically split links yield similar formulas for the
Alexander polynomial A(M) and the Casson-Walker-Lescop invariant of M
(in the case b (M) #0).

Moments of the torsion function

Every e € Eul(M) has a characteristic class c¢(e) € H = Hi(M) defined as the
unique element of H such that e = c(e)e™!. This class is the first obstruction
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to the existence of a homotopy between a vector field representing e and the op-
posite vector field. For any z1, ..., 7, € H'(M;R), we define the corresponding
m-th moment of Ty by

(Thr | 21y eeey T = Z T (e) H(c(e),:ni}
i=1

ecEul(M)

where on the right-hand side (, ) is the evaluation pairing H x H*(M;R) — R.
It turns out that if m < by(M) — 4, then (Tys | x1,...,xm) = 0. In particular, if
bi(M) > 4 then >, Ta(e) = 0.

Interesting phenomena occur for m = by (M) — 3. Set b= by(M). If b is even
then (Ths |1, ...,25_3) = 0 for any z1,...,m,_3 € HY(M;R). For odd b, the
number (Ths |x1,...,xp—3) is determined by the cohomology ring of M with
coefficients in Z. We state here a special case of this computation. Recall that
an element of H'(M) is primitive if it is divisible only by £1. If b > 3 is odd
then for any primitive € H'(M),

(Tag | @, ..., ) = 2°73(b — 3)! | Tors H| det g, (2)
b—3

where g, is the skew-symmetric bilinear form on the lattice H'(M)/Zz defined
by 9.(y,2) = (x Uy U 2)([M]) for y,2 € HY(M)/Zz. Note that detg, =
(Pf(g2))? > 0. This computation implies for instance that if x is dual to the
homology class of a (singular) closed oriented surface in M of genus < (b—3)/2,
then 3, Tar(e){c(e),z)*=3 = 0. For b = 3, formula (2) gives

> Tu(e) = [TorsH| ((z Uy U 2)([M]))? 3)

where z,y, 2 is any basis of H'(M). Formula (3) and the equality 3", Ths(e) =
A(M) yield Lescop’s computation of A\(M) for by (M) = 3.

Basic Euler structures and the Thurston norm

An Euler structure e € Eul(M) is said to be basic if Tys(e) # 0. The set of
basic Euler structures is closely related to the Thurston norm, see [I7]. Recall
that the Thurston norm of s € H'(M) is defined by

Isllz = min {x—(5)}

where S runs over closed oriented embedded (not necessarily connected) sur-
faces in M dual to s and x_(S) = >, max(—x(S;),0) where the sum runs
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over all components S; of S. Then for any s € H'(M) and any basic Euler
structure e on M,

[Isllr = [{c(e), 5)I. (4)

This inequality is a cousin of the classical Seifert inequality which says that
the genus of a knot in S3 is greater than or equal to the half of the span of
its Alexander polynomial. The inequality (4) is a 3-dimensional version of the
(much deeper) adjunction inequality in dimension 4. A weaker version of (4)
involving A(M) rather than 7(M) appeared in [I3]. For more general homo-
logical estimates of the Thurston norm, see [, [23]. For analogous estimates in
the Seiberg-Witten theory in dimension 3, see [1], [6], [, [§]. Similar estimates
appear also in the Ozsvath-Szabé theory [16].

Examples

Let M be the total space of an oriented circle bundle over a closed connected
orientable surface ¥ of genus g > 0. Let ex € Eul(M) be represented by the
non-singular vector field on M tangent to the fibers of the bundle M — X
in the positive (resp. negative) direction. Observe that e = (ey)™' and
cle-) = e_Jeq = 1?2972 where t € H = H;(M) is the homology class of the
fiber S'. We claim that

+7(M,e_) = +(t —1)%972, (5)

Here we do not (homologically) orient M and consider the torsion up to sign.
Applying (5) to the opposite orientation of the fibers, we obtain that +7(M,e)
= +(t71 — 1)2972. The same formula follows from (5) and the duality for 7.

The Thurston norm for M can be easily computed since most (if not all) gen-
erators of Hyo(M) are represented by tori. For any s € Hy(M;R), we have
[Is|[7 = |{t,s)|. In particular if the bundle M — X is non-trivial then the
Thurston norm is identically 0. As an exercise, the reader may compute the
torsion function for M (at least up to sign) and check (4). Similar computations
are available in the Seiberg-Witten theory, see [2.

In particular, if M is the 3-torus S x S! x S! and e € Eul(M) is represented
by the non-singular vector field on M tangent to the fibers of the obvious
projection M — S! x S then £7(M,e) = £1. This and formula (3) imply
that 7(M,e) =1 for any orientation of M.
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Realization

The realization problem for 7 consists in finding necessary and sufficient con-
ditions for a pair (a finitely generated abelian group, an element of its group
ring) to be realizable as the first homology group and the torsion 7 of a closed
connected oriented 3-manifold. In spirit of Levine’s [I0] realization theorem for
the Alexander polynomial of links in S2, we have the following partial result.

Let H be a finitely generated abelian group and \ € Z[H] be symmetric with
aug(A) = 1. If a pair (H,T) is realizible then so is (H,\T).

Here ) is said to be symmetric if X = X. For example, since the torsion of
a 3-torus is 1, we obtain that any symmetric A € Z[Z3] with aug()\) = 1 is
realizable as the torsion 7 of a closed oriented 3-manifold with H; = Z3. It
follows from the Bailey theorem (see [5]) and the surgery formula outlined above
that any symmetric \ € Z[Z?] is realizable as the torsion 7 of a closed oriented
3-manifold with H; = Z2.
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