Part 11






I SSN 1464-8997 (on line) 1464-8989 (printed) 199

Geometry & Topology Monographs
Volume 3: Invitation to higher local fields
Part I1, section 1, pages 199-213

1. Higher dimensional local fields and L-functions

A. N. Parshin

1.0. Introduction

1.0.1. Recdl [P1], [FP] that if X isascheme of dimension » and
XoCcX1C ... X,1CX,=X
isaflag of irreducible subschemes (dim(X;) =), then one can define aring

KXo ,,,, Xn-1

associated to the flag. In the case where everything is regularly embedded, the ring is
an n-dimensional local field. Then one can form an adelic object

where the product is taken over al the flags with respect to certain restrictions on
components of adeles[P1], [Be], [Hu], [FP].

Example. Let X bean algebraic projectiveirreducible surface over afield k£ and let
P beaclosed point of X, C' C X beanirreducible curvesuchthat P € C.

If X and C aresmooth at P, thenwelet t € Ox p bealocal equation of C at
P and v € Ox p besuchthat u|c € O¢ p isalocal parameter at P. Denote by €
theideal defining the curve C' near P. Now we can introduce a two-dimensional local
field Kp ¢ attachedtothepair P, C by thefollowing procedureincluding completions
and localizations:

Ox.p = k(P)[u,t]] > € = (¢)
(6 X.,P)e = discrete valuation ring with residue field &£(P)((w))
|
Opc:=(Oxp)e = k(P)((u))[t]]
Kpo =Frac(Opc) = k(P)(w)(1))
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200 A. N. Parshin

Notethat theleft hand side construction ismeaningful without any smoothness condition.

Let Kp betheminimal subringof K p ~ whichcontains £(X) and Gx,p. Thering
Kp isnotafieldingeneral. Then K C Kp C Kp ¢ andthereisanother intermediate
subring K¢ = Frac(O¢) C Kp. Notethat in dimension 2 thereis a duality between
points P and curves C' (generalizing the classical duality between points and linesin
projective geometry). We can compare the structure of adelic componentsin dimension
one and two:

Kp Kpc
/" N\
Kp Ke
NS
K K

1.0.2. In the one-dimensional case for every character x: GaI(Kab/K) — C* we
have the composite

VoAt =] Ky P, Ga(k®/K) X .
J. Tate[T] and independently K. lwasawaintroduced an analytically defined L-function

L) = [ fay@laa

where d* isaHaar measureon A* andthefunction f belongsto the Bruhat—Schwartz
space of functionson A (for the definition of this space seefor instance[W1, Ch. V11]).
For aspecial choiceof f and x = 1 we get the {-function of the scheme X

(x(s) = [J@-N@™),

reX

if dim(X) =1 (adding the archimedean multipliersif necessary). Here x runsthrough
the closed points of the scheme X and N(z) = |k(z)|. The product converges for
Re(s) > dim X. For L(s,x, f) they proved the analytical continuation to the whole
s-plane and the functional equation

L(87 X f) = L(l - S, X_17 j.\)v
using Fourier transformation ( f — f) onthe space Ax (cf. [T], [W1], [W2]).
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Part 1. Section 1. Higher local fieldsand L-functions 201

1.0.3. Schemes can be classified according to their dimension

dim(X) geometric case arithmetic case

2 agebraic surface /F, arithmetic surface
1 agebraic curve /F, arithmetic curve
0 Spec(F,) Spec(F1)

where 1 isthe “field of one element”.

The analytical method worksfor the row of the diagram corresponding to dimension
one. The problem to prove analytical continuation and functional equation for the
¢-function of arbitrary scheme X (Hasse-Weil conjecture) was formulated by A. Weil
[W2] as a generalization of the previous Hasse conjecture for algebraic curves over
fields of algebraic numbers, see [S1],[S2]. It was solved in the geometric situation by
A. Grothendieck who employed cohomological methods [G]. Up to now there is no
extension of this method to arithmetic schemes (see, however, [D]). On the other hand,
a remarkable property of the Tate-lwasawa method is that it can be simultaneously
applied to the fields of algebraic numbers (arithmetic situation) and to the algebraic
curves over afinite field (algebraic situation).

For a long time the author has been advocating (see, in particular, [P4], [FP]) the
following:

Problem. Extend Tate-lwasawa's analytic method to higher dimensions.

The higher adeles were introduced exactly for this purpose. In dimension one the
adelic groups Ax and A% are locally compact groups and thus we can apply the
classical harmonic analysis. The starting point for that is the measure theory on locally
compact local fields such as Kp for the schemes X of dimension 1. So we have the
following:

Problem. Develop a measure theory and harmonic analysis on n-dimensional local
fields.

Note that n-dimensional local fields are not locally compact topological spaces for
n > 1 and by Weil’s theorem the existence of the Haar measure on atopological group
impliesits locally compactness [W3, Appendix 1].

In this work several first stepsin answering these problems are described.
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1.1. Riemann-Hecke method

When one tries to write the {-function of a scheme X as a product over loca fields
attached to the flags of subvarieties one meets the following obstacle. For dimension
greater than one the local fields are parametrized by flags and not by the closed points
itself asinthe Euler product. Thisproblemisprimary to any problemswith the measure
and integration. | think we have to return to the case of dimension one and reformulate
the Tate-lwasawa method. Actually, it means that we have to return to the Riemann—
Hecke approach [He] known long before the work of Tate and Iwasawa. Of coursg, it
was the starting point for their approach.

The main point is a reduction of the integration over ideles to integration over a
single (or finitely many) local field.

Let C' be asmooth irreducible complete curve defined over afield k£ = F,.

Put K = k(C). For aclosed point = € C' denote by K, the fraction field of the
completion 0, of thelocal ring O,.

Let P be afixed smooth k-rationa pointof C. Put U =C\ P, A=T(U,0¢).
Notethat A isadiscrete subgroup of Kp.

A classical method to calculate ¢-functionisto writeit asaDirichlet seriesinstead
of the Euler product:

o= > %
1€Div(O¢)

where Div (O¢) isthe semigroup of effective divisors, I =3 _ n.x, n, € Z and
n, =0 foramostal z € C,

|e = H q—an\k(m):k\.
zeX
Rewrite (c(s) as
Crs)Cr(s) = (Z |1|SU) ( > m;).
Icu supp(1)=P

Denote A’ = A\ {0}. For the sake of simplicity assume that Pic(U) = (0) and
introduce A” suchthat A” Nk* = (1) and A’ = A”k*. Thenforevery I C U there
isaunique b € A” suchthat I = (b). Wealso write |b|. =|(b)|. for « = P,U. Then
from the product formula |b|c = 1 we get |b|y = [b|5*. Hence

= (X ) (S am)= (X w) [ @

be A" m>o be A
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wherein the last equality we have used local Tate's calculation, f+ = i*56P’ it Ky —
Kp, 5613 is the characteristic function of the subgroup Op, d*(@*P) =1. Therefore

Cels) = Z / lab™ % fe(a)d*a

vear Jacks,

=S [ leprodes [ pdnE@d
be A c=ab—1 K%,
where F(c) =3, c 4/ f+(bo).

Thus, the calculation of (<(s) is reduced to integration over the single local field
Kp. Thenwe can proceed further using the Poisson summation formula applied to the
function F'.

This computation can be rewritten in amore functorial way as follows

Ce(®)=A] I*, fo)a (| I°s frye = I>i"(F))axa = (| I*,Js 0" (F))a,

where G = K}, (f,f')a = fG ff'dg and we introduced the functions fg = §4~ =
sumof Dirac’s §, overal a € A” and f; = §9, on Kp andthefunction F = fo® f1
on Kp x Kp. We aso have the norm map | |:G — C7*, the convolution map
j:G x G — G, j(z,y) =z 1ty andtheinclusion i:G x G — Kp x Kp.

For the appropriate classes of functions fo and f; there are (-functions with a
functional equation of the following kind

¢(s, for f1) = ¢ — s, fo, 1),

where f is a Fourier transformation of f. We will study the corresponding spaces of
functions and operationslike j, or i* in subsection 1.3.

Remark 1. We assumed that Pic(U) istrivial. To handle the general case one has to
consider the curve C' with several points removed. Finiteness of the Pic’(C)) implies
that we can get an open subset U with this property.

1.2. Restricted adelesfor dimension 2

1.2.1. Letusdiscussthesituation for dimension one once more. \We consider the case
of the algebraic curve C as above.
One-dimensional adelic complex

Ko ] 0. - H;ech”

zeC
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can be included into the following commutative diagram

K& [LecOs ——  Iliecks

l |

where the vertical map induces an isomorphism of cohomologies of the horizontal
complexes. Next, we have a commutative diagram

K&0p —— [[LpK./0, & Kp

| l

K/A —— H;;,PKI/@T

where the bottom horizontal arrow is an isomorphism (the surjectivity follows from
the strong approximation theorem). This shows that the complex A @ Op — Kp is
guasi-isomorphic to the full adelic complex. The construction can be extended to an
arbitrary locally free sheaf 3 on C' and we obtain that the complex

WaoTFp —Fp @5, Kp,

where W =T (F,C \ P) C K, computes the cohomology of the sheaf F.

This fact is essential for the analytical approach to the ¢-function of the curve C.
To understand how to generalize it to higher dimensions we have to recall another
applications of this diagram, in particular, the so called Krichever correspondencefrom
the theory of integrable systems.

Let ~ bealoca parameter at P, so 6]:' = k[[z]]. The Krichever correspondence
assigns points of infinite dimensional Grassmanians to (C, P, z) and a torsion free
coherent sheaf of Oc-moduleson C. In particular, there is an injective map from
classes of triples (C, P, z) to A C k((z)). In[P5] it was generalized to the case of
algebraic surfaces using the higher adelic language.

1.2.2. Let X beaprojectiveirreducible algebraic surface over afield k, C C X be
an irreducible projective curve, and P € C' be asmooth point on both C' and X.
In dimension two we start with the adelic complex

Ag® AL ©Ar — Aot © Agx @ A1 — Aoro,
where
Ag=K=k(X), A1=]]0c. A2=]] 0.,

cCcX zeX
! ! ! -~ /
A1 = HCCXKCaAOZ = HmeXK:mAH = HmeC@z,c,Amz =Ax = ][ Kec-
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In fact one can pass to another complex whose cohomologies are the same as of the
adelic complex and which is a generalization of the construction for dimension one. We
have to make the following assumptions: P € C' isasmooth point on both C' and X,
and the surface X \ C' isaffine. The desired complex is

A@Ac@apHBc@BP@aRC_’KP,C

wheretherings B, Bc, Ac and A havethefollowing meaning. Let z € C. Let

B.= ) (KN 693717) wherethe intersection istaken inside K ;
DFC
Be = Ke N () Bg) wheretheintersection istakeninside K, ¢;
7P

Ac=Bc N 60, A=Kn (ma:EX\C az)

This can be easily extended to the case of an arbitrary torsion free coherent sheaf F
on X.

1.2.3. Returning back to the question about the ¢-function of the surface X over
k =TF, wesuggest to write it as the product of three Dirichlet series

x()= e r@ = (X ) (X us) (X k).

Icx\C ICC\P IcSpec(E‘)\p,c)

Againwe can assumethat the surface U = X \ C' hasthe most trivial possible structure.
Namely, Pic(U) = (0) and Ch(U) = (0). Then every rank 2 vector bundle on U is
trivial. In the general case one can remove finitely many curves C from X to passto
the surface U satisfying these properties (the same idea was used in the construction of
the higher Bruhat—Tits buildings attached to an algebraic surface [ P3, sect. 3]).

Therefore any zero-ideal I with supportin X \ C, C'\ P or P can be defined
by functionsfromtherings A, A and Op, respectively. The fundamental difference
between the case of dimension one and the case of surfacesis that zero-cycles I and
ideals of finite colength on X are not in one-to-one correspondence.

Remark 2. In[P2], [FP] we show that the functiona equation for the L-function on
an algebraic surface over afinite field can be rewritten using the K»-adeles. Then it
has the same shape as the functional equation for algebraic curves written in terms of
A*-adeles (asin [W1]).
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1.3. Typesfor dimension 1
We again discuss the case of dimension one. If D isadivisor onthe curve C' then the
Riemann—Roch theorem says

(D) — (K¢ — D) = deg(D) + x(Oc),

whereasusua (D) =dim T'(C,0x (D)) and K¢ isthecanonical divisor. If A = A ¢
and A; = A(D) then

HY(C,0x(D) = A/(A(D)+K),  HC,0x(D))=AD)N K
where K =T,(C). We have the following topological properties of the groups:

A locally compact group,
A(D) compact group,
K discrete group,

AD)NK finite group,
AD)+ K group of finite index of A.

The group A isdual toitself. Fix arational differential form w € Q}., w # 0 and
an additive character ¢ of IF,. Thefollowing bilinear form

(), (92)) = > resu(fogaw), (fu):(92) € A

x

is non-degenerate and defines an auto-duality of A.
If wefix aHaar measure dx on A then we also have the Fourier transform

@)= F)= [ oty
for functionson A and for distributions F' defined by the Parseval equality
(F, ) = (F,9).

One can attach some functions and/or distributions to the subgroups introduced above

op = the characteristic function of A(D)

Ot = the characteristic function of A(D) + K

Sk = » 46, wheres, isthe delta-function at the point
yeK

Sgo =D by
~yeA(D)NK

There are two fundamental rules for the Fourier transform of these functions
dp = vol (A(D))dapy 5
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Part 1. Section 1. Higher local fieldsand L-functions 207

where

A(D)* = A((w) - D),
and

o = vol(A/I) Y6

for any discrete co-compact group . In particular, we can apply thatto I = K =T+,
We have
(0x,0p) = #(K N AD)) = ¢,
(Ox,0p) = VOl(A(D)VOI(A/K) Y6k, 65— p) = ¢U9P x(0) gl(Kc—D)
and the Parseval equality gives us the Riemann—Roch theorem.
Thefunctionsin these computations can be classified according to their types. There
are four types of functions which were introduced by F. Bruhat in 1961 [Br].

Let V' be a finite dimensional vector space over the adelic ring A (or over an
one-dimensional local field K with finite residue field I, ). We put

D = {locally constant functions with compact support},
& = {locally constant functions},

D’ ={dua toD = al distributions},

& ={dual to & = distributions with compact support}.

Every V hasafiltration P O Q D R by compact open subgroupssuchthat all quotients
P/@ arefinite dimensional vector spacesover F,,.

If V,V' arethevector spacesover I, of finite dimension then for every homomor-
phism i: V' — V' there are two maps

FV) L v, TV S F(),

of the spaces F(V) of dl functionson V (or V') with valuesin C. Here i* isthe
standard inverseimage and i, is defined by
, , 0, if o' ¢ im(7)
W f@) = { ¢ .
Y we f(v), otherwise.

The maps i, and i* are dual to each other.
We apply these constructions to give a more functorial definition of the Bruhat
spaces. For any triple P, @, R as above we have an epimorphism i: P/R — P/Q

with the corresponding map for functions F(P/Q) “, F(P/R) and amonomorphism
j:Q/R — P/R with the map for functions F(Q/R) > F(P/R).
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Now the Bruhat spaces can be defined as follows

The spaces don’t depend on the choice of the chain of subspaces P, Q, R. Clearly we
have

op € D(A),
5K S D/(A),
dyo € E'(A),
O € E(A).
Wehavethe samerelationsfor thefunctions §¢, and § 4~ onthegroup K p considered
in section 1.
The Fourier transform preservesthe spaces D and D’ but interchanges the spaces

€ and &’. Recalling the origin of the subgroups from the adelic complex we can say
that, in dimension one the types of the functions have the following structure

& 01
/ AN / AN
D D’ 1 0
AN / AN /
& 0
corresponding to the full simplicial division of an edge. The Fourier transform is a
reflection of the diagram with respect to the middle horizontal axis.
The main properties of the Fourier transform we need in the proof of the Riemann-
Roch theorem (and of the functional equation of the ¢-function) can be summarized as
the commutativity of the following cube diagram

j*

2l / i
D ® D/ i l 8/ a*
i ¢/ o F(Fy)
/ lﬁ* /
& B F(Fq)
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coming from the exact sequence
AbaeAla,
with i(a) = (a, a), j(a,b) =a — b, and the maps
Fr %A L F

with a(0) = 0, [(a) = 0. Here F; isthe field of one element, F(F,) = C and the
arrows with heads on both ends are the Fourier transforms.
In particular, the commutativity of the diagram implies the Parseval equality used

above:

(F,G)=B.oi"(Foq)

=, 0i"(F @ G) = B,5.(F © G)

=" 0 i(FRG)=pi0t"(FRG)

= (F, Q).

Remark 3. These constructions can be extended to the function spaces on the groups
G(A) or G(K) for alocal field K and agroup scheme G.

1.4. Typesfor dimension 2

In order to understand the types of functionsin the case of dimension 2 we haveto look
at the adelic complex of an algebraic surface. We will use physical notations and denote
a space by the discrete index which corresponds to it. Thus the adelic complex can be
written as

P —>0p1H2—-01602¢12 — 012,

where ) stands for the augmentation map corresponding to the inclusion of HO. Just
asin the case of dimension onewe have aduality of A = Agy»> = 012 withitself defined
by abilinear form

((f2.0), @z.0)) = Y 16y cfacgacw),  (f0) (grc) € A

z,C

which is also hon-degenerate and defines the autoduality of A.
It can be shown that

Ap=AorNAgp, Ay =Ag, Ap=Agp, A =Ag® Ag,
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and so on. The proofsdepend onthefollowing residuerelationsfor arational differential
form w € QF

foralz e X > res, o(w) =0,
Cox

forall C c X > res, o(w) = 0.
zeC
We see that the subgroups appearing in the adelic complex are not closed under the
duality. It means that the set of types in dimension two will be greater then the set of
types coming from the components of the adelic complex. Namely, we have:

Theorem 1 ([P4]). Fix adivisor D on an algebraic surface X and let A, = A(D).
Consider thelattice £ of the commensurability classes of subspacesin A x generated
by subspaces Ao]_, Aoz, Aqo.

Thelattice £ isisomorphic to a free distributive lattice in three generators and has
the structure shown in the diagram.

01+12 01+02 02+12
X S
/ \
2+01 0+12 1+02

Remark 4. Two subspaces V, V' are called commensurableif (V +V')/V NV’ isof
finite dimension. In the one-dimensional case all the subspaces of the adelic complex
are commensurable (even the subspaces corresponding to different divisors). In this
case we get a free distributive lattice in two generators (for the theory of lattices see

[Bi]).
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Just as in the case of curves we can attach to every node some space of functions
(or distributions) on A. We describe here a particular case of the construction, namely,
the space Fyp corresponding to the node 02. Also we will consider not the full adelic
group but asingle two-dimensional local field K =T, ((w))((t)).

In order to define the space we use the filtration in K by the powers M™ of the
maximal ideal M = F,((u))[[t]]t of K asadiscrete valuation (of rank 1) field. Then
we try to use the same procedure as for the local field of dimension 1 (see above).

If P D> Q D R aretheelements of the filtration then we need to define the maps

D(P/R) = D(P/Q),  D(P/R) *- D(Q/R)

corresponding to an epimorphism i: P/R — P/@Q and a monomorphism j:Q/R —
P/R. Themap j* isarestriction of thelocally constant functionswith compact support
and it is well defined. To define the direct image i, one needs to integrate along the
fibers of the projection . To do that we haveto choose a Haar measure on the fibersfor
all P, Q, R inaconsistent way. In other words, we need a system of Haar measures
on al quotients P/Q and by transitivity of the Haar measures in exact sequencesit is
enough to do that on all quotients M”™ /M™*L.

Since Ox /M = F,((u)) = K1 we can first choose a Haar measure on the residue
field K. It will depend on the choice of afractiona idea MﬁKl normalizing the Haar

measure. Next, we have to extend the measure on all M”/M"*1. Again, it is enough
to choose a second local parameter ¢ which gives an isomorphism

" O /M — M /ML
Having made these choices we can put as above
Foz = lim-lim; D(P/Q)

where the space D was introduced in the previous section.
We see that contrary to the one-dimensional case the space Fpp isnot intrinsically
defined. But the choice of al additional data can be easily controlled.

Theorem 2 ([P4]). The set of the spaces Fg, is canonically a principal homogeneous
space over the valuation group I i of thefield K.

Recall that I - isnhon-canonically isomorphic to thelexicographically ordered group
YASY/

One can extend this procedure to other nodes of the diagram of types. In particular,
for 012 we get the space which does not depend on the choice of the Haar measures.

The standard subgroup of thetype 02 is Bp = IFp[[u]]((t)) anditis clear that

5BP € Foo.

The functions ¢z, and 561:0 havethetypes 01, 12 respectively.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



212 A. N. Parshin

Remark 5. Notethat the whole structure of all subspacesin A or K corresponding to
different divisorsor coherent sheavesismore complicated. Thespaces A(D) of type 12
are no more commensurable. To describe the whole lattice one has to introduce several
equivalence relations (commensurability up to compact subspace, a locally compact
subspace and so on).
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2. Adédlic constructions for direct images
of differentials and symbols

Denis Osipov

2.0. Introduction

Let X beasmooth algebraic surface over aperfect field k.

Consider pairs = € C, z isaclosed pointof X, C iseither anirreducible curveon
X whichissmoothat x, or anirreducibleanalytic branch near x of anirreduciblecurve
on X. Asintheprevioussection 1 for every suchpair x € C' we get atwo-dimensional
local field K, .

If X isa projective surface, then from the adelic description of Serre duality on
X there is a local decomposition for the trace map H?(X,Q%) — k by using a
two-dimensional residue map resi., . /k(): Q% , /i) — k(@) (see[P1]).

From the adelic interpretation of the divisors intersection index on X thereis a
similar local decomposition for the global degree map from the group CH?(X) of
algebraic cycles of codimension 2 on X modulo the rational equivalence to Z by
means of explicit maps from K»(K, ¢) to Z (see[P3]).

Now we passto therelative situation. Further assumethat X isany smooth surface,
but there are a smooth curve S over k£ and a smooth projective morphism f: X — §
with connected fibres. Using two-dimensional local fieldsand explicit mapswe describe
in this section alocal decompoasition for the maps

FoHM(X, Q%) — HPY(S, Q1) fur H(X, K2(X)) — H" (S, K1(S))

where X is the Zariski sheaf associated to the presheaf U — K (U). The last two
groups have the following geometric interpretation:

H™(X,K2(X)) = CH?*(X,2—n), H"S,%1(5)) = CHXS,2 - n)

where CH?%(X,2 — n) and CHY(S,1 — n) are higher Chow groups on X and S
(see [B]). Note also that CH?(X,0) = CH?(X), CHY(S,0) = CHY(S) = Pic(S),
CHY(S,1) = HO(S, 0%).
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Let s = f(x) € S. Thereisacanonical embedding f*: K, — K, ¢ where K is
the quotient of the completion of thelocal ringof S a s.
Consider two cases:
(1) C # f~s). Then K, ¢ is non-canonically isomorphic to k(C).((tc)) where
k(C), isthe completion of £(C) at = and ¢t isalocal equation of C' near x.
(2) C=f~Y(s). Then K, ¢ isnon-canonically isomorphicto k(x)((u))((ts)) where
{u =0} isatransversal curveat x to f~1(s) and t, € K, isalocal parameter at
s, i.e. k(s)((ts)) = K.

2.1. Local constructionsfor differentials

Definition. For K = k((w))((t)) let U = u'k[[u, t]]dk[[u, ] +t7 k((w)[[t]]dk((w))[¢]]
be abasis of neighbourhoods of zeroin Qt((u»[[ /% (comparewith 1.4.1 of Part ). Let

Qk = QL /(K -nU) and Q} = A"Q). Similarly define Q7 .

Note that Q% _ is a one-dimensional space over K, c; and Q% _ does not

depend on the choice of asystem of local parametersof 69;, where 69; isthecompletion
of thelocal ringof X at z.

Definition. For K = k((w))((t)) and w = >, w;(u) A t'dt =Y, u'du A wi(t) € ﬁ%
put
res,(w) = w_1(u) € Qk ).
reSu(w) = WLl(t) S Q%((t))
Define arelative residue map

z,C. 2 Al
I -QKE,C - QKS

Trk(c), /K. 160 (W) if C 7 f~1(s)

F0w) = { !
Tr @)/ k. T&Suw) i C = f71(s).

The relative residue map doesn’t depend on the choice of local parameters.

Theorem (reciprocity lawsfor relativeresidues). Fix x € X. Let w € ﬁﬁ(z where K,
isthe minimal subring of K, « which contains £(X) and 69;- Then

S frOw) =o.

Coz
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FixseS. Letw e Q%F where K isthe completion of k(X) with respect to the
discrete valuation associated with the curve F = f~1(s). Then

> frfw=o.

zeF

See[O].

2.2. The Gysin map for differentials

Definition. In the notations of subsection 1.2.1 in the previous section put
Qi = {(fudt,) € [ k., wvs(fs) =0 fordmostal s € S}
ses

where t, isaloca parameter at s, v, isthe discrete valuation associated to ¢, and
K isthe quotient of the completion of the local ring of S at s. For adivisor I on S
define

Qu (1) = {(fs) € Qi :vs(fs) = —vs(I) foral se S}

Recall that the n-th cohomology group of the following complex
(fo. f 1) —  fot f1.

is canonically isomorphicto H™(S, QL) (see[S, Ch.ll]).

The sheaf Q% isinvertible on X. Therefore, Parshin’s theorem (see [P1]) shows
that similarly to the previous definition and definition in 1.2.2 of the previous section
for the complex Q2(Ax)

2 2 2
QAo ® QAl o2 QAz - Q1401 o2 QAoz o2 QAIZ - Q14012

(fo. f1, f2) — (fo+ f1. f2— fo,—f1— [2)
(91792793) — g1+ g2+g3

where
2 2
Q%, € Qy, C

A012 = QAX H Q o © H Ez%(m c

zeC zeC

thereis acanonical isomorphism
H"(Q(Ax)) = H"(X, Q%).

Using the reciprocity laws above one can deduce:
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Theorem. The map f. = Yo, pyes fo°C from Q2 to Q} is well defined. It
maps the complex Q2(A x) to the complex

0 — Q gy @ Qi (0) — Qf .
Itinducesthe map f.: H"(X,Q%) — H" (S, Q%) of 2.0.
See[O].

2.3. Local constructionsfor symbols

Assumethat & isof characteristic O.
Theorem. Thereis an explicitly defined symbolic map
[ )eci Ky o X Ky o0 — K
(see remark below ) which is uniquely determined by the following properties
Ni(z)/k(s) tro.c (@, B, f57) =tk (fu(a, B)z,c,v) fordl a,8€ K; o, v € K
where tx, .. isthe tame symbol of the two-dimensional local field K, ¢ and tx, is
the tame symbol of the one-dimensional local field K, (see 6.4.2 of Part I);
T @) /() (@ By Mk, o = (fela, Ba,o,7]k, foral a,e€ K o, v € K,
where (o, 8,7 k,.c =€k, o /k@)(yde/a A dB/B3) and
(o, Bl k. = resk, /u(s)(adB/B).
Themap f.(, ).c inducesthe map
fo(5 a0t KoKy 0) — Ka1(K).

Corollary (reciprocity laws). Fixapoint s € S. Let F = f~1(s).
Let o, 5 € Kj.. Then

[T feleB)er = 1.

x€eEF
Fixapoint z € F. Let o, € K. Then

H f*(avﬁ):r,c =1
Cozx
Remark. If C 7 f=1(s) then f.(, )s.c = Ni). /K. tk, o Where tx, . isthetame
symbol with respect to the discrete valuation of rank 1 on K, .
If C = f~1(s) then f.(,)ec = Ni@)e.)/x. (5 )r where (, )171 coincides with
Kato’'s residue homomorphism [K, §1]. An explicit formulafor (, ) isconstructedin
[O, Th.2].
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2.4. The Gysin map for Chow groups

Assumethat % is of arbitrary characteristic.

Definition. Let K5(Ax) bethesubset of al (f,,c) € Ko(Ky,¢), © € C suchthat

(@ fz,c € K2(04,¢) for amost all irreducible curves C' where O, ¢ isthe ring of
integers of K, o with respect to the discrete valuation of rank 1 onit;
(b) foralirreduciblecurves C' C X, dl integers » > 1 and aimost al points = € C

fo.0 € Ka(04,0,ME) + K2(0,[t1) € Ka(Ko )
where M¢ isthe maximal ideal of O, « and

Ko(A, J) = ker(K2(A) — Ka(A/J)).
This definition is similar to the definition of [P2].

Definition. Using the diagonal map of K»(K¢) to [[ K2(K.ec) and of Ko(K,)

zeC
to [] Kao(K.ec) put
Coz

Kj(Aq) = Kj(Ax)nimageof [ Ka(Ke),
ccX

Kj(Ag) = Ky(Ax) nimageof [[ Ka(Kw),
rxeX

K5(A12) = Kj(Ax) nimageof [ K2(0..c),
zeC
K5(Ao) = K2(k(X)),

Ky(A1) = Kj(Ax)nimageof J] K2(0c),
cCcX

K5(A7) = Ky(Ax) nimageof J] K2(0,)
reX

where O isthering of integersof K.

Define the complex K(Ax):
K5(Ao) & K5(A1) @ Ky(A2) —K5(Ao1) @ K5(Az) @ K5(A12) — K5(Ao12)
(fo, f1, f2) =(fo + f1, f2— fo, —f1— f2)
(91,92, 93) = g1+ g2+ 93

where K5(Ap12) = K5(Ax).
Using the Gersten resolution from K -theory (see[Q, §7]) one can deduce:
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Theorem. Thereisa canonical isomorphism
H"(K3(Ax)) ~ H"(X, K2(X)).

Similarly one defines K}(Ag). From H(S,%1(S)) = H(S,0%) = Pic(S) (or
from the approximation theorem) it is easy to see that the n-th cohomology group of
the following complex

Ki(k(S) @ Y ,cs K1(05) —  Kj(As)
(fo, f1) —  fo+ f1.

is canonically isomorphic to H™(S,X1(S)) (here 0, is the completion of the local
ringof C a s).

Assumethat & isof characteristic 0.

Using the reciprocity law above and the previous theorem one can deduce:

Theorem. Themap f. = > oo, f)=s f+( s )a,c from K5(Ax) to Kj(Ag) is well
defined. It maps the complex K»(Ax) to the complex

0— Ki(k(S) & Y K1(0,) — Ki(As).
sesS
Itinducesthe map f.: H"(X, K2(X)) — H" (S, %K1(S)) of 2.0.
If n = 2, then thelast map isthe direct image morphism (Gysin map) from C H2(X)
to CHY(S).
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3. The Bruhat-Tits buildings over
higher dimensional local fields

A. N. Parshin

3.0. Introduction

A generalization of the Bruhat—Tits buildings for the groups PG L(V) over n-dimen-
sional local fields was introduced in [P1]. The main object of the classical Bruhat—Tits
theory is a smplicial complex attached to any reductive algebraic group G defined
over afield K. There are two parallel theoriesin the case where K has no additional
structure or K isalocal (or more generally, complete discrete valuation) field. They
are known asthe spherical and euclidean buildings correspondingly (see subsection 3.2
for abrief introduction, [BT1], [BT2] for original papersand [R], [ T1] for the surveys).

In the generalized theory of buildings they correspond to local fields of dimension
zero and of dimension one. The construction of the Bruhat—Tits building for the
group PGL(2) over two-dimensional local field was described in detail in [P2]. Later
V. Ginzburg and M. Kapranov extended the theory to arbitrary reductive groups over a
two-dimensional local fields [GK]. Their definition coincides with ours for PGL(2)
and isdifferent for higher ranks. But it seemsthat they are closely related (in the case of
the groups of type A;). It remains to develop the theory for arbitrary reductive groups
over local fields of dimension greater than two.

In this work we describe the structure of the higher building for the group PG L(3)
over atwo-dimensional local field. We refer to [P1], [P2] for the motivation of these
constructions.

This work contains four subsections. In 3.1 we collect facts about the Weyl group.
Thenin 3.2 we briefly describethe building for PG L(2) over alocal field of dimension
not greater than two; for details see [P1], [P2]. In 3.3 we study the building for
PGL(3) overalocal field F' of dimension one and in 3.4 we describe the building over
atwo-dimensional local field.

We use the notations of section 1 of Part I.
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If K isan n-dimensional local field, let I 5 be the valuation group of the discrete
valuation of rank n on K*; the choice of a system of local parameters ¢4, ...,t, oOf
K induces an isomorphism of I and the lexicographically ordered group Z®™.

Let K (K = K, Ky, Ko = k) beatwo-dimensional loca field. Let O = Ok,
M =My, O=0g, M =My (seesubsection 1.1 of Part1). Then O = pr—1(0x,),
M = pr—l(Jv[Kl) where pr: O — K7 istheresidue map. Let ¢1,t, be asystem of
local parametersof K.

If K D 0O isthefractionfield of aring © wecall O-submodules J C K fractional
O-ideals (or simply fractional ideals).

Thering O hasthe following properties:

(i) O/M~k, K*=~{(t1)x (tz) xO0*, O* ~k*x (1+M);
(if) every finitely generated fractional O-ideal is principal and equal to

P(i,j) = (tit)) forsomei,j € Z

(for the notation P(i, j) seeloc.cit.);
(iii) every infinitely generated fractional O-ideal isequal to

P(j) =M}, = (tith i € Z) forsome j € Z

(see[FP], [P2] or section 1 of Part I). The set of theseidealsistotally ordered with
respect to the inclusion.

3.1. TheWeyl group

Let B betheimage of

o O ... O
M O ... O
M M ... O

in PGL(m, K). Let N bethe subgroup of monomia matrices.
Definition 1. Let T'= B[ N be the image of

(O* O)
o ... OF

W =Wk/ky e = N/T

in G.
The group

is called the Weyl group.
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There is arich structure of subgroupsin G which have many common properties
with the theory of BN-pairs. In particular, there are Bruhat, Cartan and Iwasawa
decompositions (see [ P2]).

The Weyl group W contains the following elements of order two

1 ... O o ... O
0 1 0
lo 0 1 0
Si = 0 1 0 0 ) 7'_17 7m_11
0 1 0
0 0 0 1
0 0 0 # 0 O 0
0 1 0 0 0O 1 0 0
wy = , w2 =
... 1 0 ... 10
t72 0 ... 0 0 t;20 ... 00

The group W hasthe following properties:
(i) W isgenerated by theset S of its elements of order two,
(if) thereisan exact sequence
O0—F— Wgk/k,p = Wk — 1,
where E' isthe kernel of the addition map

k@ - ®lMxg =Tk
N—_——— —
m times
and Wy isisomorphic to the symmetric group S,,;

(iii) theelements s;, i =1, ..., m — 1 defineasplitting of the exact sequence and the
subgroup (s1, ...,Snm_1) atson E by permutations.

In contrast with the situation in the theory of BN-pairs the pair (17,S) is not a
Coxeter group and furthermore there is no subset S of involutions in W such that
(W, S) isaCoxeter group (see[P2]).
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3.2. Bruhat-Tits building for PGL(2) over a local field
of dimension < 2

In this subsection we briefly recall the main constructions. For more details see[BT1],
[BT2], [P1], [P2].

3.21. Let k beafield (which can be viewed as a O-dimensional local field). Let V/
be avector space over k£ of dimension two.

Definition 2. Thespherical buildingof PG L(2) over k isazero-dimensional complex
A(k) = A(PGL(V), k)

whose verticesarelinesin V.
The group PGL(2, k) actson A(k) transitively. The Weyl group (in this caseit is
of order two) actson A(k) and its orbits are apartments of the building.

3.2.2. Let F' beacomplete discrete valuation field with residue field k. Let V' be
a vector space over F' of dimension two. We say that L C V isalatticeif L isan
O p-module. Two submodules L and L’ belong to the same class (L) ~ (L') if and
only if L =alL’, with a € F*.

Definition 3. Theeuclideanbuildingof PG L(2) over F' isaone-dimensional complex
A(F'/k) whose vertices are equivalence classes (L) of lattices. Two classes (L) and
(L') are connected by an edge if and only if for some choiceof L, L’ thereisan exact
sequence

0—-L —L—k—D0.
Denote by A;(F/k) the set of i-dimensional simplices of the building A(F'/k).

The following link property isimportant:
Let P € Ag(F/k) berepresented by alattice L. Thenthelink of P (= the set of
edges of A(F'/k) going from P) isin one-to-one correspondence with the set of
linesin the vector space Vp = L/MpL (whichis A(PGL(Vp), k)).
The orbits of the Weyl group W (which isin this case an infinite group with two
generators of order two) areinfinite sets consisting of x; = (L;), L; = O & M&.

Ti—1 Z; Ti+1

An element w of the Weyl group acts in the following way: if w € E =7 then w
acts by tranglation of even length; if w ¢ E then w actsasan involution with aunique
fixed pOl nt Tig- U)(.’L’iﬂ‘o) = Tig—i-
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To formalize the connection of A(F'/k) with A(F) we define a boundary point of
A(F/k) asaclass of haf-lines such that the intersection of every two half-lines from
the class is a half-line in both of them. The set of the boundary points is called the
boundary of A(F/k).

There is an isomorphism between PGL(2, F)-sets A(F) and the boundary of
A(F/k): if ahaf-lineisrepresentedby L; = O &M%, i > 0, thenthe corresponding
vertex of A(F’) istheline FF & (0) in V.

It seems reasonableto slightly change the notations to make the latter isomorphisms
more transparent.

Definition 4 ([P1]). Put A [0](F/k) = the complex of classes of Ox-submodulesin

V isomorphicto F & Op (so A [0](F/k) isisomorphicto A(F")) and put
A[1](F/k) = D(F/E).

Define the building of PG L(2) over F' astheunion

A(F/k) = A[U(F/k) | A [01(F/k)

and call thesubcomplex A [0](F'/k) theboundary of thebuilding. Thediscretetopology
on the boundary can be extended to the whole building.

3.23. Let K beatwo-dimensional local field.

Let V' beavector spaceover K of dimensiontwo. Wesay that L C V' isalattice
if L isan O-module. Two submodules L and L’ belong to the sameclass (L) ~ (L’)
if andonly if L =alL’, with a € K*.

Definition 5 ([P1]). Definethe vertices of the building of PGL(2) over K as

No[2)(K/K1/k) = classes of O-submodulesL C V: L~ 0O @& O

Do[1](K/K1/k) = classes of O-submodulesL C V: L~0 & 0O

Ao[O)(K/K1/k) = classes of O-submodulesL. C V: L~ 0 & K.
Put

Do(K/K1/k) = Bo[2)(K/K1/k) | ) Bol1](K/K1/k) | ) Bol0)(K/ K1/ k).

Asetof {L,}, a €I, of O-submodulesin V' iscalled achain if
(i) forevery a € I andforevery a € K* thereexistsan o/ € I suchthat aL,, = L.,
(ii) theset {L,,a € I} istotally ordered by the inclusion.

A chain {L,,« € I} iscaled amaximal chainif it cannot be included in astrictly
larger set satisfying the same conditions (i) and (ii).

Wesay that (Lo), (L1), ..., (L) belongto asimplex of dimension m if and only
if the L;, i =0,1,...,m belong to a maximal chain of Og-submodulesin V. The
faces and the degeneracies can be defined in a standard way (as a deletion or repetition
of avertex). See[BT2].
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Let {L,} beamaximal chain of O-submodulesinthespace V. Thereare exactly
three types of maximal chains ([P2]):
(i) if thechain containsamodule L isomorphicto O & O then all the modules of the
chain are of that type and the chain is uniquely determined by its segment

D00 DODMODMEMD ...

(i) if the chain contains a module L isomorphic to O & O then the chain can be
restored from the segment:

2080508 P1L0)>0BPR0)D - >08MD ...

(recall that P(1,0) = M).
(iii) if the chain contains a module L isomorphic to O & O then the chain can be
restored from the segment:

D 0BO0DP(LOGOD PRGOS - OMBOD ...

3.3. Bruhat-Tits building for PGL(3) over a local field F
of dimension 1

Let G = PGL(3).

Let F' beaone-dimensiona local field, ' D Op D Mg, Op/Mp ~ k.

Let V' beavector spaceover F' of dimension three. Definelatticesin V' and their
equivalence similarly to the definition of 3.2.2.

First we define the vertices of the building and then the smplices. The result will
beasimplicia set A (G, F/k).

Definition 6. The vertices of the Bruhat—Tits building:
Do[1](G, F/k) = {classesof O -submodulesL C V' : L~ O0p & Op ® Op},
No[0](G, F/k) = {classesof Op -submodules L C V: L~ 0p® O0p @& F
o L~0p&®F&F},
Do(G, F/k) = Do[1)(G, F/ k) U Lol ON(G, F/F).

We say that the points of Ap[1] are inner points, the points of Ap[0] are boundary
points. Sometimes we delete G and F'/k from the notation if this does not lead to
confusion.

We have defined the vertices only. For the simplices of higher dimension we have
the following:

Definition 7. Let {L,,a € I} be a set of Op-submodules in V. We say that
{Ly,a € I} isachainif
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(i) forevery a € I andforevery a € K* thereexistsan o/ € I suchthat aL,, = L.,
(ii) theset {L,,a € I} istotally ordered by the inclusion.

A chain {L,,a € I'} iscaledamaximal chainif it cannot be included in astrictly
larger set satisfying the same conditions (i) and (ii).

Wesay that (Lo), (L1), ..., {L,,) belongtoasimplex of dimension m if and only
if the L;, i =0,1,...,m belong to a maximal chain of Og-submodulesin V. The
faces and the degeneracies can be defined in a standard way (as a deletion or repetition
of avertex). See[BT2].

To describe the structure of the building we first need to determine all types of the
maximal chains. Proceeding asin [P2] (for PG L(2)) we get the following result.

Proposition 1. There are exactly three types of maximal chains of O z-submodulesin

the space V':

(i) thechain containsa module isomorphicto Or @ Or ® Op. Then all the modules
from the chain are of that type and the chain has the following structure:

D MLL D MEL D ML D MELL > MEL > MELL 5 L.
where (L), (L'), (L") € Do(G, F/E)[1] and L ~ Op & Op @ Op,
L'~0r®0rdMp, L" ~0r & Mp ® Mp.

(ii) the chain containsa moduleisomorphicto O @ O & F'. Then the chain hasthe
following structure:

D MLL D MLEL D MEL S L.

where (L), (L") € A(G, F/E)0] and L ~ Op ®Op & F, L' ~Mp®Op® F.
(iii) the chain contains a module isomorphicto O & F & F'. Then the chain has the
following structure:

S DMLLOMELL S L.
where (L) € Ao(G, F/E)[0].

We see that the chains of the first type correspond to two-simplices, of the second
type — to edges and the last type represent some vertices. It means that the simplicial
set A isadisconnected union of its subsets A [m], m = 0,1. The dimension of the
subset A [m] isequal to onefor m =0 andtotwo for m = 1.

Usually the buildings are defined as combinatorial complexes having a system of
subcomplexes called apartments (see, for example, [R], [T1], [T2]). We show how to
introduce them for the higher building.

Definition 8. Fix abasis e1,e2,e3 € V. The apartment defined by this basis is the
following set

z =z[1uz]q,

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



230

A. N. Parshin

where
2o[1] = {(L) : L =a1e1 & azep ® azes,

where ay, ay, az are O p-submodulesin F isomorphic to O}

>o[0] = {(L) : L =a1e1 & azep ® agzes,

where aq, ap, az are O p-submodulesin F' isomorphic either
toOporto F
and at |least one a; isisomorphicto F'}.

> [m] istheminimal subcomplex having Zo[m] as vertices.

(FOF®OF)

(FOOr@My)

1y
o e
-1e (FOOr®F)

IO F®FON)e

7 )
(OFOMLOF)

(OF@FQF)

It can be shown that the building A (G, F'/k) is glued from the apartments, namely

A(G,F/ky= || £ /anequivalencerelation
al basesof V
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(see[T2]).

We can make this description more transparent by drawing all that in the picture
above where the dots of different kinds belong to the different parts of the building. In
contrast with the case of the group PG L(2) it is not easy to draw the whole building
and we restrict ourselves to an apartment.

Here the inner vertices are represented by the lattices

ij=(0p ® ML @ M%), i,j € Z.
The definition of the boundary gives a topology on Ao(G, F'/k) which is discrete

on both subsets Ag[1] and Ag[0]. The convergence of the inner points to the boundary
pointsis given by the following rules:

— 00

(OF & My & M%) 2= (Op & My @ F),

(OF ® M ® M%) == (F® F @ OF),
because (Op ® Mk, ® M%) = (M7 ® Mz7" @ Or). The convergence in the other
two directions can be defined along the same line (and it is shown on the picture). Itis
easy to extend it to the higher simplices.

Thus, there is the structure of a simplicial topological space on the apartment and
then we define it on the whole building using the gluing procedure. This topology is
stronger than the topology usually introduced to connect the inner part and the boundary
together. The connection with standard “compactification” of the building is given by
the following map:

[ J
St
.- “ee _._._._Z e .
(Or@FOF) (Or ®FEM') (FOF@OR) (OrBF&F) (FOF®Or)
(Or®F®0F)

This map is bijective on the inner ssmplices and on a part of the boundary can be
described as

® - —ee e ... @
——

! ! !

® ® ®

We note that the complex is not a CW-complex but only aclosure finite complex. This
“compactification” was used by G. Mustafin [M].
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We have two kinds of connections with the buildings for other fields and groups.
First, for the local field F' there are two local fields of dimension 0, namely F' and k.
Then for every P € Ao[L(PGL(V), F/k) the Link(P) isequal to A (PGL(Vp), k)
where Vp = L/MpL if P = (L) and the Link(P) is the boundary of the Star(P).
Sincethe apartmentsfor the PG L(3, k) are hexagons, we can a so observethis property
on the picture. The analogous relation with the building of PGL(3, K) is more
complicated. It is shown on the picture above.

The other relations work if we change the group G but not the field. We see that
three different lines go out from every inner point in the apartment. They represent the
apartments of the group PGL(2, F'/k). They correspond to different embeddings of
the PGL(2) into PGL(3).

Also we can describe the action of the Weyl group W on an apartment. If wefix a
basis, the extension

O—=Tprplp—-W—=583—1

splits. The elements from S3 C W act either as rotations around the point 00 or as
reflections. Theelementsof Z & Z C W can be represented as triples of integers (ac-
cording to property (ii) in the previous subsection). Thenthey correspondto translations
of the lattice of inner points along the three directions going from the point 00.

If we fix an embedding PGL(2) ¢ PGL(3) then the apartments and the Weyl
groups are connected as follows:

5 (PGL(2)) € = (PGL(3)),

0o—— 7Z W S, 1
| | |
0 — > ZaZ W Ss 1

where W’ isaWeyl group of the group PG L(2) over thefield F/k.

3.4. Bruhat-Tits building for PGL(3) over a local field
of dimension 2

Let K be atwo-dimensional local field. Denote by V' a vector space over K of
dimension three. Define lattices in V and their equivalence in a similar way to 3.2.3.
We shall consider the following types of lattices:

N[22l 222 (0@ 0a0)
Al 221 (0808 0)

211 (06 0&0)
A0 220 (OB0® K

( )
200 (O® K@ K)
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To define the buildings we repeat the procedure from the previous subsection.

Definition 10. Theverticesof the Bruhat—Titsbuilding aretheelementsof thefollowing
set:

Do(G, K/ K1/k) = Do[2] U Do[1] U Lo[Q].
To define the simplices of higher dimension we can repeat word by word Definitions 7
and 8 of the previous subsection replacing the ring O by thering O (note that we
work only with the types of lattices listed above). We call the subset A[1] the inner

boundary of the building and the subset A[0] the external boundary. The pointsin A[2]
arethe inner paints.

To describe the structure of the building we first need to determine all types of the
maximal chains. Proceeding asin [P2] for PG L(2) we get the following result.

Proposition 2. Let {L,} beamaximal chainof O-submodulesinthespace V. There
are exactly five types of maximal chains:

(i) If the chain contains a module L isomorphicto O & O @ O then all the modules
of the chain are of that type and the chain is uniquely determined by its segment

D000 ODMO®ODODOMPIPMOPODODMEMOM D ...

(i) 1f the chain contains a module L isomorphicto O & O @ O then the chain can be
restored from the segment:

D000 "D - DOBOBFODMPOGODMBEMBOD---DMPMPO
TTTT—————__ quotient ~Kq®K,

=EMPMBOD---DMPEMPODODMPMBM D---DMPMBMD...
T quotient ~Ky

Here the modules isomorphicto O & O & O do not belong to this chain and are
inserted asin the proof of Proposition 1 of [P2].
(iii) All themodules L, ~ O @& O @ O. Then the chain contains a piece

D" 000 0"D - D000 DMae000D ---DMa080
T quotient~oK—————

=MepO0pO0D ---DMPOPOD ---DMBPMDO
T quotient~ky ——

=MeMpOD ---DMIEMBSOD ---DMEMPMD ...
T quotient~oky ——

and can also be restored from it. Here the modules isomorphicto O & O & O do
not belong to this chain and are inserted asin the proof of Proposition 1 of [P2].
(iv) Ifthereisan L, ~ O & O & K then one can restore the chain from

- DO0OPOPKOMODPKODOMOMPK D ...
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(v) Ifthereisan L, ~ O & K & K then the chain can be written down as
S OMoKoK>MMoKoK> ...

We see that the chains of the first three types correspond to two-simplices, of the
fourth type — to edges of the external boundary and the last type represents a vertex
of the external boundary. As above we can glue the building from apartments. To
introduce them we can again repeat the corresponding definition for the building over
alocal field of dimension one (see Definition 4 of the previous subsection). Then the
apartment Z_isaunion

S =3 [2]UE [ UE[0]

where the pieces X [i] contain the lattices of the typesfrom A [1].

The combinatoria structure of the apartment can be seen from two pictures at
the end of the subsection. There we removed the external boundary Z [0] which
is simplicially isomorphic to the external boundary of an apartment of the building
A (PGL(3), K/K1/k). Thedotsin thefirst picture show aconvergence of the vertices
inside the apartment. Asaresult the building isa simplicial topological space.

We can also describe the relations of the building with buildings of the same group
G over the complete discrete valuation fields K and K;. Inthefirst case thereisa
projection map

A (G, K/Kq/k) — A (G, K/K?).

Under this map the big triangles containing the simplices of type (i) are contracted into
points, the triangles containing the simplices of type (ii) go to edges and the simplices
of type (iii) are mapped isomorphically to simplices in the target space. The external
boundary don’'t change.

Thelines

o Yn—-1 Zn Tin TLi+ln Yn Zn+l Lin+l Too

can easily be visualized inside the apartment. Only the big white dots corresponding to
the external boundary are missing. We have three types of lines going from the inner
points under the angle 27/3. They correspond to different embeddings of PGL(2)
into PGL(3).

Using the lines we can understand the action of the Weyl group W on an apartment.
The subgroup S3 actsin the same way asin 3.2. The free subgroup E (see 3.1) has
six types of tranglations along these three directions. Along each line we have two
opportunities which were introduced for PG L(2).

Namely, if w € Tg ~Z ®7Z C W then w = (0,1) acts as a shift of the
whole structure to the right: w(x;.,) = 2 n+2, W(Yn) = Yn+2, W(2n) = Zp+2, w(xo) =
20, W(Too) = Too.
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Theelement w = (1,0) actsasashift onthepoints x; ,, but leavesfixed thepointsin
the inner boundary w(z;,n) = Zi+2,n, W(Yn) = Yn, wlzn) = 25, w(wo) = z0, W(Ts0) =
Too, (S€€[P2, Theorem 5, v]).

simplices of type (i) simplices of type (ii) simplices of type (iii)
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[R]
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4. Drinfeld modules and
local fields of positive characteristic

Ernst—Ulrich Gekeler

The relationship between local fields and Drinfeld modules is twofold. Drinfeld mod-
ules allow explicit construction of abelian and nonabelian extensions with prescribed
properties of local and global fields of positive characteristic. On the other hand,
n-dimensional local fields arise in the construction of (the compactification of) mod-
uli schemes X for Drinfeld modules, such schemes being provided with a natural
dtratification Xg € X1 C --- X;--- C X,, = X through smooth subvarieties X; of
dimension .

We will survey that correspondence, but refer to the literature for detailed proofs
(provided these exist so far). An important remark is in order: The contents of this
articletakeplacein characteristic p > 0, and arein fact locked up in the characteristic p
world. No lift to characteristic zero nor even to schemes over Z/p? is known!

4.1. Drinfeld modules

Let L be afield of characteristic p containing the field F,, and denote by 7 = 7,
raising to the ¢th power map = — z9. If “a” denotes multiplication by a € L, then
Ta = a?r. Thering End(G, ) of endomorphisms of the additive group G, ,;, equals
L{rp} = {X_a;7} : a; € L}, the non-commutative polynomial ring in 7, = (z — x*)
with the above commutation rule 7,a = a”7. Similarly, the subring Endr, (G, /) of
[F,-endomorphismsis L{7} with 7 =7} if ¢ =p". Notethat L{r} isan I -algebra
since F, — L{r} iscentral.

Definition 1. Let € beasmooth geometrically connected projectivecurveover I, Fix

aclosed (but not necessarily F,-rational) point oo of €. Thering A =T (C—{oc}, O¢)
iscalled aDrinfeld ring. Notethat A* =T .
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Examplel. If € istheprojectiveline Pl/]Fq and oo istheusual point at infinity then
A=F,[T].

Example 2. Supposethat p 7 2, that € is given by an affine equation Y2 = f(X)
with a separable polynomial f(X) of even positive degree with leading coefficient a
non-square in F,, and that oo isthe point above X = co. Then A =T, [X,Y] isa
Drinfeld ring with dequ (<) = 2.

Definition 2. An A-structure on a field L is a homomorphism of F,-algebras (in
brief: an F,-ring homomorphism) v: A — L. Its A-characteristic char,(L) isthe
maximal ideal ker(v), if ~ failsto beinjective, and co otherwise. A Drinfeld module
structureon such afield L isgiven by an IF,-ring homomorphism ¢: A — L{7} such
that 0 o ¢ = v, where 9: L{r} — L isthe L-homomorphism sending 7 to 0.

Denote ¢(a) by ¢, € Endr, (G./r); ¢. induces on the additive group over L
(and on each L-algebra M) anew structure asan A-module:

(4.1.1) axx:=¢u(x) (a€ A xeM).
We briefly call ¢ aDrinfeld module over L, usually omitting referenceto A.

Definition 3. Let ¢ and v beDrinfeld modulesover the A-field L. A homomorphism
u:¢ — 1 isan element of L{r} suchthat wo ¢, = ¢, ou foral a € A. Hence
an endomorphismof ¢ isan element of the centralizer of ¢(A4) in L{7r}, and u isan
isomorphismif v € L* — L{7} issubjectto uo ¢, = ¥, o u.

Define deg: « — ZU{—oc} and deg,: L{r} — ZU{—o0o} by deg(a) =log, |A/al
(a #0; wewrite A/a for A/aA), deg(0) = —oo, and deg.(f) = the well defined
degreeof f asa“polynomia” in 7. Itisan easy exercisein Dedekind rings to prove
the following

Proposition 1. If ¢ isa Drinfeld module over L, there exists a non-negativeinteger r
such that deg. (¢,) = deg(a) for all a € A; r iscaled therank rk(¢) of ¢.

Obviously, rk(¢) = 0 meansthat ¢ =+, i.e, the A-module structureon G, /. is
the tautological one.

Definition 4. Denoteby M"(1)(L) the set of isomorphism classes of Drinfeld modules
of rank r over L.

Example3. Let A =T,[T] beasin Example1landlet K = [F,(T") beits fraction
field. DefiningaDrinfeld module ¢ over K or anextensionfield L of K isequivalent
to specifying ¢ =T + g17 +--- + g.7" € L{T}, where g, Z 0 and r = rk(¢). In
the special casewhere ¢ =T + 7, ¢ iscalled the Carlitz module. Two such Drinfeld
modules ¢ and ¢’ are isomorphic over the algebraic closure L39 of L if and only if
thereissome u € LA9" suchthat ¢} = u¢ ~1g; foral i > 1. Hence M"(1)(L39) can
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be described (for » > 1) asan open dense subvariety of aweighted projective space of
dimension ~ — 1 over L39,

4.2. Division points

Definition 5. For a € A andaDrinfeld module ¢ over L, write ,¢ for the subscheme
of a-division points of G, ,;, endowed with its structure of an A-module. Thus for
any L-algebra M,

(M) ={x € M: ¢o(x) = 0}.
More generally, we put ¢ = () ¢, for an arbitrary (not necessarily principal) ideal

aca

a of A. Itisafiniteflat group scheme of degree rk(¢) - deg(a), whose structure is
described in the next result.

Proposition 2 ([Dr], [DH, I, Thm. 3.3 and Remark 3.4]). Let the Drinfeld module ¢

over L haverank r > 1.

(i) If chara(L) = 0o, ¢ isreduced for eachideal a of A, and (L) = ,(LA9)
isisomorphic with (A/a)" asan A-module.

(if) If p =chars(L) isamaximal ideal, then thereexistsaninteger h, the height ht(¢)
of ¢, satisfying 1 < h < r, and suchthat ,¢(L3¥9) ~ (A/a)"~" whenever a isa
power of p, and (LA9) ~ (A/a)" if (a,p) = 1.

The absolute Galoisgroup G of L actson ,¢(L%) through A-linear automor-
phisms. Therefore, any Drinfeld module gives rise to Galois representations on its
division points. These representations tend to be “as large as possible”.

The prototype of result is the following theorem, due to Carlitz and Hayes [H1].

Theorem 1. Let A be the polynomial ring [F,[7] with field of fractions K. Let

p:A — K{r} be the Carlitz module, pr = T + 7. For any non-constant monic

polynomial a € A, let K(a) := K(,p(K39)) be the field extension generated by the

a-division points.

(i) K(a)/K isabelianwithgroup (A/a)*. If o} isthe automorphism corresponding
to theresidueclassof b mod a and = € ,p(K39) then o (x) = py(x).

(i) If (a) = p* is primary with some prime ideal p then K(a)/K is completely
ramified at p and unramified at the other finite primes.

(iii) If (@) = JJa; (1 < i < s) with primary and mutually coprime a;, the fields
K(a;) aremutually linearly digoint and K = ®;<;<sK (a;).

(iv) Let K.(a) be the fixed field of Fy — (A/a)*. Then oo is completely split in
K4(a)/K and completely ramified in K (a)/K+(a).

(v) Let p beaprimeideal generated by the monic polynomial = € A and coprime
with a. Under the identification Gal(K (a)/K) = (A/a)*, the Frobenius element
Frob,, equalsthe residueclassof 7 mod a.
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Letting a — oo with respect to divisibility, we obtain the field K (co) generated
over K by all the division points of p, with group Gal(K (o0)/K) = Ii_nga (A/a)*,
which almost agreeswith the group of finiteidele classesof K. Itturnsout that K (co)
is the maximal abelian extension of K that is tamely ramified at oo, i.e., we get a
constructive version of the class field theory of K. Hence the theorem may be seen
both as a global variant of Lubin-Tate's theory and as an analogue in characteristic p
of the Kronecker—Weber theorem on cyclotomic extensions of Q.

There are vast generalizations into two directions:

(a) abelian class field theory of arbitrary global function fields K = Frac(A), where
A isaDrinfeld ring.
(b) systems of nonabelian Galois representations derived from Drinfeld modules.

Asto (@), the first problem is to find the proper analogue of the Carlitz module for
an arbitrary Drinfeld ring A. Aswill result e.g. from Theorem 2 (see also (4.3.4)),
the isomorphism classes of rank-one Drinfeld modules over the algebraic closure ka9
of K correspond bijectively to the (finite!) class group Pic(A) of A. Moreover,
these Drinfeld modules p(® (a € Pic(A)) may be defined with coefficientsin the ring
Oy, of A-integersof acertain abelian extension H, of K, and such that the leading
coefficients of all p{®) areunitsof Oy, . Using these data along with the identification
of Hy inthedictionary of classfield theory yields ageneralization of Theorem 1 to the
case of arbitrary A. In particular, we again find an explicit construction of the class
fieldsof K (subject to atamenesscondition at oo ). However, in view of class number
problems, the theory (due to D. Hayes [H2], and superbly presented in [Go2, Ch.VI1])
has more of the flavour of complex multiplication theory than of classical cyclotomic
theory.

Generalization (b) isasfollows. Supposethat L isafiniteextensionof K = Frac(A),
where A isagenera Drinfeld ring, and let the Drinfeld module ¢ over L haverank r.
For each power p* of aprime p of A, G = Gal(L%P/L) actson ,:¢ ~ (A/p")". We
thus get an action of G, on the p-adic Tate module T},(¢) ~ (A,)" of ¢ (see[DH, |
sect. 4]. Here of course A, = m A/pt isthe p-adic completion of A with field of
fractions K. Let on the other hand End(¢) be the endomorphism ring of ¢, which
also actson T,(¢). Itisstraightforward to show that (i) End(¢) actsfaithfully and (ii)
the two actions commute. In other words, we get an inclusion

(4.2.1) i:End(¢) ©a Ap — Endg, (T5(4))

of finitely generated free A,-modules. The plain analogue of the classical Tate con-
jecture for abelian varieties, proved 1983 by Faltings, suggests that 7 is in fact bijec-
tive. This has been shown by Taguchi [Tag] and Tamagawa. Teking End(7}(¢)) ~
Mat(r, A,) and the known structure of subalgebras of matrix algebras over afield into
account, this means that the subalgebra

Kp[GL] — End(T,(¢) ®4, K,) =~ Mat(r, K)
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generated by the Galois operatorsis as large as possible. A much stronger statement is
obtained by R. Pink [P1, Thm. 0.2], who shows that the image of G, in Aut(T,(¢))
has finite index in the centralizer group of End(¢) ® A,. Henceif eg. ¢ has no
“complex multiplications’ over L39 (i.e., End,ag(¢) = A; thisis the generic case
for a Drinfeld module in characteristic oc), then the image of G hasfinite index in
Aut(T,(¢9)) ~ GL(r,Ay). Thisis quite satisfactory, on the one hand, since we may
use the Drinfeld module ¢ to construct large nonabelian Galois extensions of L with
prescribed ramification properties. On the other hand, the important (and difficult)
problem of estimating the index in question remains.

4.3. Welerstrasstheory

Let A beaDrinfeld ring with field of fractions K, whose completion at oo isdenoted
by K... Wenormalizethe corresponding absolutevalue | | =| | as |a| =|A/al for
0#a € A andlet C., bethecompleted algebraic closureof K., i.e., the completion
of the algebraic closure Kglog with respect to the unique extension of | | to K?'og.
By Krasner's theorem, C, is again algebraicaly closed ([BGS, p. 146], where aso
other facts on function theory in C, may be found). It is customary to indicate the
strong analogiesbetween A, K, K., Co,... and Z,Q,R,C, ..., eg. A isadiscrete
and cocompact subring of K ... But note that C, failsto be locally compact since
|Coo : Koo| = 00.

Definition 6. A lattice of rank » (an r-lattice in brief) in C,, isafinitely generated
(hence projective) discrete A-submodule A of C,, of projective rank r, where the
discreteness means that A has finite intersection with each ball in C.,. The lattice
function ep: Co — Coo of A isdefined asthe product

(4.3.1) en(z) =z [ @—2/N.
0ANEN

It is entire (defined through an everywhere convergent power series), A-periodic and
IF,-linear. For anon-zero a € A consider the diagram

0 A Co —2 5 Cy —— 0
(4.3.2) al al ¢gl
0 A Co —2 5 Cy —— 0

with exact lines, where the left and middle arrows are multiplications by a and ¢/ is
defined through commuitativity. It is easy to verify that

(i) o) € Cx{r},
(i) deg (¢7) =1 - deg(a),
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(iii) a — ¢ isaring homomorphism ¢": A — C..{r}, in fact, a Drinfeld module
of rank r. Moreover, al the Drinfeld modules over (', are so obtained.

Theorem 2 (Drinfeld [Dr, Prop. 3.1]).

(i) Eachrank-r Drinfeldmodule ¢ over C., comesvia A — ¢ fromsome r-lattice
Ain Cy.

(ii) Two Drinfeld modules ¢”, ¢ areisomorphic if and only if there exists 0 # ¢ €
Cs suchthat A" =c-A.

We may thus describe M"(1)(C) (see Definition 4) as the space of r-lattices
modulo similarities, i.e., as some generalized upper half-plane modulo the action of an
arithmetic group. Let us make this more precise.

Definition 7. For r > 1 let P"~1(C..) bethe C., -pointsof projective r — 1-spaceand
Q" =P YC) — UH(Cx), where H runs through the K -rational hyperplanes
of P!, Thatis, w = (w1 :...:w,) belongsto Drinfeld's half-plane Q" if and only
if thereis no non-trivial relation ) a;w; = 0 with coefficients a; € K.

Both point sets P"~1(C.,) and Q" carry structures of analytic spaces over C
(even over K, ), and so we can speak of holomorphic functionson Q". We will not
give the details (see for example [GPRV, in particular lecture 6]); sufficeit to say that
locally uniform limits of rational functions (e.g. Eisenstein series, see below) will be
holomorphic.

Suppose for the moment that the class number h(A) = |Pic(4)] of A equals
one, i.e, A is a principal ideal domain. Then each r-lattice A in C., is free,
A =3 1cic, Awi, and the discreteness of A is equivalent with w = (w1 @ ... @ wy)
belongingto Q" — P"~1(C..). Further, two points w and w’ describe similar lattices
(and therefore isomorphic Drinfeld modules) if and only if they are conjugate under
I := GL(r, A), which acts on P"~1(C..) and its subspace Q". Therefore, we get a
canonical bijection

(4.3.3) M Q" =M"(1)(Cx)

from the quotient space ' \ Q" to the set of isomorphism classes M"(1)(C)-

Inthe general caseof arbitrary h(A) € N, welet I'; .= GL(Y;) — GL(r, k), where
Y; — K" (1 < i < h(A)) runs through representatives of the h(A) isomorphism
classes of projective A-modules of rank r. In a similar fashion (see e.g. [G1, Il
sect.1], [G3]), we get a bijection

(4.3.4) M\ Q" =M"(1)(Cx),

Ulgz‘gh(A)

which can be made independent of choicesif we use the canonical adelic description of
the Y;.
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Example 4. If r = 2 then Q = Q? = P}(C) — —PY(K ) = Cx — K., Which
rather correspondsto C — R = H* | J H~ (upper and lower complex half-planes) than
to H* done. Thegroup I' := GL(2,A) actsvia (“5)(z) = 2, and thus gives
rise to Drinfeld modular formson Q (see [G1]). Suppose moreover that A = F,[T]
as in Examples 1 and 3. We define ad hoc a modular form of weight k£ for ' asa

holomorphic function f: Q — C,, that satisfies
() f(22) =(cz+d)*f(2) for (“°) €T and

cz+d

(i) f(z) isbounded onthesubspace {z € Q :inf,ck_ |z — x| > 1} of Q.

Further, weput M; forthe C, -vector space of modular formsof weight k. (Inthe
special case under consideration, (ii) is equivalent to the usual “holomorphy at cusps’
condition. For more general groups I, e.g. congruence subgroups of GL(2, A),
general Drinfeld rings A, and higher ranks r > 2, condition (ii) is considerably more
costly to state, see[G1].) Let

(4.3.5) E(2) = > 1

k
00 TeAxa @2 F0)

be the Eisenstein series of weight k. Due to the non-archimedean situation, the sum
converges for k£ > 1 and yields a modular form 0 # E, € M, if Kk = 0 (¢ — 1).
Moreover, the various M, arelinearly independent and

(4.3.6) M) = P My = Coo[Ey1, Ep2_q]
k>0

is a polynomial ring in the two algebraically independent Eisenstein series of weights
g—1 and ¢?2—1. Thereisanapriori different method of constructing modular formsvia
Drinfeld modules. With each z € Q, associate the 2-lattice A, .= A2+ A — C, and
the Drinfeld module ¢2) = ¢-). Writing ¢ = T + g(2)7 + A(z)72, the coefficients
g and A become functionsin z, in fact, modular forms of respective weights ¢ — 1
and ¢2 — 1. Wehave ([Go1], [G1, Il 2.10])

2 2
(437) 9= = T)E,_1,: A= (7 —T)Ep 1 +(T7 — THE™,.

The crucia fact is that A(z) # 0 for z € Q, but A vanishes “at infinity”. Letting
§(2) = g(2)7™ /A(z) (whichisafunction on Q invariant under I'), the considerations
of Example 3 show that j is a complete invariant for Drinfeld modules of rank two.
Therefore, the composite map

(4.3.8) FiT\ QS MP(1)(Cos) = Coe

is bijective, in fact, biholomorphic.
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4.4, Moduli schemes

We want to give a similar description of M"(1)(C) for » > 2 and arbitrary A, that
is, to convert (4.3.4) into an isomorphism of analytic spaces. One proceeds as follows
(see[Dr], [DH], [G3]):

(a) Generalize the notion of “Drinfeld A-module over an A-field L” to “Drinfeld
A-module over an A-scheme S — Spec A”. Thisisquite straightforward. Intuitively,
a Drinfeld module over S is a continuously varying family of Drinfeld modules over
theresiduefieldsof S.

(b) Consider the functor on A-schemes:

isomorphism classes of rank-r
M S —

Drinfeld modules over S

The naive initial question is to represent this functor by an S-scheme M7 (1). Thisis
impossible in view of the existence of automorphisms of Drinfeld modules even over
algebraically closed A-fields.

(c) As aremedy, introduce rigidifying level structures on Drinfeld modules. Fix some
ideal 0 #n of A. An n-level structure on the Drinfeld module ¢ over the A-field L
whose A-characteristic doesn’t divide n isthe choice of anisomorphismof A-modules

a:(A/n)" = wo(L)

(compare Proposition 2). Appropriate modifications apply to the caseswhere char 4 (L)
divides n and where the definition field L isreplaced by an A-scheme S. Let M"(n)
be the functor

isomorphism classes of rank-r
M"(n): S —— < Drinfeld modules over S endowed
with an n-level structure

Theorem 3 (Drinfeld [Dr, Cor. to Prop. 5.4]). Suppose that n is divisible by at least
two different prime ideals. Then M"(n) is representable by a smooth affine A-scheme
M"(n) of relativedimension r — 1.

In other words, the scheme M™(n) carries a “tautological” Drinfeld module ¢ of
rank r endowedwith alevel- n structuresuch that pull-back inducesfor each A-scheme
S abijection

(44.1)  M"(n)(S) = {morphisms (S, M"(n))} =M " (n)(S), fr— f*(¢).

M"(n) iscalledthe (fine) moduli schemefor the moduli problem M"(n). Now thefinite
group G(n) := GL(r, A/n) actson M"(n) by permutations of the level structures. By
functoriality, it also actson M"(n). Welet M7 (1) bethe quotient of M"(n) by G(n)
(which does not depend onthe choiceof n). It hasthe property that at least its L-valued
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points for algebraically closed A-fields L correspond bijectively and functorialy to
M"(1)(L). Itistherefore called a coarse moduli scheme for M"(1). Combining the
above with (4.3.4) yields a bijection

(4.4.2) MH\Q = M'(1)(Cx),

Ulgigh(A)

which even is an isomorphism of the underlying analytic spaces [Dr, Prop. 6.6]. The
most simple special caseis the one dealt with in Example 4, where M%(1) = Al 4, the
affineline over A.

4.5. Compactification

It is a fundamental question to construct and study a “compactification” of the affine
A-scheme M"(n), relevant for example for the Langlands conjectures over K, the
cohomology of arithmetic subgroups of GL(r, A), or the K-theory of A and K.
This means that we are seeking a proper A-scheme M7 (n) with an A-embedding
M7 (n) — M"(n) asan open dense subscheme, and which behaves functorially with
respect to the forgetful morphisms AM"(n) — M"(m) if m isadivisor of n. For
many purposesit sufficesto solve the apparently easier problem of constructing similar
compactifications of the generic fiber M"(n) x4 K orevenof M"(n) x4 C. Note
that varietiesover C,, may be studied by analytic means, using the GAGA principle.

There are presently three approaches towards the problem of compactification:

(a) a (sketchy) construction of the present author [G2] of a compactification M of
M, the C,-variety corresponding to an arithmetic subgroup I' of GL(r, A) (see
(4.3.4) and (4.4.2)). We will return to this below;

(b) an analytic compactification similar to (a), restricted to the case of apolynomial ring
A =TF,[T], but with the advantage of presenting complete proofs, by M. M. Kapranov
[KT;

(c) R. Pink’sidea of amodular compactification of M"(n) over A through a general-
ization of the underlying moduli problem [P2].

Approaches (a) and (b) agree essentialy in their common domain, up to notation
and some other choices. Let us briefly describe how one proceedsin (a). Sincethereis
nothing to show for » = 1, we supposethat r > 2.

Welet A beany Drinfeld ring. If T isasubgroup of GL(r, K) commensurable
with GL(r, A) (we cal such I arithmetic subgroups), the point set T \ Q is the
set of C.-points of an affine variety M over C.,, as results from the discussion of
subsection4.4. If T isthe congruencesubgroup '(n) = {y € GL(r, A):v = 1 mod n},
then M isoneof theirreducible componentsof M7 (n) x4 Cu.

Definition 8. For w = (w1,: ... : w,) € P"1(C.) put

r(w) =dimg(Kwi +---+ Kw,) and ro(w) :=dimg (Kewit: -+ Koow,).
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Then 1 < ro(w) < r(w) < 7 and Q" = {w | r(w) = r}. More generaly, for
1<i<rlet

Q" = {wireo(w) = r(w) = i}

Then Q™% = [ JQy,, where V' runsthroughthe K -subspacesof dimension i of K" and
Qy isconstructed from V' inasimilar way asis Q" = Qg from C. = (K") ® Cw.
That is, Qy = {w € P(V ® Cx) — P HCw):7oo(w) = r(w) = i}, which has a
natural structure as analytic space of dimension dim(V") — 1 isomorphic with QdmM(V),

Finally, welet Q" := {w: 7o (w) = r(w)} = Ui, Q7"

Q" along with its stratification through the Q™% is stable under GL(r, K), sothis
aso holds for the arithmetic group " in question. The quotient " \ Q" turns out to be
the C -points of the wanted compactification M.

Definition 9. Let P, — G := GL(r) bethe maximal parabolic subgroup of matrices
with first ¢ columns being zero. Let H; be the obvious factor group isomorphic
GL(r —i). Then P;(K) actsvia H;(K) on K"~% andthuson Q"~%. From

G(K)/Pi(K) = {subspaces ' of dimension » —i of K"}
we get bijections
G(K) X p,(K) QT*i = QT,T*i7

(45.1) 1
(gywir1 oo twp) — (0 10 wis1 T .o T wy)g

and

(4.5.2) r\Qr—:= Uger\G(K)/Pi(K)r(z, 9\ Q

where T(i,g) := P; N g~1I,, and the double quotient T \ G(K)/P;(K) is finite by
elementary lattice theory. Note that the image of '(i,g) in H;(K) (the group that
effectively acts on Q"~%) is again an arithmetic subgroup of H;(K) = GL(r — i, K),
and so the right hand side of (4.5.2) is the disjoint union of analytic spaces of the same
type '\ Q"".

Example5. Let T =T(1) = GL(r,A) and i = 1. Then I' \ G(K)/P1(K) equals
the set of isomorphism classes of projective A-modules of rank » — 1, which in turn
(through the determinant map) is in one-to-one correspondence with the class group
Pic(A).

Let Fy be the image of Qi in '\ Q". The different analytic spaces I,
corresponding to locally closed subvarieties of M, are glued together in such away
that Iy liesin the Zariski closure 'y of Fy if and only if U is I'-conjugate to a
K -subspaceof V. Taking into account that Fy ~ "\ Q4m(V) = A, (C..) for some
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arithmetic subgroup I’ of GL(dim(V), K), Fy correspondsto the compactification
Mr/ of M.

The details of the gluing procedure are quite technical and complicated and cannot
be presented here (see [G2] and [K] for some special cases). Suffice it to say that
for each boundary component Fy, of codimension one, avertical coordinate ¢y, may
be specified such that £y, islocally given by ¢y, = 0. The result (we refrain from
stating a “theorem” since proofs of the assertions below in full strength and generality
are published neither in [G2] nor in [K]) will be anormal projective C-variety M
provided with an open dense embedding i: M — M with the following properties:
Mr(Cx) =T\ Q", andtheinclusion ' \ Q" — I\ Q" correspondsto i;

M isdefined over the same finite abelian extension of K asis Mr;

for [ — I, the natural map My, — M extendsto My, — Mr;

the Fy correspond to locally closed subvarieties, and Fy, = UFy;, where U runs

through the K -subspacesof V' contained up to the actionof I in V;

e My is“virtualy non-singular”, i.e., I containsasubgroup " of finite index such
that My, isnon-singular; in that case, the boundary components of codimension
one present normal crossings.

Now suppose that M is non-singular and that = € Mr(Coo) = Upcic, Q"
belongsto Q1. Thenwe can find asequence {z} = Xo C --- X;--- C X,_1 = My
of smooth subvarieties X; = F'y, of dimension i. Any holomorphic function around
z (or more generally, any modular form for ') may thus be expanded as a series in
ty with coefficients in the function field of F'y, _, etc. Hence My (or rather its
completion at the X; ) may be described through (r» — 1)-dimensional local fields with
residue field C,. The expansion of some standard modular forms can be explicitly
calculated, see [G1, VI] for the case of » = 2. In the last section we shall present at
least the vanishing orders of some of these forms.

Example6. Let A bethepolynomial ring F,[7] and ' = GL(r, A). Asresultsfrom
Example 3, (4.3.3) and (4.4.2),

Mr(Coo) = M"(1)(Coo) ={(91,--- ,9r) € CL1gr 70}/ CL,
where C*_ acts diagonally through c(g1,...,9,) = (... ,cqiflgi,...), which is the

open subspace of weighted projectivespace P"~1(¢—1, ... , ¢" —1) with non-vanishing
last coordinate. The construction yields

Mr(Co) =P Mg =1, 10" = (Co) = [, M'(D(Coc):

Itssingularities are rather mild and may be removed upon replacing I' by a congruence
subgroup.
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4.6. Vanishing orders of modular forms

In thisfinal section we state some results about the vanishing orders of certain modular
formsalong theboundary divisorsof M, inthecasewhere I iseither I'(1) = GL(r, A)
or afull congruencesubgroup ' (n) of '(1). Thesearerelevant for the determination of
K - and Chow groups, and for standard conjectures about the arithmetic interpretation
of partial zetavalues.

In what follows, we suppose that ~ > 2, and put z; := 2+ (1 <@ < r) for the
coordinates (w1 : ... : w,) of w € Q". Quite generaly, a = (a1, ... ,a,) denotesa
vector with » components.

Definition 10. TheEisenstein series E), of weight k£ on Q" is defined as

1

Ek((i)) = Z Lk
O r (arz1+ - +arz)

Similarly, we definefor u e n=1 x ... xn~1c K"

Ek,g(“_)) = Z L

oo (@121 +a,z)
gEEmOdAT

Thesearemodular formsfor (1) and I'(n), respectively, that is, they are holomorphic,
satisfy the obvious transformation values under (1) (resp. I'(n)), and extend to
sections of aline bundle on M. Asin Example 4, there is a second type of modular
forms coming directly from Drinfeld modules.

Definition 11. For w € Q" write A, = Az +--- + Az, and e, ¢¥ for thelattice
function and Drinfeld module associated with A, respectively. If a € A has degree

d = deg(a),
s =a+ Z li(a,w)T".
1<i<rd
The /;(a,w) are modular forms of weight ¢* — 1 for . Thisholdsin particular for
Aa(@) = grd(av ‘i))v

which has weight ¢"¢ — 1 and vanishes nowhere on Q". The functions ¢ and A in
Example 4 merely constitute avery special instance of this construction. We further let,
for u e (n1)",

62(@) = eog(ulzl +..oF Urzr)7
the n-division point of type u of ¢%. If u & A", e,(w) vanishes nowhere on Q",
and it can be shown that in this case,

(4.6.1) €y = E1u
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We are interested in the behavior around the boundary of My of these forms. Let us
first describethe set {F'y/} of boundary divisors, i.e., of irreducible components, all of
codimension one, of M — M. For I =T (1) = GL(r, A), thereisanatural bijection

(4.6.2) {Fy} = Pic(A)

described in detail in [G1, VI 5.1]. Itisinduced from V — inverseof A"~1(V N A").
(Recall that V' isa K -subspace of dimension » — 1 of K", thus VN A" aprojective
module of rank ~ — 1, whose (r — 1)-th exterior power A"~1(V N A") determines
an element of Pic(A).) We denote the component corresponding to the class (a) of
anidea a by F(,. Similarly, the boundary divisors of A/ for ' = I'(n) could be
described via generalized class groups. We simply use (4.5.1) and (4.5.2), which now
give

(4.6.3) {Fy} =T\ GL(r, K)/ P(K).

We denote the class of v € GL(r, K) by [v]. For the description of the behavior of
our modular formsalong the F'y-, we need the partial zetafunctionsof A and K. For
more about these, see [W] and [G1, I11].

Definition 12. We let

s P(qg™*
CK(S) = Z ’Cl| - (1 _ q—s()q(l 3 ql—s)

be the zeta function of K with numerator polynomial P(X) € Z[X]. Herethesumis
taken over the positive divisors a of K (i.e, of the curve C with function field K).
Extending the sum only over divisors with support in Spec(A), we get

Cas)= > a7 = k)X — g™ ™),

07aC A idedl

where d, = dequ (c0). For aclass ¢ € Pic(A) we put

Cls) = Jal ™.

acc
If finally n ¢ K isafractional A-ideal and ¢ € K, we define
Cemodn(8) = Z la]”*.
azatemlf)dn

Amongtheobviousdistributionrelations[ G1, 11 sect.1] between these, we only mention

(4.6.4) (n-1)(8) = q’n_| 1

Wearenow in aposition to state the foll owing theorems, which may be proved following
the method of [G1, VI].

Comodn (8)-
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Theorem 4. Let a € A be non-constant and ¢ a classin Pic(A). The modular form
A, for GL(r, A) hasvanishing order

Ordc(Aa) = _(‘a|r - l)Cc(l - 7')
at the boundary component F'. correspondingto c.

Theorem 5. Fixanideal n of A and u € K" — A" suchthat v -n C A", and let
e; ! = E1,, bethemodular formfor I"(n) determined by thesedata. Thevanishing order
oFd[l,] of Ep,(w) at the component correspondingto v € GL(r, K) (see (4.6.2)) is
given as follows: let m1: K™ — K be the projection to the first coordinate and let a

be the fractional ideal m1(A” - v). Writefurther « - v = (v1,... ,v,). Then
_ It
ordp,) By (w) = W(Culmoda(l — 1) — Comoda(1 — 7).

Note that the two theorems do not depend on the full strength of propertiesof M
as stated without proofs in the last section, but only on the normality of M, whichis
provedin [K] for A =TF,[T], and whose generalization to arbitrary Drinfeld ringsis
straightforward (even though technical).
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5. Harmonic analysis on algebraic groups over
two-dimensional local fields of equal characteristic

Mikhail Kapranov

In this section we review the main parts of a recent work [4] on harmonic analysis on
algebraic groups over two-dimensional local fields.

5.1. Groupsand buildings

Let K (K = K, whoseresiduefieldis K1 whoseresiduefieldis Ko, seethe notation
in section 1 of Part 1) be atwo-dimensional local field of equal characteristic. Thus K>
isisomorphic to the Laurent seriesfield K1((t2)) over K. Itisconvenient to think of
elementsof K, as(formal) loopsover K. Even in the case where char (k) = 0, it
is still convenient to think of elements of K7 as (generalized) loops over Ky so that
K> consists of double loops.

Denotetheresiduemap Ok, — K1 by p, andtheresiduemap Og, — Ko by ps.
Then thering of integers Ok of K asof atwo-dimensional local field (see subsection
1.1 of Part I) coincides with p; 1O, ).

Let G beasplit smple simply connected algebraic group over Z (e.g. G = SLy).
Let T'C B C G beafixed maximal torusand Borel subgroup of G; put N =[B, B],
and let W bethe Weyl group of G. All of them are viewed as group schemes.

Let L = Hom(G,,,,T) bethe coweight lattice of G; the Weyl group actson L.

Recall that (K1) = le(B(Fq)) is called an Iwahori subgroup of G(K;) and
T(Ok,)N (K1) can be seen as the “connected component of unity” in B(K1). The
latter name is explained naturally if we think of elementsof B(/K;) asbeing loopswith
valuesin B.
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256 M. Kapranov

Definition. Put
Do = p; 'py H(B(F,)) C G(Ok),
Dy = p; (T (0, )N(K1)) € G(Ox),
Dy =T(0k,)N(K2) C G(K).

Then D, can be seen as the “connected component of unity” of B(K) when K
is viewed as a two-dimensional local field, D; is a (similarly understood) connected
component of an lwahori subgroup of G(K>), and Dy is called a double Iwahori
subgroup of G(K).

A choice of a system of local parameters ¢1,t, of K determines the identification
of thegroup K*/O3 with Z @ Z and identification L & L with L ® (K*/0%).

We have an embedding of L @ (K*/O}) into T(K) which takes a ® (t}t3),
i,j € 7Z, to the value on tité of the 1-parameter subgroup in 7' corresponding to a.

Definethe action of W on L ® (K*/0j};) asthe product of the standard action on
L and thetrivia action on K*/O73 . The semidirect product

W=(L&K*OL)xW
is called the double affine Weyl group of G.
A (set-theoretical) lifting of W into G(O) determinesalifting of W into G(K).

Proposition. For every i, € {0,1,2} thereis a disjoint decomposition
G(K) = ~D;wD;.
( ) UweW W

Theidentification D,;\G(K)/D; with W doesn’t depend on the choice of liftings.

Proof. lterated application of the Bruhat, Bruhat—Tits and Iwasawa decompositions to
thelocal fields Ky, K.

For the Iwahori subgroup I(K?>) = p, Y(B(K31)) of G(K>) the homogeneous space
G(K)/I(K>) isthe “affineflag variety” of G, see[5]. It has acanonical structure of
an ind-scheme, in fact, it is an inductive limit of projective algebraic varieties over K,
(the closures of the affine Schubert cells).

Let B(G, K2/K1) be the Bruhat—Tits building associated to G and the field K>.
Thenthespace G(K)/I(K>) isa G(K)-orbitontheset of flagsof type (vertex, maximal
cell) in the building. For every vertex v of B(G, K2/ K1) itslocaly finite Bruhat—Tits
building 3, isomorphic to B(G, K1/Kp) can be viewed as a “microbuilding” of the
double Bruhat-Tits building B(G, K2/ K1/ Kp) of K asatwo-dimensional local field
constructed by Parshin ([7], see also section 3 of Part I1). Then the set G(K)/D; is
identified naturally with the set of all the horocycles {w € 3, : d(z,w) =r}, z € 98,
of the microbuildings 3, (where the “distance” d(z, ) is viewed as an element of
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a natural L-torsor). The fibres of the projection G(K)/D1 — G(K)/I(K2) are
L-torsors.

5.2. The central extension and the affine Heisenber g—Weyl group
According to the work of Steinberg, Moore and Matsumoto [ 6] developed by Brylinski
and Deligne [1] thereis a central extension

1-K]—-T —-GKp)—1

associated to thetame symbol K5 x K5 — K7 forthecouple (K>, K1) (seesubsection
6.4.2 of Part | for the general definition of the tame symbol).

Proposition. This extension splitsover every D;, 0 < i < 2.
Proof. Use Matsumoto's explicit construction of the central extension.
Thus, there are identifications of every D, with asubgroup of . Put
A = O}lDi cr, ==T/\.

The minimal integer scalar product W on L and the composite of the tame symbol
K5 x K5 — K and the discrete valuation vg,: K* — Z induces a W -invariant
skew-symmetric pairing L @ K*/O% x L ® K*/O3 — Z. Let

1-Z—-L—-LK"/Ox—1

be the central extension whose commutator pairing corresponds to the latter skew-
symmetric pairing. The group L is called the Heisenberg group.

Definition. The semidirect product
W =LxW
is called the doubl e affine Heisenberg—\Weyl group of G.

Theorem. The group W isisomorphicto Laffx]W where Ly =Z @ L, W =LxW
and

wo (a,l')=(a,w(l)), lo(a,l)=(a+W(1I)1), weW, LI'eL, acl.

For every i,5 € {0,1,2} thereisadigoint union

r= UweVNVAiwAj

and the identification A;\I'/A; with W is canonical.
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5.3. Hecke algebrasin the classical setting

Recall that for alocally compact group I and itscompact subgroup A theHeckealgebra
H(,A) can be defined as the algebra of compactly supported double A-invariant
continuous functions of I with the operation given by the convolution with respect
to the Haar measure on I'. For C' = AyA € A\l'/A the Hecke correspondence
o ={(ah, BD) : af~t € C} isaT-orbitof (F/A) x (F/A).

For z € I'/A put Z(x) = Zc N (/D) x {«}. Denotethe projectionsof % tothe
first and second component by 71 and 7.

Let F(I' /A) be the space of continuous functions I' /A — C. The operator

Tt F(/B) = FT/D), | — mo.mi(f)
is called the Hecke operator associated to C'. Explicitly,

(e (@) = fWdpc,z,
y€Zco(x)
where pc . isthe Stab(z)-invariant measure induced by the Haar measure. Elements
of the Hecke algebra JH(I", A) can be viewed as “continuous’ linear combinations of
the operators 7¢, i.e,, integrals of theform [ ¢(C)r«dC where dC' is some measure
on A\l'/A and ¢ is a continuous function with compact support. If the group A is
also open (asis usualy the case in the p-adic situation), then A\I' /A is discrete and
H(,A) consists of finite linear combinations of the 7.

5.4. Theregularized Hecke algebra H(I", A1)

Since the two-dimensional local field K andthering Ok arenot locally compact, the
approach of the previous subsection would work only after anew appropriateintegration
theory isavailable.

The aim of this subsection is to make sense of the Hecke algebra H(I", Az).

Note that the fibres of the projection = = ' /A; — G(K)/I(K7) are Lgs-torsors
and G(K)/I(K>) is the inductive limit of compact (profinite) spaces, so = can be
considered as an object of the category F1 defined in subsection 1.2 of the paper of
Kato in this volume.

Using Theorem of 5.2 for ¢ = j = 1 we introduce:

Definition. For (w,l) € W = Lame denote by >, ; the Hecke correspondence
(i.e., the I-orbit of = x =) associated to (w,[). For £ € = put

Zu(€) = {1 (§,€) € Zuy}.
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The stabilizer Stab(¢) < I actstransitively on %, ;().

Proposition. %, ;(£) is an affine space over K1 of dimension equal to the length of

w € W. The space of compex valued Borel measureson Z,, ;(§) is 1-dimensional. A
choiceof a Stab(£)-invariant measure i, ;¢ 0N %, ;(§) determinesameasure i, ¢
on %, (&) for every ¢’.

Definition. For a continuous function f:= — C put

(rws)(E) = / )bt .

n€EZy,1(£)

Since the domain of the integration is not compact, the integral may diverge. Asa
first step, we define the space of functions on which the integral makes sense. Note that
= can beregarded asan L -torsor over the ind-object G(K)/I(K>2) in the category
pro(Cop), i.e., acompatible system of L4 -torsors =,, over the affine Schubert varieties
Z, forming an exhaustion of G(K)/I(K;). Each =, is alocally compact space
and Z, isacompact space. In particular, we can form the space Fy(=,) of locally
constant complex valued functions on =, whose support is compact (or, what is the
same, proper with respect to the projectionto Z,). Let F(=,) be the space of al
locally constant complex functions on =,. Then we define Fo(=) =" 'ﬂ‘ Fo(=,)
and F(=) =" 'ﬂ‘ F(=,). They are pro-objects in the category of vector spaces. In
fact, because of the action of Ly and its group algebra C[Lg] on =, the spaces
Fo(Z), F(=) arenaturally pro-objects in the category of C[Lg]-modules.

Proposition. If f = (f,) € JFo(X) then Supp(f,) N Z, (&) is compact for every
w, [, &, v andtheintegral above converges. Thus, thereisawell defined Hecke operator

Tw,l- 9:O(E) - S:(E)
whichisan element of Mor(pro(Modc(r4)). Inparticular, 7,,; isthe shift by [ and

Tw,l+l! = Tw, ' Te,l+

Thus we get Hecke operators as operators from one (pro-)vector space to another,
bigger one. This does not yet allow to compose the 7, ;. Our next step is to consider
certain infinite linear combinations of the 7, ;.

Let T4 = Spec(C[Lf]) be the “dual affine torus” of G.. A function with finite
support on Lz can be viewed as the collection of coefficients of a polynomial, i.e., of
an element of C[Lyf] asaregular function on T,f;. Further, let Q C Ly @ R bea
strictly convex conewith apex 0. A functionon Lg with supportin @ can beviewed
as the collection of coefficients of aformal power series, and such series form aring
containing C[Lg]. Onthelevel of functionsthe ring operation is the convolution. Let
Fo(Lat) be the space of functions whose support is contained in some translation of
Q. Itisaring with respect to convolution.
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Let C(Lgs) be the field of rational functionson T;. Denote by F{5*(Lqr) the
subspacein Fg(Lgf) consisting of functions whose corresponding formal power series
are expansions of rational functionson 7.

If A isany Lgs-torsor (over a point), then Fg(A) is an (invertible) module over
JFo(Lart) = C[Lqf] and we can define the spaces F(A4) and ffg(A) which will be
modules over the corresponding ringsfor L. Wealsowrite F@(A) = Fo(A) @c[r4]
C(Left)-

We then extend the above concepts “fiberwise” to torsors over compact spaces
(objects of pro(Cp)) and to torsors over objects of ind(pro(Cp)) such as =.

Let w € W. We denote by Q(w) the image under w of the cone of dominant
affine coweightsin L.

Theorem. The action of the Hecke operator ,,; takes Jp(Z) into ?&w)(z). These
operators extend to operators

md  FAE) — FA2).

Note that the action of /% involves a kind of regularization procedure, which is
hidden in the identification of the :nggw)(z) for different w, with subspaces of the
same space F'&(=Z). In practical terms, thisinvolves summation of a seriesto arational
function and re-expansion in a different domain.

Let Hpre be the space of finite linear combinations > ., ; @171 Thisis not yet
an algebra, but only a C[Lg¢]-module. Note that elements of Hye can be written as
finite linear combinations Zweﬁ/ fw(®)Tw Where fi,(t) = >, awit!, t € Ty, isthe
polynomial in C[L] corresponding to the collection of the a,, ;. This makes the
C[ Lg£]-module structure clear. Consider the tensor product

Hrat = Hpre @c[L4] C(Latt)-

Elements of this space can be considered asfinite linear combinations Zwew Juw®)Tw
where f,,(t) are now rational functions. By expanding rational functions in power
series, we can consider the above elements as certain infinite linear combinations of the

Tw,l

Theorem. The space H;q hasa natural algebra structure and this algebra actsin the
space F(=), extending the action of the 7,,; defined above.

The operators associated to H;y can be viewed as certain integro-difference oper-
ators, because their action involves integration (as in the definition of the 7, ;) as well
asinverses of linear combinations of shifts by elements of 1. (these combinations act
as difference operators).

Definition. The regularized Hecke algebra H (I, A7) is, by definition, the subalgebra
in Hrq consisting of elements whose action in F,x(=) preservesthe subspace Fp(=).
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5.5. TheHecke algebra and the Cherednik algebra

In[2] 1. Cherednik introduced the so-called double affine Hecke algebra Cher,, associ-
ated to the root system of G'. Asshown by V. Ginzburg, E. Vasserot and the author [ 3],
Cher, can be thought as consisting of finite linear combinations Zweﬁ/ad Jw@®[w]

where Wy is the affine Weyl group of the adjoint quotient Gy of G (it contains
W) and f,(t) arerational functionson Taff satisfying certain residue conditions. We
define the modified Cherednik algebra H to be the subalgebrain Cher, consisting of

linear combinations as above, but going over W Wad

Theorem. The regularized Hecke algebra (", A;) is isomorphic to the modified
Cherednik algebra H,. In particular, there is a natural action of H, on Fo(=) by
integro-difference operators.

Proof. Use the principal series intertwiners and a version of Mellin transform. The
information on the poles of the intertwiners matches exactly the residue conditions
introduced in [3].

Remark. The only reason we needed to assume that the 2-dimensional local field K
has equal characteristic was because we used the fact that the quotient G(K)/I(K>)
has a structure of an inductive limit of projective algebraic varieties over K. Infact,
wereally use only aweaker structure: that of an inductive limit of profinite topological
spaces (which are, in this case, the sets of K1-points of affine Schubert varieties over
K1). Thisstructureis available for any 2-dimensional local field, although there seems
to be no reference for it in the literature. Once this foundational matter is established,
all the constructions will go through for any 2-dimensional local field.
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6. ®-I'-modules and Galois cohomology

Laurent Herr

6.0. Introduction

Let G beaprofinite group and p a prime number.

Definition. A finitely generated Z,-module V' endowed with a continuous G-action
iscalled a Z,-adic representation of G. Such representations form a category denoted
by Repr(G); its subcategory Repy, (G) (respectively Rep,, i (G)) of mod p repre-
sentations (respectively p-torsion representations) consists of the V' annihilated by p
(respectively a power of p).

Problem. To calculate in asimple explicit way the cohomology groups H*(G, V) of
the representation V.

A method to solveit for G = G (K isalocal field) isto use Fontaine'stheory of
@- I -modulesand passto asimpler Galois representation, paying the price of enlarging
Z,, to the ring of integers of a two-dimensional local field. In doing this we have to
replace linear with semi-linear actions.

In this paper we give an overview of the applications of such techniquesin different
situations. We begin with a simple example.

6.1. The case of afield of positive characteristic

Let £ beafield of characteristic p, G = Gg and o: EXF — ES, o(x) = 2P the
absol ute Frobenius map.

Definition. For V € Repy (Gg) put D(V) := (E*P @, V)“7; o actson D(V) by
acting on ESP,
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Properties.

(1) dimgD(V)=dimg, V;

(2) the*“Frobenius’ map ¢: D(V) — D(V) induced by o ® idy, satisfies:
a) o(A\r) =o(Np(z) fordl e E, z € D(V) (so ¢ is o-semilinear);
b) o(D(V)) generates D(V) asan E-vector space.

Definition. A finite dimensional vector space M over E iscalled an éale ®-module
over E if thereisa o-semilinear map ¢: M — M such that ¢(M) generates M as
an E-vector space.

Etale ®-modulesform an abelian category qJMj?;t (the morphisms are the linear maps
commuting with the Frobenius ).

Theorem 1 (Fontaine, [F]). Thefunctor V' — D(V') isan equivalenceof the categories
Repp (G) and ®M.

We see immediately that HO(G g, V) = VEr ~ D(V)?.

So in order to obtain an explicit description of the Galois cohomology of mod
p representations of G, we should try to derive in a simple manner the functor
associating to an étale d-module the group of points fixed under ¢. Thisisindeed a
much simpler problem because there is only one operator acting.

For (M, ) € cng define the following complex of abelian groups:

M) 0—MZE Mo

(M standsat degree O and 1).

Thisis a functorial construction, so by taking the cohomology of the complex, we
obtain a cohomological functor (¢ := H' o C1);en from chg to the category of
abelian groups.

Theorem 2. The cohomological functor (3(° o D);cn can be identified with the Galois
cohomology functor (H*(G'g, -))ien for the category Repy (G'g). So, if M = D(V)
then J(*(M) providesa simple explicit description of H (G g, V).

Proof of Theorem 2. We need to check that the cohomological functor (H?);en is
universal; thereforeit sufficesto verify that for every i > 1 thefunctor H* iseffaceable:
this means that for every (M, ¢ar) € CDMEt and every = € H(M) there exists an
embedding u of (M, py) in (N, on) € ®ME suchthat ' (u)(x) iszeroin Hi(N).
But thisiseasy: itistrivial for ¢ > 2; for i = 1 choose an element m belonging to the
class z € M/(p — 1)(M), put N := M & Et and extend ), to the o-semi-linear
map o determined by px(t) =t +m. O
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6.2. ®-I-modulesand Z,-adic representations

Definition. Recall that a Cohen ring is an absolutely unramified complete discrete
valuation ring of mixed characteristic (0,p > 0), so its maximal ideal is generated

by p.

We describe a general formalism, explained by Fontaine in [F], which lifts the
equivalence of categories of Theorem 1 in characteristic O and relates the Z,,-adic
representations of GG to a category of modules over a Cohen ring, endowed with a
“Frobenius’ map and a group action.

Let R beanalgebraically closed completevaluation (of rank 1) field of characteristic
p andlet H beanormal closed subgroup of G. Supposethat G acts continuously on
R by ring automorphisms. Then F := R isa perfect closed subfield of R.

For every integer n > 1, thering W,,(R) of Witt vectors of length n is endowed
with the product of thetopology on R defined by the valuation and then W (R) with the
inverse limit topology. Then the componentwise action of the group G is continuous
and commuteswith the natural Frobenius o on W (R). Wealso have W (R) = W (F).

Let £ be aclosed subfield of F' such that F' isthe completion of the p-radica
closureof E in R. Suppose there exists a Cohen subring O¢ of W(R) with residue
field E and which is stable under the actions of o and of G. Denote by OA the
completion of the integral closure of O¢ in W(R): it isaCohenring whichis stable
by ¢ and G, itsresiduefield isthe separable closureof £ in R and (OA )H Oe¢.

The natural map from H to G g isanisomorphism if and only if the action of H
on R induces an isomorphism from H to Gr. We suppose that thisis the case.

Definition. Let I' be the quotient group G/H. An étale ®-T-module over O¢ isa
finitely generated O -module endowed with a o-semi-linear Frobenius map

¢: M — M and acontinuous I -semi-linear action of ' commuting with ¢ such that
theimage of ¢ generatesthe module M.

Etale ®--modules over O¢ form an abelian category dJngts (the morphisms
arethelinear mapscommuting with ). Thereisatensor product of ®-I'-modules, the
natural one. For two objects M and N of CDI'M(%‘8 the O¢-module Homg, (M, N)
can be endowed with an étale ®- IM-module structure (see [F]).

For every Z,-adicrepresentation V' of G, let Dy (V') bethe O¢-module (O&r ®z,

V) Itisnaturally an étale ®- I -module, with ¢ induced by themap o ®idy and
acting on both sides of the tensor product. From Theorem 2 one deduces the following
fundamental result:

Theorem 3 (Fontaine, [F]). The functor V' — Dy (V) is an equivalence of the cate-
gories Rep, (G) and @I Mg, .
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Remark. If E isafield of positive characteristic, O¢ is a Cohen ring with residue
field F endowed with aFrobenius o, then we can easily extend the results of the whole
subsection 6.1 to Z,-adic representations of G by using Theorem 3for G = G and
H ={1}.

6.3. A brief survey of thetheory of the field of norms

For the details we refer to [W], [FV] or [F].

Let K beacompletediscretevaluation field of characteristic 0 with perfect residue
field k of characteristic p. Put G = Gi = Ga(K*/K).

Let C bethe completion of K5, denotethe extension of the discretevaluation v
of K to C by vg. Let R* = I(i_m(C;*1 where C,, = C and the morphism from C,,4+1
to C,, israising to the pth power. Put R := R* U {0} and define vi((x,)) = vk (z0)-
For (z,), (y,) € R define

)+ ) = () where 2, = M (e + o)

Then R isanalgebraically closed field of characteristic p complete with respectto vy
(cf. [W]). Itsresidue field is isomorphic to the algebraic closure of k& and thereis a
natural continuous action of G on R. (Note that Fontaine denotes this field by Fr R
in [F]).

Let L be a Galois extension of K in K. Recal that one can always define
the ramification filtration on Gal(L/K) in the upper numbering. Roughly speaking,
L/K isan arithmetically profinite extension if one can define the lower ramification
subgroups of G so that the classical relations between the two filtrations for finite
extensions are preserved. Thisis in particular possible if Gal(L/K) isa p-adic Lie
group with finite residue field extension.

Thefield R containsin anatural way the field of norms N(L/K) of every arith-
metically profinite extension L of K andtherestrictionof v to N(L/K) isadiscrete
valuation. The residue field of N(L/K) isisomorphic to that of L and N(L/K) is
stable under the action of . The construction is functorial: if L’ isafinite extension
of L contained in K3P, then L'/K isstill arithmetically profiniteand N(L'/K) is
a separable extension of N(L/K). Thedirect limit of the fields N(L’'/K) where L’
goes through all the finite extensions of L contained in K is the separable closure
E*® of F = N(L/K). Itis stable under the action of G and the subgroup G,
identifieswith Gg. Thefield E*P isdensein R.

Fontaine described how to lift these constructionsin characteristic 0 when L isthe
cyclotomic Z,-extension K, of K. Consider thering of Witt vectors 1V (R) endowed
with the Frobenius map o and the natural componentwise action of G. Define the
topology of W (R) asthe product of the topology defined by the valuation on R. Then
one can construct a Cohenring OEW withresiduefield E3P (E = N(L/K)) suchthat:
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(1) Ogur isstableby ¢ and the action of G,

(ii) for every finite extension L of K., thering (O&r)GL is a Cohen ring with
residuefield E.

Denote by O¢(k) the ring (Oé\ur)GKoc. It is stable by o and the quotient ' =

G/Gk.. acts continuously on Og k) With respect to the induced topology. Fix a
topological generator v of I': it isa continuous ring automorphism commuting with
o. The fraction field of Og(k) is atwo-dimensional standard local field (as defined
in section 1 of Part I). If « isalifting of a prime element of N(K../K) in Ogx)
then the elements of O¢ (k) aretheseries ) ., a;7, where the coefficients a; arein
W (kg ) and converge p-adically to O when i — —oo.

6.4. Application of Zy,-adic representations of G
to the Galois cohomology

If we put together Fontaine's construction and the general formalism of subsection 6.2
we abtain the following important result:

Theorem 3' (Fontaine, [F]). Thefunctor V' — D(V) := (Ogur ®z, V)C*~ definesan
equivalence of the categories Rep, (G) and or M&

()’

Since for every Z,-adic representation of G we have H(G,V) = V¢ ~ D(V)¥?,
we want now, as in paragraph 6.1, compute explicitly the conomology of the represen-
tation using the ®-I'-module associated to V.

For every étale ®-I"-module (M, ¢) definethefollowing complex of abeliangroups:

CoM): 0—=MSMaM M0
where M stands at degree 0 and 2,

a(x) = (¢ = Dz, (v = D),  B((y,2) = (v = Dy — (¢ — D)=

By functoriality, we obtain a cohomological functor (H? := H? 0 Cp);en from
q:ngtg(K) to the category of abelian groups.

Theorem 4 (Herr, [H]). The cohomological functor (H? o D);cn can be identified
with the Galois cohomology functor (H*(G,.));en for the category Rep,,.ior(G). S0,
if M = D(V) then (M) provides a simple explicit description of H*(G,V) inthe
p-torsion case.

|dea of the proof of Theorem4. We haveto check that for every i > 1 the functor K
iseffaceable. For every p-torsionobject (M, par) € cpngE(K) andevery x € H' (M)

we construct an explicit embedding « of (M, p5s) inacertain (N, on) € d)FMS‘E(K)
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such that 3 (u)(x) is zero in H(N). For details see [H]. The key point is of
topological nature: we prove, following an idea of Fontaine in [F], that there exists
an open neighbourhood of O in M on which (¢ — 1) is bijective and use then the
continuity of the action of T. O

As an application of theorem 4 we can prove the following result (due to Tate):

Theorem 5. Assumethat &y isfiniteandlet V' bein Rep, ,(G). Without using class
field theory the previous theorem implies that H*(G, V) arefinite, H'(G,V) = 0 for
7> 3 and

2
> UHN(G, V) = —|K: Q| V),

=0
where [() denotesthe length over Z,,.

See[H].

Remark. Because the finiteness results imply that the Mittag—L effler conditions are
satisfied, it is possible to generalize the explicit construction of the cohomology and to
prove analogous results for Z,, (or Q, )-adic representations by passing to the inverse
limits.

6.5. A new approach to local classfield theory

Theresults of the preceding paragraph allow usto prove without using classfield theory
the following:

Theorem 6 (Tate's local duality). Let V' be in Rep,.(G) and n € N such that
p"V = 0. Put V*(1) := Hom(V, ,»). Then there is a canonical isomorphism from
H?(G, pyn) to Z/p™ and the cup product

H'(G,V) x H* (G, V*(1)) = HXG, ) = Z/p"
is a perfect pairing.

It is well known that a proof of the local duality theorem of Tate without using
class field theory gives a construction of the reciprocity map. For every n > 1 we
have by duality a functorial isomorphism between the finite groups Hom(G,Z/p™) =
HYG,Z/p"™) and HY(G, p,pn) Whichisisomorphicto K*/(K*)*" by Kummer theory.

Taking the inverse limits gives us the p-part of the reciprocity map, the most difficult
part.
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Sketch of the proof of Theorem6. ([H2]).

a) Introduction of differentials:

Letusdenoteby Q! the O¢(x)-moduleof continuous differential formsof O over
Wi(kk.). If = isafixedlifting of aprime element of F(K./K) in Og k), thenthis
module is free and generated by dr. Define the residue map from Q! to W(kx_) by
res (3°,cz aim'dm) = a_1; itisindependent of the choice of .

b) Calculation of some ®-I'-modules:
The O¢(x)-module Q! is endowed with an éale ®- I -module structure by the
following formulas: for every A € O¢(x) we put:

pp(Adr) = o(N)d(o(r)) , ~(Adm) = ~7(N)d((7)).

The fundamental fact is that there is a natural isomorphism of ®-I"-modules over
Oe () between D(y,») and thereduction Q1 of Q! modulo p".

The étale ®- I -module associated to the representation V*(1) is
M = Hom(M, Q-}m), where M = D(V). By composing the residue with the trace
we obtain a surjective and continuous map Tr,, from M to Z/p™. For every f € M,
themap Tr,, o f isan element of the group M of continuous group homomorphisms
from M to Z/p". Thisgivesin fact agroup isomorphism from M to MY andwecan
therefore transfer the ®- I -module structure from A to MV, But, since & is finite,
M islocally compact and MV isin fact the Pontryagin dual of M.

¢) Pontryagin duality implies local duality:
We simply dualize the complex C>(M) using Pontryagin duality (all arrows are
strict morphisms in the category of topological groups) and obtain a complex:

CoM)Y 00— MY 2L MV e MY 2L MY o,
wherethetwo M"Y arein degrees 0 and 2. Since we can construct an explicit quasi-
isomorphism between Cy(MVY) and C,(M)Y, we easily obtain a duality between
FH(M) and HZ (M) forevery i € {0,1,2}.

d) The canonical isomorphism from H(Q? ) to Z/p™:

The map Tr,, from Q1 to Z/p" factors through the group H2(Q2 ) and this
gives an isomorphism. But it is not canonical! In fact the construction of the complex
Cy(M) dependson the choice of ~. Fortunately, if we take another -, we get a quasi-
isomorphic complex and if we normalize the map Tr,, by multiplying it by the unit
—pvr(109x0)) /1og x(v) of Z,, where log isthe p-adic logarithm, y the cyclotomic
character and v, = vq,, then everything is compatible with the change of ~.

€) The duality is given by the cup product:

We can construct explicit formulas for the cup product:

HU(M) x HZH(MY) = HAQL,)
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associated with the cohomological functor (J%);cy and we compose them with the
preceding normalized isomorphism from }CZ(Qin) to Z/p™. Since everything is
explicit, we can compare with the pairing obtained in c) and verify that it is the same
up to aunit of Z,,. O

Remark. Benois, using the previous theorem, deduced an explicit formula of Cole-
man’s type for the Hilbert symbol and proved Perrin-Riou’s formula for crystalline
representations ([ B]).

6.6. Explicit formulas for the generalized Hilbert symbol
on formal groups

Let Ky bethefractionfield of thering Wy of Witt vectors with coefficientsin afinite
field of characteristic p > 2 and F a commutative formal group of finite height
defined over W.

For every integer n > 1, denote by F[p™] the p™-torsion pointsin F(M¢), where
Mc is the maximal ideal of the completion C' of an agebraic closure of K. The
group J[p"] isisomorphicto (Z/p"Z)".

Let K beafinite extension of Ky containedin K=" and assume that the points of
F[p™] aredefined over K. We then have abilinear pairing:

( ; ]SF,n:G?{b X ?(MK) - g[pn]

(see section 8 of Part 1).

When the field K contains a primitive p™ th root of unity (,», Abrashkin gives
an explicit description for this pairing generalizing the classical Briickner—Vostokov
formula for the Hilbert symbol ([A]). In his paper he notices that the formula makes
sense even if K does not contain (,» and he asks whether it holds without this
assumption. In arecent unpublished work, Benois provesthat thisis true.

Suppose for simplicity that K containsonly ¢,. Abrashkin considersin his paper

the extension K = K(7? ,r > 1), where 7 isafixed prime element of K. Itisnot
aGaloisextension of K but is arithmetically profinite, so by [W] one can consider the
field of norms for it. In order not to loose information given by the roots of unity of
order apower of p, Benois usesthe composite Galoisextension L := KOOIN(/K which
isarithmetically profinite. Thereare several problemswith thefield of norms N(L/K),
especially it isnot clear that one can lift it in characteristic O with its Galois action. So,
Benois simply considers the completion F' of the p-radical closure of £ = N(L/K)
and its separable closure 5% in R. If we apply what was explained in subsection 6.2
for I = Gal(L/K), we get:

Theorem 7. Thefunctor V — D(V) = (W(EF%®) @7, V)" defines an equivalence
of the categories Rep,, (G) and ®F M, 1.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Part 11. Section 6. ®- I -modules and Galois cohomol ogy 271

Choose a topological generator ~' of Gal(L/K) and lift v to an element of
Gal(L/K). Then I istopologically generated by v and +/, with the relation 74/ =
()%, where a = x(v) (x isthe cyclotomic character). For (M, ¢) € qJI'M%,(F) the
continuous action of Gal(L/K ) on M makesit amodule over the Iwasawa algebra
Zp[[v — 1]]. So we can define the following complex of abelian groups:

a—Aga a—Aja a—Ara

Cg(M)Z 0— My My M>
where My isindegree 0, Mo = Mz = M, My = M, = M3,

p—1 vy—1 1-9p 0
Ao=| v—-1 ], 4=+ -1 0 1—¢ |, A=(()"-10—v ¢—1)

v -1 0 +*-1 §—~

and 6 = ((7)* = (v = D)t € Z,[[v - 1]].

As usual, by taking the conomology of this complex, one defines a conomological
functor (H?);en from dJFM{}‘,(F) in the category of abelian groups. Benois proves
only that the cohomology of a p-torsion representation V' of G injects in the groups
HY(D(V)) whichisenough to get the explicit formula. But in fact a stronger statement
istrue:

M3z — 0

Theorem 8. The cohomological functor (3(? o D);cn can be identified with the Galois
cohomology functor (H'(G,.))sen for the category Rep, o (G).

Idea of the proof. Use the same method as in the proof of Theorem 4. It is only more
technically complicated because of the structure of T. O

Finally, one can explicitly construct the cup productsin terms of the groups H? and,
asin [B], Benois uses them to calculate the Hilbert symbol.

Remark. Analogous constructions (equivalence of category, explicit construction of
the cohomology by a complex) seem to work for higher dimensional local fields. In
particular, in thetwo-dimensional case, theformalismissimilar to that of this paragraph;
the group I acting on the @-T -modules has the same structure as here and thus the
complex is of the same form. Thiswork is still in progress.
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7. Recovering higher global and local fields
from Galois groups — an algebraic approach

Ido Efrat

7.0. Introduction

We consider the following general problem: let F' be a known field with absolute
Galoisgroup Gr. Let K beafield with G ~ Gr. What can be deduced about the
arithmetic structure of K?

As a prototype of this kind of questions we recall the celebrated Artin—-Schreier
theorem: G ~ Gg if and only if K isrea closed. Likewise, the fields K with
Gk ~ G for some finite extension E of Q, arethe p-adically closed fields (see
[Ne], [P1], [E1], [K]). Here we discuss the following two cases:

1. K isahigher global field
2. K isahigher local field

7.1. Higher global fields

We call a field finitely generated (or a higher global field) if it is finitely generated
over its prime subfield. The (proven) O-dimensional case of Grothendieck’s anabelian
conjecture ([G1], [G2]) can be stated as follows:

Let K, F' befinitely generated infinite fields. Any isomorphism Gk ~ Gz isinduced
in a functorial way by an (essentially unique) isomor phism of the algebraic closures of
K and F.

This statement was proven:

e by Neukirch [Ne] for finite normal extensionsof Q;

e by Iwasawa (unpublished) and Uchida [U1-3] (following Ikeda [I]) for al global
fields;

e by Pop[P2] and Spiess[S] for function fields in one variable over Q;
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e by Pop ([P3-5]) in general.

For recent results on the 1-dimensional anabelian conjecture — see the works of
Mochizuki [M], Nakamura[N] and Tamagawa[T].

7.2. Earlier approaches

Roughly speaking, the above proofsin the 0-dimensional case are divided into alocal
part and a global part. To explain the local part, define the Kronecker dimension
dim(K) of afield K as trdeg(//F,) if char (K) =p > 0, and as trdeg(X/Q) + 1
if char(K) = 0. Now let v be aKrull valuation on K (not necessarily discrete or
of rank 1) with residue field K,. Itiscaled 1-defectlessif dim K = dim K, + 1.
The main result of the local theory is the following local correspondence: given an
isomorphism ¢: G — G, aclosed subgroup Z of G isthe decomposition group
of some 1-defectless valuation v on K if and only if ¢(Z) is the decomposition
group of some 1-defectlessvaluation v' on F'. The ‘global theory’ then combinesthe
isomorphisms between the corresponding decomposition fields to construct the desired
isomorphism of the algebraic closures (see [P5] for more details).

The essence of the local correspondence is clearly the detection of valuations on
afield K just from the knowledge of the group-theoretic structure of G . In the
earlier approaches this was done by means of various Hasse principles; i.e., using the
injectivity of the map

H(K) — H H(K™M
vES

for some cohomological functor H and some set S of non-trivial valuations on K,
where K isthe henselization of K with respect to v. Indeed, if this map isinjective
and H(K) # 0 then H(K!) # O for at least one v € S. In this way one finds
“arithmetically interesting" valuationson K.

In the above-mentioned works the local correspondence was proved using known
Hasse principlesfor:
(1) Brauer groups over global fields (Brauer, Hasse, Noether);
(2) Brauer groups over function fields in one variable over local fields (Witt, Tate,

Lichtenbaum, Roquette, Sh. Saito, Pop);

(3) H3(Gx,Q/Z(2)) over function fieldsin one variable over Q (Kato, Jannsen).

Furthermore, in his proof of the 0-dimensional anabelian conjecturein its general case,
Pop uses a model-theoretic technique to transfer the Hasse principlesin (2) to a more
general context of conservative function fields in one variable over certain henselian
valued fields. More specifically, by a deep result of Kiesler—Shelah, a property is
elementary in a certain language (in the sense of the first-order predicate calculus)
if and only if it is preserved by isomorphisms of models in the language, and both
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the property and its negation are preserved by nonprincipal ultrapowers. It turns out
that in an appropriate setting, the Hasse principle for the Brauer groups satisfies these
conditions, hence has an elementary nature. One can now apply model-completeness
results on tame valued fields by F.-V. Kuhlmann [Ku].

Thisled oneto the problem of finding an algebraic proof of thelocal correspondence,
i.e., aproof which does not use non-standard arguments (see [S, p. 115]; other model-
theoretic techniques which were earlier used in the global theory of [ P2] were replaced
by Spiessin [S] by algebraic ones).

We next explain how this can indeed be done (see[E3] for details and proofs).

7.3. Construction of valuationsfrom K -theory

Our algebraic approach to the local correspondence is based on a K -theoretic (yet
elementary) construction of valuations, which emergedin the early 1980’sin the context
of quadratic form theory (in works of Jacob [J], Ware [W], Arason—Elman-Jacob
[AEJ], Hwang-Jacob [HJ]; seethe survey [E2]). We also mention here the alternative
approaches to such constructions by Bogomolov [B] and Koenigsmann [K]. The main
result of (the first series of) these constructionsis:

Theorem 1. Let p bea primenumber and let £ be a field. Assume that char (E) #Z p

and that (—1, E*P) < T < E* isan intermediate group such that:

(@ forall x € E*\T and y € T\ E*? onehas {z,y} #0 in K,(F)

(b) for all z,y € E* which are IF,,-linearly independent mod 7" one has {z,y} 70
in Kx(E).

Then there exists a valuation v on E with value group I, such that:

(i) chaer(E,)Zp;
(i) dimg (T,/p) > dimg (B*/T) - 1;
(iii) either dimg (7,/p) = dimg, (E*/T) or E, 7 EP.

In particular we have:

Corollary. Let p beaprime number and let £ be a field. Suppose that char (E) 7 p,
—1 € E*P, and that the natural symbolic map induces an isomor phism

NAE* |E*P) = Ko(E)/p.

Then thereisa valuation v on E such that

(i) char(E,) #p;
(i) dimg, (T,/p) > dimg (B*/E*?) — 1;
(iii) either dimg (T, /p) = dimg, (E*/E*?) or E, 7 EP.
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We remark that the construction used in the proof of Theorem 1 is of a completely
explicit and elementary nature. Namely, one chooses a certain intermediate group
T < H < E* with (H : T)|p and denotes

O ={z€E\H :1-z€T}, O'={zeH:20 CcO}.
Itturnsoutthat O = O~ UO* isavaluationringon E, andthe corresponding valuation

v isasdesired.
The second main ingredient is the following henselianity criterion provenin [E1]:

Proposition 1. Let p beaprimenumber andlet (£, v) beavaluedfieldwith char (E,) #
p, such that the maximal pro-p Galoisgroup Gz (p) of E, isinfinite. Suppose that

with E’ ranging over all finite separable extensionsof E. Then v is henselian.

Here therank rk(G) of aprofinite group G isits minimal number of (topological)
generators.

After trand ating the Corollary to the Gal oi s-theoretic language using Kummer theory
and the Merkur’ ev—Suslin theorem and using Proposition 1 we obtain:

Proposition 2. Let p be a prime number and let £ be a field such that char (E) Z p.
Suppose that for every finite separable extension £’ of E onehas
(V) HNGw,Z/p) = @Z/p)";
(2) HXGg/,Z/p) ~ N°HYGg,Z/p) viathe cup product;
(3) dimg, (I./p) < n for every valuation v on E'.

Then there exists a henselian valuation v on E suchthat char (E,) # p and
dimg, (Fy/p) =n.

7.4. A Galoischaracterization of 1-defectlessvaluations

For a field L and a prime number p, we recal that the virtual p-cohomological
dimension vcd,(G1) istheusua p-cohomological dimension cd,(G ) if char (L) Z0
and is ved, (G /=) if char(L) = 0.

Definition. Let p be aprime number and let L beafield with n = dim L < co and
char (L) # p. Wesay that L is p-divisorial if thereexist subfields L ¢ E ¢ M c L
such that

(@ M/L isGdoais;

(b) every p-Sylow subgroup of G, isisomorphicto Z,;

(c) thevirtual p-cohomological dimension ved,(Gr) of G isn+1;
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(d) either n =1 or Gal(M /L) hasno non-trivial closed normal pro-solublesubgroups,
(e) for every finite separable extension E’'/E one has

HYG g, Z/p) ~ (Z/p)"*t, HGp,Z/p) ~ N HYG g, Z/p)

viathe cup product.
The main result is now:

Theorem 2 ([E3]). Let p be a prime number and let K be a finitely generated field
of characteristic different from p. Let L be an algebraic extension of K. Then the
following conditions are equivalent:

(i) thereexistsa 1-defectlessvaluation v on K suchthat L = K/;

(i) L isaminimal p-divisorial separable algebraic extension of K.

Idea of proof. Suppose first that v isa 1-defectlessvaluation on K. Take L = K/
and let M beamaximal unramified extension of L. Alsolet w beavaluation on K
such that I, ~ Zd9m() - char (K ,,) # p, and such that the corresponding valuation
rings satisfy 0., C O,. Let K" beahenselization of (K, w) containing L and take
E = K!'(u,) (E = K"(ug) if p=2). Oneshowsthat L is p-divisorial with respect
to this tower of of extensions.

Conversely, suppose that L is p-divisorial, andlet L ¢ F ¢ M C L bea
tower of extensions as in the definition above. Proposition 2 gives rise to a henselian
valuation w on E suchthat char (E,,) 7 p and dimg, (I, /p) = dim(K). Let wp be
the unique valuationon E of rank 1 suchthat 0,,20.,, andlet u beitsrestriction to
L. Theunique extension u,; of wg to M ishenselian. Since M /L isnormal, every
extension of u to M isconjugateto u,,, henceisalso henselian. By aclassical result
of F.-K. Schmidt, the non-separably closed field M can be henselian with respect to at
most one valuation of rank 1. Conclude that « is henselian as well. One then shows
that it is 1-defectless.

The equivalence of (i) and (ii) now follows from these two remarks, and a further
application of F.-K. Schmidt’s theorem.

The local correspondence now follows from the observation that condition (ii) of
the Theorem is actually a condition on the closed subgroup G, of the profinite group
Gk (notethat dim(L) = ved(Gk) — 1).

7.5. Higher local fields

Here we report on ajoint work with Fesenko [EF].
An analysis similar to the one sketched in the case of higher global fields yields:
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Theorem 3 ([EF]). Let F' bean n-dimensional local field. Suppose that the canonical
valuation on F' of rank n has residue characteristic p. Let K be a field such that
Gk ~ Gp. Thenthereisahenselian valuation v on K suchthat I, /I ~ (Z/I)" for
every prime number [ # p and such that char (X,) =p or O.

Theorem 4 ([EF]). Let ¢ = p” beaprime power and let K be afield with

Gk =~ GF,(@1)- Thenthereisa henselian valuation v on K such that

(1) Tr,/l~=7Z]l for every prime number [ # p;

(2) char(K,)=p;

(3) themaximal prime-to-p Galoisgroup G (p) of K, isisomorphicto [, Zi;
(4) if char(K)=0then T, =pl, and K, is perfect.

Moreover, for every positiveinteger d thereexist valuedfields (K, v) asin Theorem
4 with characteristic p gnd for which I, /p ~ (Z/p)?. Likewise there exist examples
with I, ~Z, G #Z and K, imperfect, aswell as exampleswith char (K) = 0.
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8. Higher local skew fields

Alexander Zheglov

n-dimensional local skew fields are a natural generalization of n-dimensional local
fields. The latter have numerous applications to problems of algebraic geometry, both
arithmetical and geometrical, as it is shown in this volume. From this viewpoint,
it would be reasonable to restrict oneself to commutative fields only. Nevertheless,
already in class field theory one meets non-commutative rings which are skew fields
finite-dimensional over their center K. For example, K isa(commutative) local field
and the skew field represents elements of the Brauer group of thefield K (see also an
example below). In [Pa] A.N. Parshin pointed out another class of non-commutative
local fields arising in differential equations and showed that these skew fields possess
many features of commutative fields. He defined a skew field of formal pseudo-
differential operatorsin n variables and studied some of their properties. He raised a
problem of classifying non-commutative local skew fields.

In this section we treat the case of n = 2 and list anumber of results, in particular a
classification of certain types of 2-dimensional local skew fields.

8.1. Basic definitions

Definition. A skew field K iscalled a complete discrete valuation skew field if K is
complete with respect to a discrete valuation (the residue skew field is not necessarily
commutative). A field K iscaled an n-dimensional local skew field if there are skew
fidds K = K,,, K,_1, ..., Kp such that each K; for ¢ > 0 is a complete discrete
valuation skew field with residue skew field K;_1.

Examples.

(1) Let k£ be afield. Formal pseudo-differential operators over k((X)) form a 2-
dimensional local skew field K = k:((X))((ﬁ)}l)), OxX = X0x +1. If char (k) =
0 we get an example of a skew field which is an infinite dimensional vector space
over its centre.
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(2) Let L bealocal field of equal characteristic (of any dimension). Then an element
of Br(L) isan example of askew field which isfinite dimensional over its centre.

Fromnow onlet K beatwo-dimensional local skew field. Let ¢, be agenerator of
Mg, and t7 beagenerator of M, . If t1 € K isalifting of ¢} then ¢1,¢, iscalleda
systemof local parametersof K. Wedenoteby vy, and vk, the (surjective) discrete
valuations of K, and K associated with ¢, and t].

Definition. A two-dimensional local skew field K is said to split if thereis a section
of the homomorphism O, — K; where O, isthering of integersof K.

Example (N. Dubrovin). Let Q ((u)){x,y) beafreeassociative algebraover Q ((u))
with generators =, y. Let I = ([z,[z,y]], [y, [z,y]]). Then the quotient

A=Q(w){z,y)/1

isa Q-agebrawhich has no non-trivial zero divisors, and in which z = [z,y] + I isa
central element. Any element of A can be uniquely represented in the form

Jotfrzt .ot 2™

where fo, ..., f,, arepolynomiasinthevariables z,y.

Onecan defineadiscretevaluation w on A suchthat w(z) = w(y) = w(Q ((w))) =0,
w(z,y]) =1, wa) =k if a = frz¥+...+ f,2", fr #0. The skew field B of
fractions of A has a discrete valuation v which is a unique extension of w. The
completion of B with respect to v is atwo-dimensional local skew field which does
not split (for details see [Zh, Lemma 9]).

Definition. Assumethat K7 isafield. The homomorphism

po: K* — In(K), wolx)(y) =z tyx

induces a homomorphism ¢: K5/ 0%, — AUut(K,). The canonical automorphism of
K1 is a = ¢(t) where to isan arbitrary prime element of K.

Definition. Two two-dimensional local skew fields K and K’ areisomorphicif there
is an isomorphism K — K’ whichmaps O onto Ok, Mg onto Mg and O,
onto OK&’ Mg, onto MK&'
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8.2. Canonical automorphismsof infinite order

Theorem.

(1) Let K be a two-dimensional local skew field. If o™ Z id for all n > 1 then
char (K») = char (K), K splitsand K isisomorphic to a two-dimensional local
skew field K1((t2)) where toa = a(a)t, for all a € Kj.

(2) Let K,K' be two-dimensional local skew fields and let /1, K] be fields. Let
a™ Zid, o/ #Zid for all n > 1. Then K isisomorphicto K’ if and only if
thereisanisomorphism f: K1 — K suchthat o = f~1a/ f where a, o’ arethe
canonical automorphismsof K; and Kj.

Remarks.

1. Thistheoremistruefor any higher local skew field.
2. Thereare examples (similar to Dubrovin's example) of local skew fields which do
not split and in which o™ =id for some positive integer n.

Proof. (2) followsfrom (1). We sketch the proof of (1). For details see[Zh, Th.1].

If char (K) # char (K3) then char (K1) = p > 0. Hence v(p) = > 0. Then for
any element t € K with v(t) = 0 we have ptp~—1 = o (f) mod My where  isthe
image of ¢ in K. But onthe other hand, pt = tp, acontradiction.

Let ' betheprimefieldin K. Since char (K) = char (K;) thefield F' isasubring
of O = Og,. One can easily show that there exists an element ¢ € K; such that
a"(c) # c forevery n > 1 [Zh, Lemma5].

Then any lifting ¢’ in O of ¢ istranscendental over F'. Hence we can embed the
field F(¢') in O. Let L beamaximal field extension of F(c’) which can be embedded
in O. Denoteby L itsimagein O. Take a € K1 \ L. We claim that there exists a
lifting o’ € O of @ suchthat ' commuteswith every elementin L. To provethisfact
we use the completeness of O in the following argument.

Take any lifting a in O of a. For every element x € L we have axa™
xzmod Mg . If tp isaprime element of K> we canwrite

1

aza”t =z +61(2)to
where 61(z) € O. Themap 61: L > = — 61(z) € K1 isan a-derivation, i.e.
51(ef) = da(e)alf) + eda(f)

forall e, f € L. Takean element h such that a(h) 7 h, then 61(a) = ga(a) — ag
where g = d1(h)/(a(h) — h). Thereforethereis a; € K1 such that

(1 + artp)aza (1 + arty) "t = 2 mod ME(

By induction we can find an element o’ = ... - (1+ aztp)a such that aza' =1
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Now, if @ isnot algebraic over L, thenfor itslifting o’ € O which commuteswith
L wewould deducethat L(a’) isafield extension of F'(¢) which can be embedded in
O, which contradicts the maximality of L.

Hence @ is algebraic and separable over L. Using a generalization of Hensel’s
Lemmal[Zh, Prop.4] wecanfind alifting o’ of @ suchthat o’ commuteswith elements
of L and o' isagebraic over L, which again leadsto a contradiction.

Finally let @ be purely inseparable over L, a? =%, v € L. Let o beitslifting
k
which commutes with every element of L. Then o’ — z commutes with every
k
glement of L. If vg(a’® — 2) =7 # oo then similarly to the beginning of this proof
k k
we deduce that theimage of (a/” — z)c(a’? — )1 in K isequa to a”(c) (which
k

is distinct from ¢), acontradiction. Therefore, o/’ =z and thefield L(a') isafield
extension of F(¢) which can be embedded in ©, which contradicts the maximality
of L.

Thus, L = Kj.

To provethat K isisomorphic to a skew field K1((¢t2)) where toa = a(a)t, one
can apply similar arguments as in the proof of the existence of an element «’ such that

aza t=x (see above). So, one can find a parameter ¢, with agiven property. [

In some cases we have a complete classification of local skew fields.

Proposition ([Zh]). Assumethat K isisomorphicto k((¢1)). Put
¢ = a(t)t; P mod M, .

Put i, = 1if ¢ isnotarootof unityin & and i, = vg, (o™ (t1) —t1) if ¢ isaprimitive
nth root. Assume that & is of characteristic zero. Then there is an automorphism
f € Aut, (K1) suchthat f~1laf = 3 where

Blt1) = Gty + ity + Pyt

for some z € k*/k*(a—D |y € k.
Two automorphisms « and 3 are conjugate if and only if

(C(a)a ioc ) .I‘(OZ), y(a)) = (C(ﬁ)a iﬂa m(ﬁ)a y(ﬁ))
Proof. First weprovethat o = f3'f~1 where
ﬁ/(tl) - Ctl + xtin+l + yt%i'nﬁl

for some natural i. Then we provethat i, = ig .
Consider aset {«; : i € N} where a; = fia;_1f; Y, fi(t1) = t1 + it} for some
r; € k, a1 =a. Write

a;(t1) =t + az,it% + a3,it§ +....
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One can check that ap > = z2(C2 -0 + ap,1 and hencethere exists an element x5 € k
such that ap» = 0. Since a;;+1 = a;;, we have ap; = 0 foral j > 2. Further,
azs = z3(C3—O) + az 2 and hencethere exists an element =3 € k suchthat az3 = 0.
Then az; = 0 forall j > 3. Thus, any element a;;, can be made equal to zero if
n J(k — 1), and therefore oo = fa f~1 where

~ _ ~ in+l |, ~ in+n+1
a(t1) = (tr+ Q] + Qipan+saty” "+

for some i, a; € k. Noticethat a;,+; doesnot dependon z;. Put = = z(a) = Gip+1-
Now we replace « by &. One can check that if n|(k — 1) then

ajr=ajr_1 for2<j<k+in
and
Ahrin k. = Trx(k — in — 1) + a4, + Some polynomial which does not depend on ..

From this fact it immediately follows that a;,,+1 ,,+1 does not depend on z; and for
al kZin+1 ap+in,k can bemade equal to zero. Then y = y(a) = ain+1,in+1-
Now we provethat i, =ig . Using the formula
B (ty) = t1 + na(a) "+ L

weget ig = in+1. Thenonecan check that vKl(f_l(a"—id)f) = v, (" —id) =i,
Since 38" —id = f~1(a™ —id)f, we get theidentity i, =iz
The rest of the proof is clear. For details see [Zh, Lemma 6 and Prop.5]. O

8.3. Canonical automor phisms of finite order

8.3.1. Characteristic zero case.
Assume that

atwo-dimensional local skew field K splits,

K, isafield, Ko C Z(K),

char (K) = char (Kp) =0,

o™ =id forsome n > 1,

for any convergent sequence (a;) in K; thesequence (t2a;t, 1Y convergesin K.

Lemma. K isisomorphic to a two-dimensional local skew field K1((¢2)) where
taatyt = aa) + 8;(a)th + 62i(a)ts + Siun(a)ts ™ +...  foral a € K;
where n|i and ¢; : K1 — K, arelinear mapsand

0;(ab) = 0;(a)a(b) + afa)d; (b) for every a,b € K.
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Moreover
n_g—n — / 7 / 2i / 2itn
tyaty" = a+0i(a)ty + 05,(a)ty’ + 0y, (a)ts™" ...
where ¢) arelinear mapsand §; and & := &5, — ((¢ + 1)/2)5;2 are derivations.

Remark. Thefollowing fact holdsfor thefield K of any characteristic: K isisomor-
phic to atwo-dimensional local skew field K1((¢2)) where

taatyt = aa) + 5;(a)th + Sira(a)ty ™ + ...

where §; are linear maps which satisfy some identity. For explicit formulas see
[Zh, Prop.2 and Cor.1].

Proof. Itisclear that K isisomorphic to atwo-dimensional local skew field K ((¢2))
where

toatyt = aa) + dy(a)ta + dx(a)ts +...  fordl a
and §; arelinear maps. Then &1 isa (a?, a)-derivation, that is 61(ab) = d1(a)a?(b) +
a(a)d1(b).
Indeed,

taabtyt = taaty tobty T = (ala) + dx(a)ta + ... )(lb) + S1(D)t2 + . ..)
= a(a)a(b) + (01(a)?(b) + a(a)d1(b))ta + . .. = alab) + 61(ab)ta + . .. .

From the proof of Theorem 8.2 it follows that §; is an inner derivation, i.e. §1(a) =
ga?(a) — a(a)g for some g € K1, and that there existsa ¢ = (1 + z1tp)tp such that

tzzati% = oafa) + 5272(a)t%72 +....

One can easily check that d, isa (o2, o)-derivation. Then it is an inner derivation
and there exists ¢, 3 such that

t273at27é = oafa) + 5373(a)t§73 +....
By induction one deducesthat if
tajaty s = aa) + 0n j(@)ts ; + ...+ Ok ()57 + 0, j(a)th  + ...
then 6, ; isa (a7*1, )-derivation and there exists ¢, ;+1 such that
to 410ty Fog = 0(a) + 0 ()5 jug + o+ Ok (@5 g + Oun ()] g +
The rest of the proof is clear. For details see [Zh, Prop.2, Cor.1, Lemmas 10, 3]. [

Definition. Let i = vg,(¢(t5)(t1) — t1) € nNU oo, (¢ isdefined in subsection 8.1)
andlet r € Z/i be vk, (x)mod i where x istheresidueof (p(t3)(t1) — t1)t,". Put

_ (9%, — B257)(ta)
a = res;, ( 6’.(751)2 dt, | € Kp.
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(67,05, arethe mapsfrom the preceding lemma).

Proposition. If n = 1 then 4, don't depend on the choice of a system of local
parameters; if ¢ = 1 then a does not depend on the choice of a system of local
parameters; if n # 1 then a depends only on the maps d;+1,... ,02;_1, i,r depend
only onthemaps ¢;, j ¢ nN, j <.

Proof. We comment on the statement first. The maps §; are uniquely defined by
parameters t1,t» and they depend on the choice of these parameters. So the claim that
i, depend only onthe maps §;, j ¢ nN, j < i meansthat 4,r don’'t depend on the
choice of parameters t1,t, which preservethemaps 6;, j ¢ nN, j <.

Note that » dependsonly on i. Henceit is sufficient to prove the proposition only
for + and a. Moreover it sufficesto proveit for the casewhere n # 1, i # 1, because
if n=1thenthesets {6, :j ¢ nN} and {0;41: ... ,d2,_1} areempty.

Itisclear that ¢ dependson 6;, j ¢ nN. Indeed, it is known that ;1 isan inner
(o2, o)-derivation (see the proof of the lemma). By [Zh, Lemma 3] we can change a
parameter ¢, suchthat 6; canbemadeequa 01(t1) =t¢1. Thenonecanseethat ¢ = 1.
From the other hand we can change a parameter ¢, such that §; can be made equal
to 0. Inthiscase 7 > 1. Thismeansthat i dependson §;. By [Zh, Cor.3] any map
d; is uniquely determined by the maps 6,, ¢ < j and by an element §,(t1). Then
using similar arguments and induction one deduces that i depends on other maps ¢,
jé¢nN, j<i.

Now we prove that 7 does not depend on the choice of parameters ¢1,to which
preservethemaps 6;, j ¢ nN, j <.

Note that ¢ does not depend on the choice of ¢1: indeed, if ¢} =t1 + bz, be K
then 2"t) 2" = 2"ty 7" + (2"bz )20 =t + 7, where r € Mi \M3¥1. Onecan see
that the sameistruefor t} = cit1 + cots +..., ¢; € Ko.

Let &, bethefirst non-zero map for given t1,t,. If ¢ # i then by [Zh, Lemma 8,
(ii)] there exists aparameter #; suchthat zt;z=1 = #{™ +5,41(¢))z7*1 +. ... Usingthis
fact and Proposition 8.2 we can reduce the proof to the case where ¢ = 7, a(t1) = £t1,
a(6;(t1)) = &6;(t1) (this case is equivalent to the case of n = 1). Then we apply
[Zh, Lemma 3] to show that

i, ((8(t2) — D(t1)) = vi, ((6(t2) — D(t1)),

for any parameters tp,t5, i.e. ¢ does not depend on the choice of a parameter ¢,. For
details see[Zh, Prop.6].

To provethat a dependsonly on 6;+1, ... ,d2,_1 we use the fact that for any pair
of parameters ¢}, t5 we can find parameters t{ = t1 +r, where r € M, t§ suchthat
corresponding maps ¢; areequal forall j. Thenby [Zh, Lemma8] a doesnot depend
on ¢/ and by [Zh, Lemma3] a dependson t} =tp+a3t3+..., a; € Ky if andonly
if a1 =...=a;_1. Using direct calculations one can check that « doesn’t depend on
t/zl = agta, ag € Kik
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Toprovethefactitissufficient to proveit for t{ = t1+cth27 forany j < i, c € Kp.
Using [Zh, Lemma8] one can reduce the proof to the assertion that someidentity holds.
The identity is, in fact, some equation on residue elements. One can check it by direct
calculations. For details see[Zh, Prop.7]. 0

Remark. The numbers i,r,a can be defined only for local skew fields which splits.
One can check that the definition can not be extended to the skew field in Dubrovin's
example.

Theorem.
(1) K isisomorphic to atwo-dimensional local skew field K((¢1))((¢2)) such that

tatrty = €ty + xth + ytd
where ¢ isaprimitive nthroot, = = ct], ¢ € K§/(Kg),
y=(a+r@+2)/2t; 222,  d=gedr —1,9).

If n=1, i =00, then K isafield.
(2) Let K, K’ betwo-dimensional local skew fields of characteristic zero which splits;

and let Ky, K befields. Let o = id, o/™ =id for some n,n’ > 1. Then K
isisomorphicto K’ if and only if K¢ isisomorphicto K, and the ordered sets
(n,&,4,7,¢,a) and (n',&',7', 7', ', a’) coincide.

Proof. (2) follows from the Proposition of 8.2 and (1). We sketch the proof of (1).
From Proposition 8.2 it follows that there exists ¢1 such that «a(t1) = &t1; d:(¢1)
can be represented as ctja’. Hencethere exists ¢, such that

totaty T = £ty + ath + S (t)5 + ...
Using [Zh, Lemma 8] we can find a parameter ¢7 = t1 mod My such that
tothty L =ty +ath +ytd + ...
The rest of the proof is similar to the proof of the lemma. Using [Zh, Lemma 3] one
can find a parameter t, = t, mod M% suchthat §;(t1) =0, j > 2i. 0
Corollary. Every two-dimensional local skew field K with the ordered set
(n,&,i,7,¢,a)

is afinite-dimensional extension of a skew field with the ordered set (1,1,1,0,1, a).
Remark. Thereis a construction of a two-dimensional local skew field with a given

ﬂ (n7 f? i? T? c7 a)'
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Examples.

(1) The ring of forma pseudo-differential equations is the skew field with the set
n=1¢6=1,i=1,r=0,c=1a=0).

(2) The elements of Br(L) where L is atwo-dimensiona local field of equal char-
acteristic are local skew fields. If, for example, L isa C>- field, they split and
1 = 0co. Hence any division algebrain Br(L) iscyclic.

8.3.2. Characteristic p case.

Theorem. Suppose that a two-dimensional local skew field K splits, K1 is a field,
Ko C Z(K), char(K) =char(Kp)=p>2and a=id.

Then K is a finite dimensional vector space over its center if and only if K is
isomorphic to a two-dimensional local skew field Kq((£1))((t2)) where

tyttaty = tg + ath
with z € K7, (i,p) = 1.
Proof. The“if” partis obvious. We sketch the proof of the “only if” part.
If K is afinite dimensional vector space over its center then K is a division

algebra over ahenselian field. In fact, the center of K isatwo-dimensional local field
E((w))((t)). Then by [IW, Prop.1.7] K1/(Z(K))1 is a purely inseparable extension.
Hencethereexists t1 suchthat ¢} € Z(K) forsome k € N and K ~ Ko((t1))((t2))
as avector space with the relation
tatityt =ty + Si(t)ts + . ..

(see Remark 8.3.1). Then it is sufficient to show that 7 is prime to p and there exist
parameters t1 € Ky, tp suchthat the maps ¢; satisfy the following property:
(*) If j isnot divisible by i then 6, = 0. If j isdivisibleby i then 6, = ¢; ;67"

with some Cj/i € K.

Indeed, if this property holds then by induction one deduces that c;,; € Ko,
cjsi = (i +1)...3i(j/i — 1) +1))/(j/i)!. Then one can find a parameter t;, = bto,
b € K; suchthat §; satisfiesthe same property and 62=0. Then

-1 i
ty “tith =t1 — 0;(t)ts.

First we provethat (i,p) = 1. To show it we prove that if p|i then there exists a
map ¢; such that 6j(t11’k) =% 0. To find this map one can use [Zh, Cor.1] to show that
2 k
ip(t]) 70, 0;,2(t7 ) 70, ..., d;pe(t] ) #O.
Then we prove that for some ¢, property (*) holds. To show it we prove that if

property (*) does not hold then there exists amap 4; such that 5j(t7{k) Z 0. Tofind
this map we reduce the proof to the case of i = 1 mod p. Then we apply the following
idea.
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Let j = 1mod p betheminimal positiveinteger suchthat ¢; isnot equal to zeroon

Kfl. Then one can prove that themaps d.,,,, kj < m < (k+1)j, ke {1,... ,p—1}
satisfy the following property:
there exist elements ¢, ,, € K1 such that

O — Cm20 — . — cm7k5’f)|Kfl =0
where §: K1 — K4 isalinear map, 5|Kfz isaderivation, 5(t{) =0 for j ¢ p'N,
S =1, ey = e(6,2)) s ¢ € Ko.
Now consider maps 5~q which are defined by the following formula
t;latg =q+ gi(a)tiz + (g;/l(a)t"zﬂ +..., a€Kj.

Then 6, + 8, + 3921 646, = 0 forany q. Infact, 6, satisfy someidentity which is
similar to the identity in [Zh, Cor.1]. Using that identity one can deduce that
if
j =1mod p and there existsthe minimal m (m € Z) such that 5mp+2i]sz Z0
it j f(mp +2i) and Gpezi] 1 7 365-2”"”’)/ 7| ot forany s € K otherwise, and
1 1

5q(t7il) =0 for g <mp+2i, g% 1mod p,
then
(mp + 2i) + (p — 1); isthe minimal integer such that ¢, p+2i)+(p—1); ]Kpm Z0.
1

To complete the proof we use induction and [Zh, Lemma 3] to show that there exist

parameters t; € K3, t suchthat 5q(t11’L) =0for ¢g# 1,2mod p and 532- =0on Kfl.
O

Corollary 1. If K isafinite dimensional division algebra over its center then itsindex
isequal to p.

Corollary 2. Suppose that a two-dimensional local skew field K splits, K1 isafield,
Ko C Z(K), char(K) = char(Kp) = p > 2, K is a finite dimensional division
algebra over its center of index p*.

Then either K isacyclic division algebra or hasindex p.

Proof. By [JW, Prop. 1.7] K1/Z(K) is the compositum of a purely inseparable
extension and acyclic Galois extension. Then the canonical automorphism « hasorder
p' for some I € N. By [Zh, Lemma 10] (which is true also for char (K) = p > 0),
K ~ Ko((t1))((t2)) with

; itpl ol
t2(1t2_1 = afa) + 5Z(a)t‘2 + 5i+pl (a)ttzﬂﬂ + 5i+pl (a)tL2+2p +
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where i € p'N, a € K. Supposethat o # 1 and K is not a cyclic extension of
Z(K). Thenthereexistsafield F ¢ K1, F ¢ Z(K) suchthat o|r =1. If a € F
then for some m the element o™ belongs to a cyclic extension of the field Z(K),
hence 5j(apm) = 0 for al j. But we can apply the same arguments as in the proof
of the preceding theorem to show that if ¢; 7 O then there exists amap 4§, such that
6;(a?™) # 0, acontradiction. Weonly need to apply [Zh, Prop.2] instead of [Zh, Cor.1]
and note that od = xda where ¢ isaderivationon Ky, v € K1, * = 1mod Mg,
because a(t1)/t1 = 1mod Mg, .

Hence tpat,* = a(a) and K1/Z(K) isacyclicextensionand K isacyclicdivision

agebra (K4(t5 )/ Z(K), o, 5 ). 0

Corollary 3. Let F' = Fp((t1))((t2)) be atwo-dimensional local field, where Fy isan
algebraically closed field. Let A beadivision algebra over F.

Then A ~ B ® C, where B isacyclic division algebra of index prime to p and
C is ether cyclic (asin Corollary 2) or C isa local skew field from the theorem of
index p.

Proof. Notethat F' isa Ch-field. Then A; isafield, A;/F; isthe compositum of a
purely inseparable extension and a cyclic Galois extension, and A; = Fyp((u)) for some
u € Az. Hence A splits. So, A isasplitting two-dimensional local skew field.

It is easy to see that the index of A is |A : F| = p?m, (m,p) = 1. Consider
subalgebras B = C4(F}1), C = C4(F>) where Fy = F(u?"), F> = F(u™). Then by
[M,Thl] A~B®C.

Therest of the proof is clear. O

Now one can easily deduce that

Corollary 4. The following conjecture: the exponent of A isequal to its index for any
division algebra A over a Cp-field F' (seefor example [PY, 3.4.5.])
has the positive answer for ' = Fo((t1))((t2)).
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9. Local reciprocity cycles

Ivan Fesenko

In this section we introduce a description of totally ramified Galois extensions of alocal
field with finite residue field (extensions have to satisfy certain arithmetical restrictions
if they are infinite) in terms of subquotients of formal power series Fy [ X 11°. This
description can be viewed as a non-commutative local reciprocity map (whichisnot in
general a homomorphism but a cocycle) which directly describes the Galois group in
terms of certain objects related to the ground field. Abelian class field theory as well
as metabelian theory of Koch and de Shalit [K], [KdS] (see subsection 9.4) are partial
cases of thistheory.

9.1. Group U® —
N(L/F)

Let F' be alocal field with finite residue field. Denote by ¢ € G alifting of the
Frobenius automorphism of Fy/F.
Let F'¥ bethefixedfield of ¢. Theextension F'¥/F istotaly ramified.

Lemma ([KdS, Lemma 0.2]). There is a unique norm compatible sequence of prime
elements 7y in finite subextensions E/F of F¥/F.

Proof. Uniquenessfollowsfrom abelian local classfield theory, existencefollowsfrom
the compactness of the group of units. O

In what follows we fix F'¥ and consider Galois subextensions L/F of F¥/F.
Assume that L/F is arithmetically profinite, ie for every x the ramification group
Gal(L/F)* isopenin Gal(L/F) (see aso subsection 6.3 of Part I1). For instance, a
totally ramified p-adic Lie extension is arithmetically profinite.

For an arithmetically profinite extension L/F define its Hasse—Herbrand function
hyp p:[0,00) — [0,00) @ hp /p(x) = limhy p(z) where M/F runs over finite
subextensionsof L/F (cf. [FV, Ch. 1l §5]).
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If L/F isinfinitelet N(L/F") bethefieldof normsof L/F. Itcanbeidentifiedwith
kr((I)) where N corresponds to the norm compatible sequence 7 (See subsection
6.3 of Part 11, [W], [FV, Ch.IlI §5]). e

Denote by ¢ the automorphism of N(L/F)y and of its completion N(L/F)
corresponding to the Frobenius automorphism of Fy,/F'.

I o
Definition. Denote by UN(/L7F) the subgroup of the group U N of those elements
whose F-component belongsto Up. An element of U;(/L7F) such that its F'-compo-

nentis e € Ur will becaled alifting of ¢

The group U° NTETF) /Un(,r) isadirect product of a quotient group of the group
of multiplicative representatives of the residue field £k of F', acyclic group Z/p®

and a free topological Z,-module. The Galois group Gal(L/F) acts naturally on

N(L/F)/ N(L/F)-

9.2. Reciprocity map NL/F

To motivate the next definition we interpret the map Y7,/ (defined in 10.1 and 16.1)
for afinite Galois totally ramified extension L/F' in the following way. Sincein this
caseboth 7wy and 77, areprimeelementsof Ly, thereise € Ur,, suchthat my = mpe.
Wecantake & = 0. Then 771 =el=7¢. Let n € U- besuchthat ¥~1 =¢. Since
(noe—le=lye—1 = (plo— 1%0)@ 1 we deduce that ¢ = n7¢~1y{1=9)¢, with p € UyL.
Thus, for ¢ = n7¢—1

Yi/p(0) = Nyjpms = Ny pémod NyjpL®, &9 =nt

Definition. Fora o € Gal(L/F) let U, € U be a solution of the equation

N(L/F)

(recall that id — (L /F) UN(/L7F) is surjective). Put

NL/F GaI(L/F) / N(L/F)> NL/F(O'):UJ mod UN(L/F)-

(L/F)

Remark. Compare the definition with Fontaine-Herr’'s complex defined in subsec-
tion 6.4 of Part I1.

Properties.
(1) Npre ZYGaA(L/F), U<> . /Unr,/r)) isinjective.
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(2) For afinite extension L/F the ﬁ-component of Nz,r(0) isequa to the value
Y1, r(0) of the abelian reciprocity map Y7, (seethe beginning of 9.2).

(3) Let M/F beaGaloissubextensionof L/F and E/F beafinite subextension of
L/F. Then thefollowing diagrams of maps are commutative:

NL/E
Ga(L/E Ga(L/F
(L/E) —— (L/ )/ N(L/E) (L/F) —— N(L/F)/ N(L/F)
NL/F o
Ga(L/F) —— N(L/F)/UN(L/F) GaI(M/F) UN(M/F)/ N(M/F)-
<
(4) Let Un NI be the filtration induced from thefiltration U n NTLTF) on thefield

of norms. For an infinite arithmetically profinite extension L/F with the Hasse-

Herbrand function h;,r put Gal(L/F), = GaI(L/F)hZ/lF(”). Then Ny, maps

GaI(L/F)n\GaI(L/F)n+1 |nt0 U (L/ )UN(L/F)\ ntl N(L/F)UN(L/F)

(6) Theset im(N,r) isnot closed i |n general with respect to multiplication in the
group

UN(/L7F) /Un(z/r)- Endow im(Ny,r) with a new group structure given by z x y =

mNZ/lF(x)(y). Then clearly im(N ) isagroup isomorphicto Gal(L/F).
Problem. What is im(Ny,/z)?

One method to solve the problem is described below.

9.3. Reciprocity map fHL/F

Definition. Fix atower of subfields F' = Fg — F1 — E> — ..., suchthat L = UE;,
E;/F isaGaoisextension, and E;/FE;_ 1 iscyclic of prime degree. We can assume
that |E;+1 @ ] = p forall i > ig and |E;, : Epl| isrelatively primeto p.
Let o; beagenerator of Gal(F;/E;_1). Denote
X;=U%1
E

Thegroup X; isa Z,-submoduleof U, - . Itisthedirect sumof acyclic torsion
group of order p™i, n; > 0, generated by, say a; (a; =1 if n; =0)and afree
topological Z,-module Y;.

We shall need a sufficiently “nice” injective map from characteristic zero or p to

characteristic p
. O’/L‘—l
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If F' isalocal field of characteristic zero containing anon-trivial pthroot ¢ and f; is
a homomorphism, then ¢ is doomed to go to 1. Still, from certain injective maps (not
homomorphisms) f; specifically defined below we can obtain asubgroup | | fi(Ugf_ )

0/\
N(L/F)’

= (i) _
Definition. If n; =0, set A" ¢ UN(L/E) to be equal to 1.

If n; >0, let AD U NETE) bealifting of a; with the following restriction: A(i)
isnot aroot of unity of order apower of p (thiscondition can always be satisfied, smce

the kernel of the norm map is uncountable).

Lemma ([F]). If AD %1, then ;41 = A(‘) " belongsto X ;1.

E;+1

Note that every 3;+1 when it is defined doesn’'t belongto X?”,,. Indeed, otherwise

n; —1

we would have A%_"" = ~P for some v € X;+1 and then A%)\p t= ~¢ fora
i+l i+l

root ¢ of order p or 1. Taking the norm down to E; we get of R Em/B T 1,

which contradicts the definition of «;.

Definition. Let 3; ;, j > 1 be free topological generators of Y; which include ﬁz

whenever f; is deflned Let B e U (7B, Dealifting of B ; (ie. B

L 1
Bij), suchthatif §; ; = 0;, then ng) = B%l = A%l)p for k > i.
k
Defineamap X; — U by sendl ng a convergent product o H B ’» where

N(L/E:)
0<c<ni—1, ¢ €7y, to AT, BEDY (the latter converges). Hence we get a
map

fi U}% UN(f/\E) UN(/F)

which depends on the choice of lifting. Notethat f;(c) 5=
Denoteby Z; theimageof f;. Let

Zyr = Zyr({Ei, fi}) = {H 2020 ¢ 7, }

Yiyr={y €Uy Y€ Zpp}

(L/F)

Lemma. Theproductof z( inthedefinitionof Z, - converges. Z;,x isasubgroup

o )
of UN(/L7F). The subgroup Y7, contains Uy /ry-
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Theorem ([F]). For every (uz ) € U;T(/L—/\F) there is a unique automorphism 7 in the
group Gal(L/F) satisfying
(Ué\i)lilp = I_ITfl mod ZL/F'

If (UE\) S YL/F’ then 7 = 1.

Hint. Step by step, passing from E to E;l 0

Remark. This theorem can be viewed as a non-commutative generalization for finite
k of exact sequence (x) of 16.2.

Corollary. Thus, thereis map

%L/FU;(T,?F)—}GaI(L/F% }CL/F((UL/Z‘\L)):T

The compositeof N, and 3, istheidentity map of Gal(L/F).

9.4. Main Theorem

Theorem ([F]). Put

Heyr: U;G?F)/YL/F — Ga(L/F), Hpp(lug)) =T
where 7 is the unique automorphism satisfying (uz)'~# = M™~* mod Z. . The
injective map H - isabijection. The bijection

NL/FGaI(L/F) — U°

i YV

induced by N,/ definedin 9.2 isa 1-cocycle.

Corollary. Denote by ¢ the cardinality of the residue field of F'. Koch and de Shalit
[K], [KdS] constructed a sort of metabelian local class field theory which in particular
describes totally ramified metabelian extensions of I’ (the commutator group of the
commutator group istrivial) in terms of the group

n(F) = {(u € Up,&(X) € FPIIXT]) 1 €(X)7 7 = {ub(X)/X }

with a certain group structure. Here {u}(X) isthe residue seriesin F, P[[X]]* of the
endomorphism [u](X) € Op[[X]] of the formal Lubin-Tate group corresponding to
TrF, q, U.

Let M/F be the maximal totaly ramified metabelian subextension of F,, then
M/F is arithmetically profinite. Let R/F be the maximal abelian subextension
of M/F. Every coset of U;@F) modulo Y3,/ has a unique representative in
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im(Nys 7). Send a coset with a representative (UQ) el — (FcCcQcM,

N(M/F)

|Q : F| < oo0) satisfying (ua)l—‘f’ = (rg)™ ! with 7 € Gal(M/F) to

(u%l, (ug) € U° (FCECR,E:F|< ).

N(/R7F))

It belongsto n(F), sowe get a map

. <

Thismap isabijection [ F] which makes Koch—de Shdlit’stheory acorollary of the main
results of this section.

[F]

[FV]

(K]

[KdS]

(W]
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10. Galois modules and class field theory

Boas Erez

In this section we shall try to present the reader with a sample of several significant
instances where, on the way to proving results in Galois module theory, oneis lead to
use classfield theory. Conversely, some contributions of Galois module theory to class
fields theory are hinted at. We shall also single out some problems that in our opinion
deserve further attention.

10.1. Normal basistheorem

The Normal Basis Theorem is one of the basic resultsin the Galois theory of fields. In
fact one can use it to obtain a proof of the fundamental theorem of the theory, which
sets up a correspondence between subgroups of the Galois group and subfields. Let us
recall its statement and give aversion of its proof following E. Noether and M. Deuring
(avery modern proof!).

Theorem (Noether, Deuring). Let K be a finite extension of Q. Let L/K be afinite
Galois extension with Galois group G = Gal(L/K). Then L isisomorphic to K[G]
asa K[G]-module. That is: thereisan a € L suchthat {o(a)},cc isa K-bass of
L. Suchan «a iscalled a normal basis generator of L over K.

Proof. Use theisomorphism
p: Lok L— LG, ¢@oy)=> o@yo ",
oeG

then apply the Krull-Schmidt theorem to deduce that this isomorphism descendsto K.
Note that an element a in L generates a normal basis of L over K if and only if
p(a) € LIG]*.
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10.1.1. Normal integral basesand ramification.

Let us now move from dimension O (fields) to dimension 1, and consider rings of
algebraic integers.

Let p beaprime number congruent to 1 modulo an (odd) prime . Let L1 = Q(up),
and let K be the unique subfield of L1 of degree | over Q. Then G = Gal(K/Q) is
cyclic of order [ and K istamely ramified over Q. One can construct a normal basis
for thering Ok of integersin K over Z: indeed if ¢ denotes a primitive p-th root
of unity, then ¢ isanormal basis generator for L1/Q and the trace of ¢ to K gives
the desired normal integral basis generator. Let now Ly = Q(p;2). Itiseasy to seethat
thereis no integral normal basisfor L, over Q. Asnoticed by Noether, thisis related
tothefact that L, isawildly ramified extension of the rationals. However there is the
following structure result, which gives a complete and explicit description of the Galois
modul e structure of rings of algebraic integersin absolute abelian extensions.

Theorem (Leopoldt 1959). Let K be an abelian extension of Q. Let G = Gal(K/Q).
Define

Az{)\EQ[G]:)\OK COK}

where Ok isthering of integersof K. Then Ok isisomorphicto A asa A-module.

Note that the statement is not true for an arbitrary global field, nor for general relative
extensions of number fields. The way to prove this theorem is by first dealing with the
case of cyclotomic fields, for which one constructs explicit normal basis generatorsin
terms of roots of unity. In this step one usesthe criterion involving the resolvent map ¢
which we mentioned in the previous theorem. Then, for ageneral absolute abelian field
K, oneembeds K into the cyclotomic field Q(fx) with smallest possible conductor
by using the Kronecker—\Weber theorem, and one “tracestheresult down” to K. Hereit
is essential that the extension Q(fx)/K isessentially tame. Explicit classfield theory
is an important ingredient of the proof of this theorem; and, of course, this approach
has been generalized to other settings: abelian extensions of imaginary quadratic fields
(complex multiplication), extensions of Lubin—Tate type, etc.

10.1.2. Factorizability.

While Leopoldt’s result is very satisfactory, one would still like to know a way to
express the relation there as a relation between the Galois structure of rings of integers
in general Galois extensions and the most natural integral representation of the Galois
group, namely that given by the group algebra. Thereis avery neat description of this
which usesthe notion of factorizability, introduced by A. Frohlich and A. Nelson. This
leads to an equivalence relation on modules which is weaker than local equivalence
(genus), but which is non-trivial.

Let G beafinitegroup,andlet S ={H : H < G}. Let T' be an abelian group.
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Definition. Amap f:S — T iscaled factorizableif every relation of the form

> apindG1=0
HeS

with integral coefficients ag, implies the relation

I rane=1.

HeS

Example. Let G = Gal(L/K), then the discriminant of L/K defines afactorizable
function (conductor-discriminant formula).

Definition. Let i: M — N beamorphismof O x[G]-lattices. Thelattices M and N
are said to be factor-equivalent if themap H — |L¥ : i(M)H| isfactorizable,

Theorem (Frohlich, de Smit). If G = Gal(L/K) and K isaglobal field, then O is
factor-equivalent to O x[G].

Again this result is based on the isomorphism induced by the resolvent map ¢ and
the fact that the discriminant defines a factorizable function.

10.1.3. Admissible structures.

Ideas related to factorizability have very recently been used to describe the Galois
module structure of idealsin local field extensions. Here is a sample of the results.

Theorem (Vostokov, Bondarko). Let K be a local field of mixed characteristic with
finite residuefield. Let L be a finite Galois extension of K with Galois group G.

(1) Let I; and I, beindecomposable O x[G]-submodules of Op. Then I; isiso-
morphic to I, as Ox[G]-modulesif and only if thereisan a in K* such that
I]_ = aIz.

(2) Op contains decomposable ideals if and only if there is a subextension E/L of
L/K suchthat |L : E|O containsthedifferent Dy, /p.

(3) If L isatotallyramified Galois p-extensionof K and O containsdecomposable
ideals, then L/K iscyclicand |L : K|Oy containsthe different Dy, /.

In fact what is remarkable with these results is that they do not involve class field
theory.
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10.2. Galoismoduletheory in geometry

Let X be asmooth projective curve over an algebraicaly closed field k. Let afinite
group G acton X. Put Y = X/G.

Theorem (Nakajima 1975). The covering X /Y is tame if and only if for every line
bundle £ of sufficiently large degree which is stable under the G-action HO(X, L) is
a projective k[G]-module.

This is the precise analogue of Ullom’s version of Noether’s Criterion for the ex-
istence of anormal integral basis for ideals in a Galois extension of discrete valuation
rings. Infactif (X, G) isatame action of afinite group G on any reasonable proper
scheme over aring A like Z or F,, then for any coherent G'-sheaf 5 on X one can
define an equivariant Euler—Poincaré characteristic x(F, G) inthe Grothendieck group
Ko(A[G]) of finitely generated projective A[G]-modules. It isan outstanding problem
to compute these equivariant Euler characteristics. One of the most important results
in this area is the following. Interestingly it relies heavily on results from class field
theory.

Theorem (Pappas1998). Let G beanabeliangroupandlet X bean arithmetic surface
over Z with afree G-action. Then 2y (O, G) =0 in Ko(Z[G)])/{Z[G]).

10.3. Galoismodulesand L-functions

Let afinite group G act on a projective, regular scheme X of dimension n defined
over thefinitefield F, andlet Y = X/G. Let ((X,t) bethe zeta-function of X. Let
ex bethe [-adic Euler characteristic of X . Recall that

(1) = £ )X g, ex n=2 ) (-1 (n— x(Qyr,)
0<ign

the latter being a consequence of the Hirzebruch—Riemann—Roch theorem and Serre
duality. It is well known that the zeta-function of X decomposes into product of
L-functions, which also satisfy functional equations. One can describe the constants
in these functional equations by “taking isotypic components’ in the analogue of the
above expression for ex - n/2 in terms of equivariant Euler-Poincaré characteristics.
The results that have been obtained so far do not use class field theory in any important
way. So we arelead to formulate the following problem:

Problem. Using Parshin’s adelic approach (sections 1 and 2 of Part I1) find another
proof of these resuilts.

L et us note that one of the main ingredientsin the work on these mattersisaformula
on e-factorsof T. Saito, which generalizesoneby S. Saito inspired by Parshin’sresults.
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10.4. Galoisstructure of class formations

Let K be anumber field and let L be afinite Galois extension of K, with Galois
group G = Gal(L/K). Let S beafinite set of primesincluding those which ramify in
L/K and the archimedean primes. Assumethat S is stable under the G-action. Put
AS = ker(ZS — 7). Let Ug bethe group of S-unitsof L. Recal that Us ® Q is
isomorphicto AS ® Q as Q[G]-modules. Thereisawell known exact sequence

0—-Us—A—B—AS—0

with finitely generated A, B such that A has finite projective dimension and B is
projective. The latter sequence is closely related to the fundamental class in global
class field theory and the class Q = (A) — (B) in the projective class group Cl (Z[G]
is clearly related to the Galois structure of S-units. There are local analogues of the
above sequence, and there are analogous sequences relating (bits) of higher K -theory
groups (theideaisto replace the pair (Us, AS) by apair (K;(0), K. _4(0))).

Problem. Usingcomplexesof GG-modules(asinsection 11 of part |) can onegeneralize
the local sequencesto higher dimensional fields?

For more details see [ E].
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