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I ntroduction

Thisvolume isaresult of the conference on higher local fieldsin Minster, August 29—
September 5, 1999, which was supported by SFB 478 “Geometrische Strukturen in
der Mathematik”. The conference was organized by |. Fesenko and F. Lorenz. We
gratefully acknowledge great hospitality and tremendous efforts of Falko Lorenz which
made the conference vibrant.

Classfield theory asdeveloped in thefirst half of thiscentury isafruitful generaliza-
tion and extension of Gauss reciprocity law; it describes abelian extensions of number
fields in terms of objects associated to these fields. Since its construction, one of the
important themes of number theory was its generalizations to other classes of fields or
to non-abelian extensions.

In modern number theory one encounters very naturally schemes of finite type over
Z. A very interesting direction of generalization of class field theory is to develop a
theory for higher dimensional fields— finitely generated fields over their prime subfields
(or schemes of finite type over Z in the geometric language). Work in this subject,
higher (dimensional) class field theory, was initiated by A.N. Parshin and K. Kato
independently about twenty five years ago. For an introduction into several global
aspects of the theory see W. Raskind’sreview on abelian classfield theory of arithmetic
schemes.

Oneof thefirstideasin higher classfield theory isto work with the Milnor K -groups
instead of the multiplicative group in the classical theory. It is one of the principles of
classfield theory for number fields to construct the reciprocity map by some blending of
class field theories for local fields. Somewhat similarly, higher dimensional class field
theory is abtained as a blending of higher dimensional local class field theories, which
treat abelian extensions of higher local fields. In this way, the higher local fields were
introduced in mathematics.

A precise definition of higher local fields will be given in section 1 of Part I; here
we give an example. A complete discrete valuation field K whose residue field is
isomorphic to a usua loca field with finite residue field is called a two-dimensional
local field. For example, fields IF,,((7))((S)), Q,((5)) and

Q,{T}H = {Z a;T" : a; € Qp,infv,(a;) > —oo, ﬂ[ﬂ vp(a;) = +oo}
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iv Invitation to higher local fields

(v, isthe p-adic valuation map) are two-dimensional local fields. Whereas the first
two fields above can be viewed as generalizations of functional local fields, the latter
field comesin sight as an arithmetical generalization of Q,,.

Inthe classical local case, where K isacomplete discrete valuation field with finite
residuefield, the Galois group GaI(Kab/K) of the maximal abelian extension of K is
approximated by the multiplicative group K*; and the reciprocity map

K* — Ga(K®/K)

is closeto anisomorphism (it induces an isomorphism between thegroup K* /Ny /g L*
and Gal(L/K) for afinite abelian extension L/K, and it isinjective with everywhere
denseimage). For two-dimensional local fields K asabove, instead of the multiplicative
group K*, theMilnor K -group K»(K) (cf. Some Conventionsand section 2 of Part 1)
plays an important role. For these fields there is a reciprocity map

Ko(K) — Gal(K®/K)

which is approximately an isomorphism (it induces an isomorphism between the group
K>(K)/Nr/kK>(L) and Gal(L/K) for afinite abelian extension L/K, and it has
everywhere denseimage; but it is not injective: the quotient of K»(K') by the kernel of
the reciprocity map can be described in terms of topological generators, see section 6
Part 1).

Similar statements hold in the general case of an n-dimensional local field where
one works with the Milnor K, -groups and their quotients (sections 5,10,11 of Part I);
and even class field theory of more general classes of complete discrete valuation fields
can be reasonably developed (sections 13,16 of Part I).

Since K1(K) = K*, higher local classfield theory contains the classical local class
field theory as its one-dimensional version.

The aim of this book is to provide an introduction to higher local fields and render
the main ideas of thistheory. The book grew asan extended version of talks given at the
conferencein Munster. Its expository style aims to introduce the reader into the subject
and explain main ideas, methods and constructions (sometimes omitting details). The
contributors applied essential efforts to explain the most important features of their
subjects.

Hilbert’swordsin Zahlbericht that precioustreasuresare still hidden in the theory of
abelian extensions are still up-to-date. We hope that this volume, as the first collection
of main strands of higher local field theory, will be useful as an introduction and guide
on the subject.

The first part presents the theory of higher local fields, very often in the more
general setting of complete discrete valuation fields.

Section 1, written by I. Zhukov, introduces higher local fields and topol ogies on their
additive and multiplicative groups. Subsection 1.1 contains all basic definitions and is
referred to in many other sections of the volume. The topologies are defined in such a
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way that the topology of the residue field is taken into account; the price one pays is
that multiplication is not continuous in general, however it is sequentially continuous
which allows one to expand elements into convergent power series or products.

Section 2, written by O. Izhboldin, is a short review of the Milnor K -groups and
Galois cohomology groups. It discusses p-torsion and cotorsion of the groups K ,,(F)
and K} (F) = K,(F)/Ni>11K,(F), ananalogue of Satz 90 for the groups K, (F') and
K!(F), and computation of H™*1(F) where F is either the rational function field in
onevariable F' = k(t) or the formal power series I’ = k((¢)).

Appendix to Section 2, written by M. Kurihara and |. Fesenko, contains some
basic definitions and properties of differential forms and Kato’s cohomology groups
in characteristic p and a sketch of the proof of Bloch—-Kato—Gabber’s theorem which
describes the differential symbol from the Milnor K -group K, (F)/p of afield F of
positive characteristic p to the differential module Q.

Section 4, written by J. Nakamura, presents main steps of the proof of Bloch-Kato's
theorem which states that the norm residue homomorphism

Ko(K)/m — HU(K, Z/m(q))

is an isomorphism for a henselian discrete valuation field K of characteristic O with
residuefield of positive characteristic. Thistheorem and its proof allows oneto simplify
Kato's original approach to higher local classfield theory.

Section 5, written by M. Kurihara, is a presentation of main ingredients of Kato's
higher local classfield theory.

Section 6, written by |. Fesenko, is concerned with certain topologies on the Milnor
K -groupsof higher local fields K which arerelated to thetopol ogy onthe multiplicative
group; their properties are discussed and the structure of the quotient of the Milnor
K -groups modulo the intersection of all neighbourhoods of zeroisdescribed. Thelatter
guotient is called atopological Milnor K -group; it was first introduced by Parshin.

Section 7, written by 1. Fesenko, describes Parshin’s higher local class field theory
in characteristic p, which is relatively easy in comparison with the cohomological
approach.

Section 8, written by S. Vostokov, is a review of known approaches to explicit
formulas for the (wild) Hilbert symbol not only in the one-dimensional case but in
the higher dimensional case as well. One of them, Vostokov's explicit formula, is of
importance for the study of topological Milnor K -groupsin section 6 and the existence
theorem in section 10.

Section 9, written by M. Kurihara, introduces his exponential homomorphism for
a complete discrete valuation field of characteristic zero, which relates differential
forms and the Milnor K -groups of the field, thus helping one to get an additional
information on the structureof thelatter. An applicationto explicit formulasisdiscussed
in subsection 9.2.

Section 10, written by 1. Fesenko, presents his explicit method to construct higher
local classfield theory by usingtopological K -groupsand ageneralization of Neukirch—
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Hazewinkel’s axiomatic approaches to class field theory. Subsection 10.2 presents
another simple approach to class field theory in the characteristic p case. The case
of characteristic O is sketched using a concept of Artin—Schreir trees of extensions (as
those extensions in characteristic 0 which are twinkles of the characteristic p world).
The existence theorem is discussed in subsection 10.5, being built upon the results of
sections 6 and 8.

Section 11, written by M. Spief3, provides a glimpse of Koya's and his approach
to the higher local reciprocity map as a generalization of the classical class formations
approach to the level of complexes of Galois modules.

Section 12, written by M. Kurihara, sketches his classification of complete discrete
valuation fields K of characteristic O with residue field of characteristic p into two
classes depending on the behaviour of the torsion part of a differential module. For
each of these classes, subsection 12.1 characterizes the quotient filtration of the Milnor
K-groups of K, for all sufficiently large members of the filtration, as a quotient of
differential modules. For a higher local field the previous result and higher local class
field theory imply certain restrictions on types of cyclic extensions of the field of
sufficiently large degree. Thisis described in 12.2.

Section 13, written by M. Kurihara, describes histheory of cyclic p-extensionsof an
absolutely unramified complete discrete valuation field K with arbitrary residue field
of characteristic p. In this theory a homomorphism is constructed from the p-part of
the group of charactersof K to Witt vectorsover itsresiduefield. Thishomomorphism
satisfies some important properties listed in the section.

Section 14, written by |. Zhukov, presents some explicit methods of constructing
abelian extensions of complete discrete valuation fields. His approach to explicit equa-
tions of a cyclic extension of degree p™ which contains a given cyclic extension of
degree p is explained. An application to the structure of topological K -groups of an
absolutely unramified higher local field is given in subsection 14.6.

Section 15, written by J. Nakamura, contains a list of all known results on the
guotient filtration on the Milnor K -groups (in terms of differential forms of the residue
field) of a complete discrete valuation field. It discusses his recent study of the case of
atamely ramified field of characteristic O with residuefield of characteristic p by using
the exponential map of section 9 and a syntomic complex.

Section 16, written by 1. Fesenko, isdevoted to hisgeneralization of one-dimensional
classfield theory to adescription of abelian totally ramified p-extensions of acomplete
discretevaluation field with arbitrary non separably- p-closed residuefield. Inparticular,
subsection 16.3 showsthat two such extensionscoincideif and only if their norm groups
coincide. An illustration to the theory of section 13 is given in subsection 16.4.

Section 17, written by 1. Zhukov, is areview of his recent approach to ramification
theory of a complete discrete valuation field with residue field whose p-basis consists
of at most one element. One of important ingredients of the theory is Epp’s theorem on
elimination of wild ramification (subsection 17.1). New lower and upper filtrations are
defined (so that cyclic extensions of degree p may have non-integer ramification breaks,
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seeexamplesinsubsection 17.2). Oneof theadvantagesof thistheory isitscompatibility
with the reciprocity map. A refinement of the filtration for two-dimensional local fields
which is compatible with the reciprocity map is discussed.

Section 18, written by L. Spriano, presents ramification theory of monogenic exten-
sions of compl ete discrete valuation fields; hisrecent study demonstratesthat in this case
there is a satisfactory theory if one systematically uses a generalization of the function
7 and not s (see subsection 18.0 for definitions). Relations to Kato's conductor are
discussed in 18.2 and 18.3.

These sections 17 and 18 can be viewed as the rudiments of higher ramification
theory; there are several other approaches. Still, there is no satisfactory general ramifi-
cation theory for complete discrete valuation fields in the imperfect residue field case;
to construct such atheory is a challenging problem.

Without attempting to list all links between the sections we just mention several
paths (2 means Section 2 and Appendix to Section 2)

1-6-7 (leading to Parshin’s approach in positive characteristic),
2—-4—-5-11 (leading to Kato's cohomol ogical description

of the reciprocity map and generalized class formations),
83—-6—10 (explicit construction of the reciprocity map),
5—12—- 13— 15, (structure of the Milnor K -groups of the fields
1—- 10— 14,16 and more explicit study of abelian extensions),
8,9 (explicit formulas for the Hilbert norm symbol

and its generalizations),
1—-10— 17,18 (aspects of higher ramification theory).

A special placein thisvolume (between Part | and Part 11) is occupied by the work of
K. Kato on the existence theorem in higher local class field theory which was produced
in 1980 as an IHES preprint and has never been published. We are grateful to K. Kato
for his permission to include this work in the volume. In it, viewing higher local fields
asring objectsin the category of iterated pro-ind-objects, adefinition of open subgroups
in the Milnor K -groups of the fieldsis given. The self-duality of the additive group of
a higher local field is proved. By studying norm groups of cohomological objects and
using cohomological approach to higher local class field theory the existence theorem
is proved. An alternative approach to the description of norm subgroups of Galois
extensions of higher local fields and the existence theorem is contained in sections 6
and 10.

The second part is concerned with various applications and connections of higher
local fields with several other areas.
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Section 1, written by A.N. Parshin, describes some first steps in extending Tate—
Iwasawa's analytic method to define an L-function in higher dimensions; historically
the latter problem was one of the stimuli of the work on higher class field theory. For
generalizing this method the author advocates the usefulness of the classical Riemann—
Hecke approach (subsection 1.1), his adelic complexes (subsection 1.2.2) together
with his generalization of Krichever’s correspondence (subsection 1.2.1). He analyzes
dimension 1 types of functionsin subsection 1.3 and discusses properties of the lattice
of commensurable classes of subspacesin the adelic space associated to adivisor on an
algebraic surface in subsection 1.4.

Section 2, written by D. Osipov, isareview of hisrecent work on adelic constructions
of direct images of differentials and symbolsin the two-dimensional casein therelative
situation. Inparticular, reciprocity lawsfor relativeresiduesof differentialsand symbols
are introduced and applied to a construction of the Gysin map for Chow groups.

Section 3, written by A.N. Parshin, presents histheory of Bruhat—Tits buildings over
higher dimensional local fields. Thetheory isillustrated with the buildingsfor PG L(2)
and PGL(3) for one- and two-dimensional local fields.

Section 4, written by E.-U. Gekeler, providesa survey of relations between Drinfeld
modules and higher dimensional fields of positive characteristic.

Section 5, written by M. Kapranov, sketches his recent approach to elements of
harmonic analysis on algebraic groups over functional two-dimensional local fields.
For a two-dimensional local field subsection 5.4 introduces a Hecke algebra which
is formed by operators which integrate pro-locally-constant complex functions over a
non-compact domain.

Section 6, written by L. Herr, is a survey of his recent study of applications of
Fontaine's theory of p-adic representations of local fields (® — I'-modules) to Galois
cohomology of local fieldsand explicit formulasfor the Hilbert symbol (subsections6.4—
6.6). Thetwo Greek |etterslead to two-dimensional local objects(like O¢ (k) introduced
in subsection 6.3).

Section 7, written by |. Efrat, introduces recent advances in the zero-dimensional
anabelian geometry, that is a characterization of fields by means of their absolute
Galois group (for finitely generated fields and for higher local fields). His method
of construction of henselian valuations on fields which satisfy some K -theoretical
propertiesis presented in subsection 10.3, and applications to an algebraic proof of the
local correspondence part of Pop’s theorem and to higher local fields are given.

Section 8, written by A. Zheglov, presents his study of two dimensional local skew
fieldswhichwasinitiated by A.N. Parshin. If the skew field hasone-dimensional residue
field which isin its centre, then one is naturally led to the study of automorphisms of
the residue field which are associated to alocal parameter of the skew field. Results on
such automorphisms are described in subsections 8.2 and 8.3.

Section 9, written by |. Fesenko, is an exposition of hisrecent work on noncommu-
tative local reciprocity maps for totally ramified Galois extensions with arithmetically
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profinite group (for instance p-adic Lie extensions). These maps in general are not
homomorphisms but Galois cycles; a description of their image and kernel is included.

Section 10, written by B. Erez, is a concise survey of Galois module theory links
with class field theory; it lists several open problems.

The theory of higher local fields has several interesting aspects and applications
which are not contained in this volume. One of them is the work of Kato on applica-
tions of an explicit formulafor the reciprocity map in higher local fieldsto calculations
of special values of the L-function of a modular form. There is some interest in
two-dimensional local fields (especially of the functional type) in certain parts of math-
ematical physics, infinite group theory and topology where formal power series objects
play acentral role.

Prerequisitesfor most sectionsin thefirst part of the book are small: local fieldsand
local class field theory, for instance, as presented in Serre’'s“Local Fields’, Iwasawa's
“Local ClassField Theory” or Fesenko—Vostokov’'s“Local Fieldsand Their Extensions”
(thefirst source containsacohomol ogical approach whereasthelast two are cohomol ogy
free) and some basic knowledge of Milnor K -theory of discrete valuation fields (for
instance Chapter | X of the latter book). See also Some Conventions and Appendix to

Section 2 of Part | where we explain several notions useful for reading Part |.

We thank P. Schneider for his support of the conference and work on this volume.
The volume is typed using a modified version of osudeG style (written by Walter
Neumann and Larry Siebenmann and available from the public domain of Department
of Mathematics of Ohio State University, pub/osutex); thanks are due to Larry for his
advice on aspects of this style and to both Walter and Larry for permission to useit.

Ivan Fesenko Masato Kurihara September 2000
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