|nvitation to higher local fields

Conference in Munster, August—September 1999

Editors: |. Fesenko and M. Kurihara






ISSN 1464-8997 (on line) 1464-8989 (printed) ii

Geometry & Topology Monographs
Volume 3: Invitation to higher local fields
Pagesiii—xi: Introduction and contents

I ntroduction

Thisvolume isaresult of the conference on higher local fieldsin Minster, August 29—
September 5, 1999, which was supported by SFB 478 “Geometrische Strukturen in
der Mathematik”. The conference was organized by |. Fesenko and F. Lorenz. We
gratefully acknowledge great hospitality and tremendous efforts of Falko Lorenz which
made the conference vibrant.

Classfield theory asdeveloped in thefirst half of thiscentury isafruitful generaliza-
tion and extension of Gauss reciprocity law; it describes abelian extensions of number
fields in terms of objects associated to these fields. Since its construction, one of the
important themes of number theory was its generalizations to other classes of fields or
to non-abelian extensions.

In modern number theory one encounters very naturally schemes of finite type over
Z. A very interesting direction of generalization of class field theory is to develop a
theory for higher dimensional fields— finitely generated fields over their prime subfields
(or schemes of finite type over Z in the geometric language). Work in this subject,
higher (dimensional) class field theory, was initiated by A.N. Parshin and K. Kato
independently about twenty five years ago. For an introduction into several global
aspects of the theory see W. Raskind’sreview on abelian classfield theory of arithmetic
schemes.

Oneof thefirstideasin higher classfield theory isto work with the Milnor K -groups
instead of the multiplicative group in the classical theory. It is one of the principles of
classfield theory for number fields to construct the reciprocity map by some blending of
class field theories for local fields. Somewhat similarly, higher dimensional class field
theory is abtained as a blending of higher dimensional local class field theories, which
treat abelian extensions of higher local fields. In this way, the higher local fields were
introduced in mathematics.

A precise definition of higher local fields will be given in section 1 of Part I; here
we give an example. A complete discrete valuation field K whose residue field is
isomorphic to a usua loca field with finite residue field is called a two-dimensional
local field. For example, fields IF,,((7))((S)), Q,((5)) and

Q,{T}H = {Z a;T" : a; € Qp,infv,(a;) > —oo, ﬂ[ﬂ vp(a;) = +oo}

— 00
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iv Invitation to higher local fields

(v, isthe p-adic valuation map) are two-dimensional local fields. Whereas the first
two fields above can be viewed as generalizations of functional local fields, the latter
field comesin sight as an arithmetical generalization of Q,,.

Inthe classical local case, where K isacomplete discrete valuation field with finite
residuefield, the Galois group GaI(Kab/K) of the maximal abelian extension of K is
approximated by the multiplicative group K*; and the reciprocity map

K* — Ga(K®/K)

is closeto anisomorphism (it induces an isomorphism between thegroup K* /Ny /g L*
and Gal(L/K) for afinite abelian extension L/K, and it isinjective with everywhere
denseimage). For two-dimensional local fields K asabove, instead of the multiplicative
group K*, theMilnor K -group K»(K) (cf. Some Conventionsand section 2 of Part 1)
plays an important role. For these fields there is a reciprocity map

Ko(K) — Gal(K®/K)

which is approximately an isomorphism (it induces an isomorphism between the group
K>(K)/Nr/kK>(L) and Gal(L/K) for afinite abelian extension L/K, and it has
everywhere denseimage; but it is not injective: the quotient of K»(K') by the kernel of
the reciprocity map can be described in terms of topological generators, see section 6
Part 1).

Similar statements hold in the general case of an n-dimensional local field where
one works with the Milnor K, -groups and their quotients (sections 5,10,11 of Part I);
and even class field theory of more general classes of complete discrete valuation fields
can be reasonably developed (sections 13,16 of Part I).

Since K1(K) = K*, higher local classfield theory contains the classical local class
field theory as its one-dimensional version.

The aim of this book is to provide an introduction to higher local fields and render
the main ideas of thistheory. The book grew asan extended version of talks given at the
conferencein Munster. Its expository style aims to introduce the reader into the subject
and explain main ideas, methods and constructions (sometimes omitting details). The
contributors applied essential efforts to explain the most important features of their
subjects.

Hilbert's words in Zahlbericht that precious treasures are hidden in the theory of
abelian extensions are still up-to-date. We hope that this volume, as the first collection
of main strands of higher local field theory, will be useful as an introduction and guide
on the subject.

The first part presents the theory of higher local fields, very often in the more
general setting of complete discrete valuation fields.

Section 1, written by I. Zhukov, introduces higher local fields and topol ogies on their
additive and multiplicative groups. Subsection 1.1 contains all basic definitions and is
referred to in many other sections of the volume. The topologies are defined in such a
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way that the topology of the residue field is taken into account; the price one pays is
that multiplication is not continuous in general, however it is sequentially continuous
which allows one to expand elements into convergent power series or products.

Section 2, written by O. Izhboldin, is a short review of the Milnor K -groups and
Galois cohomology groups. It discusses p-torsion and cotorsion of the groups K ,,(F)
and K} (F) = K,(F)/Ni>11K,(F), ananalogue of Satz 90 for the groups K, (F') and
K!(F), and computation of H™*1(F) where F is either the rational function field in
onevariable F' = k(t) or the formal power series I’ = k((¢)).

Appendix to Section 2, written by M. Kurihara and |. Fesenko, contains some
basic definitions and properties of differential forms and Kato’s cohomology groups
in characteristic p and a sketch of the proof of Bloch—-Kato—Gabber’s theorem which
describes the differential symbol from the Milnor K -group K, (F)/p of afield F of
positive characteristic p to the differential module Q.

Section 4, written by J. Nakamura, presents main steps of the proof of Bloch-Kato's
theorem which states that the norm residue homomorphism

Ko(K)/m — HU(K, Z/m(q))

is an isomorphism for a henselian discrete valuation field K of characteristic O with
residuefield of positive characteristic. Thistheorem and its proof allows oneto simplify
Kato's original approach to higher local classfield theory.

Section 5, written by M. Kurihara, is a presentation of main ingredients of Kato's
higher local classfield theory.

Section 6, written by |. Fesenko, is concerned with certain topologies on the Milnor
K -groupsof higher local fields K which arerelated to thetopol ogy onthe multiplicative
group; their properties are discussed and the structure of the quotient of the Milnor
K -groups modulo the intersection of all neighbourhoods of zeroisdescribed. Thelatter
guotient is called atopological Milnor K -group; it was first introduced by Parshin.

Section 7, written by 1. Fesenko, describes Parshin’s higher local class field theory
in characteristic p, which is relatively easy in comparison with the cohomological
approach.

Section 8, written by S. Vostokov, is a review of known approaches to explicit
formulas for the (wild) Hilbert symbol not only in the one-dimensional case but in
the higher dimensional case as well. One of them, Vostokov's explicit formula, is of
importance for the study of topological Milnor K -groupsin section 6 and the existence
theorem in section 10.

Section 9, written by M. Kurihara, introduces his exponential homomorphism for
a complete discrete valuation field of characteristic zero, which relates differential
forms and the Milnor K -groups of the field, thus helping one to get an additional
information on the structureof thelatter. An applicationto explicit formulasisdiscussed
in subsection 9.2.

Section 10, written by 1. Fesenko, presents his explicit method to construct higher
local classfield theory by usingtopological K -groupsand ageneralization of Neukirch—
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Hazewinkel’s axiomatic approaches to class field theory. Subsection 10.2 presents
another simple approach to class field theory in the characteristic p case. The case
of characteristic O is sketched using a concept of Artin—Schreir trees of extensions (as
those extensions in characteristic 0 which are twinkles of the characteristic p world).
The existence theorem is discussed in subsection 10.5, being built upon the results of
sections 6 and 8.

Section 11, written by M. Spief3, provides a glimpse of Koya's and his approach
to the higher local reciprocity map as a generalization of the classical class formations
approach to the level of complexes of Galois modules.

Section 12, written by M. Kurihara, sketches his classification of complete discrete
valuation fields K of characteristic O with residue field of characteristic p into two
classes depending on the behaviour of the torsion part of a differential module. For
each of these classes, subsection 12.1 characterizes the quotient filtration of the Milnor
K-groups of K, for all sufficiently large members of the filtration, as a quotient of
differential modules. For a higher local field the previous result and higher local class
field theory imply certain restrictions on types of cyclic extensions of the field of
sufficiently large degree. Thisis described in 12.2.

Section 13, written by M. Kurihara, describes histheory of cyclic p-extensionsof an
absolutely unramified complete discrete valuation field K with arbitrary residue field
of characteristic p. In this theory a homomorphism is constructed from the p-part of
the group of charactersof K to Witt vectorsover itsresiduefield. Thishomomorphism
satisfies some important properties listed in the section.

Section 14, written by |. Zhukov, presents some explicit methods of constructing
abelian extensions of complete discrete valuation fields. His approach to explicit equa-
tions of a cyclic extension of degree p™ which contains a given cyclic extension of
degree p isexplained.

Section 15, written by J. Nakamura, contains a list of al known results on the
guoctient filtration on the Milnor K -groups (in terms of differential forms of the residue
field) of a complete discrete valuation field. It discusses his recent study of the case of
atamely ramified field of characteristic O with residuefield of characteristic p by using
the exponential map of section 9 and a syntomic complex.

Section 16, written by |. Fesenko, isdevoted to hisgeneralization of one-dimensional
classfield theory to adescription of abelian totally ramified p-extensions of acomplete
discretevaluation field with arbitrary non separably- p-closed residuefield. Inparticular,
subsection 16.3 showsthat two such extensions coincideif and only if their norm groups
coincide. Anillustration to the theory of section 13 is given in subsection 16.4.

Section 17, written by 1. Zhukov, is areview of his recent approach to ramification
theory of a complete discrete valuation field with residue field whose p-basis consists
of at most one element. One of important ingredients of the theory is Epp’stheorem on
elimination of wild ramification (subsection 17.1). New lower and upper filtrations are
defined (so that cyclic extensions of degree p may have non-integer ramification breaks,
seeexamplesin subsection 17.2). Oneof the advantagesof thistheory isitscompatibility
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with the reciprocity map. A refinement of the filtration for two-dimensional local fields
which is compatible with the reciprocity map is discussed.

Section 18, written by L. Spriano, presents ramification theory of monogenic exten-
sions of compl ete discrete valuation fields; hisrecent study demonstratesthat in this case
there is a satisfactory theory if one systematically uses a generalization of the function
7 and not s (see subsection 18.0 for definitions). Relations to Kato's conductor are
discussed in 18.2 and 18.3.

These sections 17 and 18 can be viewed as the rudiments of higher ramification
theory; there are several other approaches. Still, there is no satisfactory general ramifi-
cation theory for complete discrete valuation fields in the imperfect residue field case;
to construct such atheory is a challenging problem.

Without attempting to list all links between the sections we just mention several
paths (2 means Section 2 and Appendix to Section 2)

1-6-7 (leading to Parshin’s approach in positive characteristic),
2—-4—-5-11 (leading to Kato's cohomol ogical description

of the reciprocity map and generalized class formations),
83—-6—10 (explicit construction of the reciprocity map),
5—12—- 13— 15, (structure of the Milnor K -groups of the fields
1—- 10— 14,16 and more explicit study of abelian extensions),
8,9 (explicit formulas for the Hilbert norm symbol

and its generalizations),
1—-10— 17,18 (aspects of higher ramification theory).

A special placein thisvolume (between Part | and Part 11) isoccupied by the work of
K. Kato on the existence theorem in higher local class field theory which was produced
in 1980 as an IHES preprint and has never been published. We are grateful to K. Kato
for his permission to include this work in the volume. In it, viewing higher local fields
asring objectsin the category of iterated pro-ind-objects, adefinition of open subgroups
in the Milnor K -groups of the fieldsis given. The self-duality of the additive group of
a higher local field is proved. By studying norm groups of cohomological objects and
using cohomological approach to higher local class field theory the existence theorem
is proved. An alternative approach to the description of norm subgroups of Galois
extensions of higher local fields and the existence theorem is contained in sections 6
and 10.

The second part is concerned with various applications and connections of higher
local fields with several other areas.

Section 1, written by A.N. Parshin, describes some first steps in extending Tate—
Iwasawa's analytic method to define an L-function in higher dimensions; historically
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the latter problem was one of the stimuli of the work on higher class field theory. For
generalizing this method the author advocates the usefulness of the classical Riemann—
Hecke approach (subsection 1.1), his adelic complexes (subsection 1.2.2) together
with his generalization of Krichever's correspondence (subsection 1.2.1). He analyzes
dimension 1 types of functions in subsection 1.3 and discusses properties of the lattice
of commensurable classes of subspacesin the adelic space associated to adivisor on an
algebraic surface in subsection 1.4.

Section 2, written by D. Osipov, isareview of hisrecent work on adelic constructions
of direct images of differentials and symbolsin the two-dimensional casein therelative
situation. Inparticular, reciprocity lawsfor relativeresidues of differentialsand symbols
are introduced and applied to a construction of the Gysin map for Chow groups.

Section 3, written by A.N. Parshin, presents histheory of Bruhat—Tits buildings over
higher dimensional local fields. Thetheory isillustrated with the buildingsfor PG L(2)
and PGL(3) for one- and two-dimensional local fields.

Section 4, written by E.-U. Gekeler, providesa survey of relations between Drinfeld
modules and higher dimensional fields of positive characteristic. The main new result
stated is the expression of vanishing orders of certain modular forms through partial
zetavalues.

Section 5, written by M. Kapranov, sketches his recent approach to elements of
harmonic analysis on algebraic groups over functional two-dimensional local fields.
For a two-dimensional local field subsection 5.4 introduces a Hecke algebra which
is formed by operators which integrate pro-locally-constant complex functions over a
non-compact domain.

Section 6, written by L. Herr, is a survey of his recent study of applications of
Fontaine's theory of p-adic representations of local fields (® — I'-modules) to Galois
cohomology of local fieldsand explicit formulasfor the Hilbert symbol (subsections6.4—
6.6). Thetwo Greek |etterslead to two-dimensional local objects(like O¢ (k) introduced
in subsection 6.3).

Section 7, written by |. Efrat, introduces recent advances in the zero-dimensional
anabelian geometry, that is a characterization of fields by means of their absolute
Galois group (for finitely generated fields and for higher local fields). His method
of construction of henselian valuations on fields which satisfy some K -theoretical
propertiesis presented in subsection 10.3, and applications to an algebraic proof of the
local correspondence part of Pop’s theorem and to higher local fields are given.

Section 8, written by A. Zheglov, presents his study of two dimensional local skew
fieldswhichwasinitiated by A.N. Parshin. If the skew field hasone-dimensional residue
field which isin its centre, then one is naturally led to the study of automorphisms of
the residue field which are associated to alocal parameter of the skew field. Results on
such automorphisms are described in subsections 8.2 and 8.3.

Section 9, written by |. Fesenko, is an exposition of hisrecent work on noncommu-
tative local reciprocity maps for totally ramified Galois extensions with arithmetically
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profinite group (for instance p-adic Lie extensions). These maps in general are not
homomorphisms but Galois cycles; a description of their image and kernel is included.

Section 10, written by B. Erez, is a concise survey of Galois module theory links
with class field theory; it lists several open problems.

The theory of higher local fields has several interesting aspects and applications
which are not contained in this volume. One of them is the work of Kato on applica-
tions of an explicit formulafor the reciprocity map in higher local fieldsto calculations
of special values of the L-function of a modular form. There is some interest in
two-dimensional local fields (especially of the functional type) in certain parts of math-
ematical physics, infinite group theory and topology where formal power series objects
play acentral role.

Prerequisitesfor most sectionsin thefirst part of the book are small: local fieldsand
local class field theory, for instance, as presented in Serre’'s“Local Fields’, Iwasawa's
“Local ClassField Theory” or Fesenko—Vostokov’'s“Local Fieldsand Their Extensions”
(thefirst source containsacohomol ogical approach whereasthelast two are cohomol ogy
free) and some basic knowledge of Milnor K -theory of discrete valuation fields (for
instance Chapter | X of the latter book). See also Some Conventions and Appendix to

Section 2 of Part | where we explain several notions useful for reading Part |.

We thank P. Schneider for his support of the conference and work on this volume.
The volume is typed using a modified version of osudeG style (written by Walter
Neumann and Larry Siebenmann and available from the public domain of Department
of Mathematics of Ohio State University, pub/osutex); thanks are due to Larry for his
advice on aspects of this style and to both Walter and Larry for permission to useit.

Ivan Fesenko Masato Kurihara September 2000
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Some Conventions

Thenotation X C Y meansthat X isasubsetof Y.

For an abelian group A written additively denote by A/m the quotient group
A/mA where mA = {ma : a € A} and by ,, A the subgroup of elements of order
dividing m. The subgroup of torsion elementsof A isdenoted by Tors A.

For an algebraic closure F39 of F denote the separable closure of the field F
by FP; let Gr = Gal(F*P/F) be the absolute Galois group of F. Often for a
Gr-module M wewrite H*(F, M) instead of H'(Gr, M).

For apositiveinteger [ whichisprimeto characteristicof F' (if thelatter isnon-zero)
denote by p; = ((;) the group of [th roots of unity in F5P.

If [ isprimeto char (F), for m > 0 denoteby Z/i(m) the G p-module uf@m and
put Z;(m) = [iLnTZ/lT(m); for m < 0 put Z;(m) = Hom(Z;, Z;(—m)).

Let A be acommutative ring. The group of invertible elements of A is denoted
by A*. Let B bean A-algebra Q}B/A denotes as usua the B-module of regular
differential forms of B over A; Qf , = /\”QlB/A. In particular, Q7 = Q7
where 1, is the identity element of A with respect to multiplication. For more on
differential modules see subsection A1 of the appendix to the section 2 in the first part.

Let K, (k) = KM (k) bethe Milnor K -group of afield & (for the definition see
subsection 2.0 in the first part).

For a complete discrete valuation field K denoteby O = O itsring of integers,
by M = Mg the maximal ideal of O and by k = ky itsresidue field. If & is of
characteristic p, denote by R the set of Teichmiller representatives (or multiplicative
representatives) in O. For 6 in the maximal perfect subfield of & denote by [6] its
Teichmiller representative.

For afield £ denoteby W (k) thering of Witt vectors (more precisely, Witt p-vectors
where p is a prime number) over k. Denote by W,.(k) the ring of Witt vectors of
length » over k. If char(k) = p denoteby F: W (k) — W(k), F:W,.(k) — W,(k)
themap (ao, ...) — (ag, ---)-

Denote by vx the surjective discretevaluation K* — Z (it issometimes called the
normalized discrete valuation of K'). Usually m = mx denotesaprime element of K:
vk (rr) = 1.

Denote by K the maximal unramified extension of K. If kg isfinite, denote by
Froby the Frobenius automorphismof K /K.

For afinite extension L of a complete discrete valuation field K Dy, denotes
its different.

If char (K) =0, char(kg) =p, then K iscaled afield of mixed characteristic. If
char (K) = 0=char (kx), then K iscalled afield of equal characteristic.

If ky isperfect, K iscalled alocal field.
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1. Higher dimensional local fields

Igor Zhukov

We give here basic definitions related to n-dimensional local fields. For detailed
exposition, see [P] in the equal characteristic case, [K1, §8] for the two-dimensional
case and [MZ1], [MZ2] for the general case. Several properties of the topology on the
multiplicative group are discussed in [F].

1.1. Main definitions

Suppose that we are given a surface S over afinite field of characteristic p, acurve
C c S, andapoint x € C such that both S and C' areregular a x. Then one can

attach to these data the quotient field of the completion (@ s,z)c Of thelocalizationat C

of thecompletion 65,1 of thelocal ring O, of S at =. Thisisatwo-dimensional local
field over afinite field, i.e., a complete discrete valuation field with local residue field.
More generally, an n-dimensional local field F' is a complete discrete valuation field
with (n — 1)-dimensional residue field. (Finite fields are considered as 0-dimensional
local fields.)

Definition. A complete discrete valuation field K is said to have the structure of an
n-dimensional local field if there is a chain of fidds K = K,,,K,,_1, ..., K1, Ko
where K41 isacomplete discrete valuation field with residue field K; and Kg isa
finite field. Thefield kx = K, _1 (resp. Kp) is said to be the first (resp. the last)
residuefield of K.

Remark. Most of the properties of n-dimensional local fields do not change if one
requires that the last residue K is perfect rather than finite. To specify the exact
meaning of theword, K can bereferredto asan n-dimensional local field over afinite
(resp. perfect) field. One can consider an n-dimensional local field over an arbitrary
field Ko aswell. However, in this volume mostly the higher local fields over finite
fields are considered.
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6 |. Zhukov

Examples. 1. F,((X1))...((X,)). 2. E((X1))...((X,-1)), k afinite extension of

Qp-
3. For acomplete discrete valuation field F' let

+oo
K=F{T}} = {Z a;T" : a; € F, inf vp(a;) > —oo, , IiEn vr(a;) = +oo}.
Define v (O a;T") = min vg(a;). Then K isacomplete discrete valuation field with
residuefield kg ((¢)).
Hencefor alocal field k thefields

(T - AT (The2)) - (1), 0<m<n-1
are n-dimensional local fields (they are called standard fields).

Remark. K ((X)){{Y}} isisomorphicto K ((Y)) ((X)).

Definition. An n-tupleof elements ¢4, ..., t, € K iscaled asystemof local param-
gersof K, if ¢, isaprimeelement of K,,, t,_1 isaunitin Og butitsresiduein
K, _, isaprime element of K, _1, and soon.

For example, for K =k {{T1}} ... {Tmn}} (T1n+2)) - - - ((T3.)), aconvenient system
of local parameter is 11, ..., Ty, 7, Tm+2, - - -, Ty, Where w isaprime element of k.

Consider the maximal m such that char (K,,) = p; we have 0 < m < n. Thus,
thereare n + 1 types of n-dimensional local fields: fields of characteristic p and fields
with char (K,,+1) =0, char (K,,) =p, 0 < m < n—1. Thus, themixed characteristic
caseisthecase m =n — 1.

Supposethat char (kx) = p, i.e, the above m equalseither n — 1 or n. Thenthe
set of Teichmller representatives R in O isafieldisomorphicto Kp.

Classification Theorem. Let K bean n-dimensional local field. Then

(1) K isisomorphicto F,((X1))...((X,)) if char(K) =p;

(2) K isisomorphicto k((X1))...((X,_1)), k isalocal field, if char (K1) =0;

(3) K isafiniteextension of astandard field £ {{T1}} ... {{T0n}} (Tn+2)) - - - (T7))
and thereis a finite extension of K which is a standard field if char (K,,+1) =0,
char (K,,) = p.

Proof. In the equal characteristic case the statements follow from the well known
classification theorem for complete discrete valuation fields of equal characteristic. In
themixed characteristic caselet ko bethefractionfieldof W (F,) andlet 17, ..., T,,_1, 7
be a system of local parametersof K. Put

K =ko{{Th}} ... {Th-1}} -

Then K’ isan absolutely unramified complete discrete valuation field, and the (first)
residuefieldsof K’ and K coincide. Therefore, K can beviewed asafinite extension
of K’ by [FV,I11.5.6].
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Alternatively, let t4, ..., t,_1 beany liftingsof asystem of local parametersof k.
Using the canonical lifting Ay, ... _, defined below, one can construct an embedding
K’ — K whichidentifies T; with ¢;.

To provethelast assertion of the theorem, one can use Epp’stheoremon elimination
of wild ramification (see 17.1) which asserts that there is a finite extension [/kg such
that e (IK/IK') = 1. Then K’ isstandard and (K isstandard, so K isasubfield of

IK. See[Z] or [KZ] for details and a stronger statement. 0

Definition. Thelexicographicorder of Z™: i= (i1, ...,i,) <j= (1, ..., jn) if and
only if

Z‘l <j17 Z.l‘i'l:jl‘*'l? "'7Z.n:j7’bf0rsomel<n'

Introduce v = (vy, ...,v,): K* — Z" as v, = vk,, vn-1(a) = vk, ,(an-1)
where a,,_1 istheresidueof at;*~(®) in K, _;, andsoon. Themap v isavaluation;
thisis a so called discrete valuation of rank n. Observethat for n > 1 the valuation
v does depend on the choice of t, ..., t,. However, al the valuations obtained this
way are in the same class of equivalent valuations.

Now we define severa objects which do not depend on the choice of a system of
local parameters.

Definition.
Og ={ae K:v(a) 20}, Mg = {a€ K:v(a) >0}, s0 Ox/Mg ~ Ko.
The group of principal unitsof K with respect to the valuation v is Vi = 1+ M.

Definition.
P(igy ...yin) = Pr (i, ...yin) ={a € K : (v(a), ...,vn(a)) = (g, - in)}-

In particular, Ox = P(0, ...,0), My = P(1,0,...,0), whereas Ox = P(0),
——

Mg = P(1). Notethat if » > 1, then

n;Mj; = P(1,0,...,0),
2

since tp =t Ht/th).
Lemma. The set of all non-zero idealsof Oy consists of all
{P @y v yin) i (igy oonyin) = (0,...,0), 1<I<n}.

Thering Ok isnot Noetherian for n > 1.
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8 |. Zhukov

Proof. Let J be a non-zero idea of Ox. Put i, = min{v,(a) : « € J}. |If
J = P (i), then we are done. Otherwisg, it is clear that

in—1:=inf{v,_1(a) : @ € J,v,(a) =ip} > —o0.

If i,, =0, then obviously i,,_1 > 0. Continuing this way, we construct (i, ... ,i,) =
©, ...,0), whereeither [ =1 or
i1 =inf{u_1(a) : a € Jyv,(a) =iy, ..., v(a) =4} = —oc.
In both casesitisclear that J = P (i, ..., iy,).
The second statement is immediate from P(0,1) ¢ P(—1,1) C P(—2,1).... O

For moreonidealsin Oy see subsection 3.0 of Part I1.

1.2. Extensions

Let L/K beafiniteextension. If K isan n-dimensiona local field, thensois L.

Definition. Let tg, ...,t, beasystem of local parametersof K and let t;, ... ,t,

r'n

be a system of local parametersof L. Let v, v’ bethe corresponding valuations. Put

, ... 0
E(LIK) = (v5(t), ;= | 62 ... 0]
€n

where e; = ¢;(L|K) = e(L;|K;), i =1, ...,n. Then e; do not depend on the choice
of parameters,and |L : K| = f(L|K)[[=; e:(L|K), where f(L|K) =|Lo: Ko -

The expression “unramified extension” can be used for extensions L/ K with
en(L|K)=1and L,_1/K,_1 separable. It can be also used in a narrower sense,
namely, for extensions L/K with []'; e;(L|K) = 1. To avoid ambiguity, sometimes
one speaks of a “semiramified extension” in the former case and a “purely unramified
extension” in the latter case.

1.3. Topology on K

Consider an example of n-dimensional local field

K=k} . AT} (Tnsd)) - (T)).

Expanding elements of % into power seriesin = with coefficientsin R, one canwrite
elementsof K asformal power seriesin n parameters. To makethem convergent power
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Part I. Section 1. Higher dimensional local fields 9

series we should introduce atopology in K which takes into account topologies of the
residue fields. We do not make K atopological field this way, since multiplication is
only sequentially continuousin thistopology. However, for classfield theory sequential
continuity seemsto be more important than continuity.

131

Definition.

(@ If F has atopology, consider the following topology on K = F((X)). For a
sequence of neighbourhoods of zero (U;);cz in F, U; = F for ¢ > 0, denote
U,y = {Xa; X" 1a; € U;}. Thendl Uy, constitute a base of open neigh-
bourhoods of 0in F ((X)). In particular, asequence u(™ = 3" a{™ X' tendsto 0
if and only if thereisan integer m such that «(™ e X™F[[X]] for al n andthe
sequences a{™ tend to O for every i.

Starting with the discrete topology on thelast residuefield, this constructionisused
to obtain awell-defined topology on an n-dimensional local field of characteristic
p.

(b) Let K,, beof mixed characteristic. Chooseasystem of local parameters ¢4, ..., t,
=7m of K. Thechoiceof ¢4, ..., t,_1 determinesa canonical lifting

h=h, . ¢ 4 Kpo1— Ok

7"1.71.

(see below). Let (U;);cz be a system of neighbourhoods of zero in K,,_1,
U; = K,_1 for i > 0. Takethesystemof al Uyy,y = {3 h(a;)n?, a; € U;} as
a base of open neighbourhoods of 0in K. Thistopology iswell defined.

(¢) In the case char (K) = char (K,—-1) = 0 we apply constructions (a) and (b) to
obtain atopology on K which depends on the choice of the coefficient subfield of
K,_1in Og.

The definition of the canonical lifting A, .. ¢ , israther complicated. Infact, itis
worthwhile to defineit for any (n — 1)-tuple (¢4, ..., t,_1) suchthat v;(¢;) > 0 and
v;(t;) =0 for i < j < n. Weshall give an outline of this construction, and the details
can befoundin[MZ1, §1].

Let F = Ko((t1))---((tn—1)) C K,,_1. By aliftingwemeanamap h: F — Ok
such that the residue of h(a) coincideswith a forany a € F.

Step 1. Anauxiliary lifting Hy,,.. . _, isuniquely determined by the condition

p—1
H _Zl in—-1_D
t1,. 0t 1 Z : : tl : 'ﬂ l all, [

Z1_0 tn— 1_0

_Z Z AU S (2 PR R L3

Ipn— 1_0
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10 |. Zhukov

Step 2. Let ko bethefraction field of W (Kp). Then K’ = ko{{T1}} ... {Tn-1}}
is an n-dimensional local field with the residue field F'. Comparing the lifting H =
Hrp, ..., _, withthelifting i defined by

(D 6™t T ) = > (6T T

I'EZ"_J' I‘EZ"_]'

we introduce the maps \;: F' — F' by the formula
h(a) = H(a) + pH(M1(a) + p*H2@)) + ...
Step 3. Introduce h¢,,... ¢ ,: F — Ok by theformula
Moyt 1(@) = Hey o 1 (@) ¥ pHyy o (@) 97 Hey, o, Qo(@) + -
Remarks. 1. Observethat for astandard field K =k {{T1}} ... {T.-1}} , we have
om0 D O Ty gt e S IGITY T

where T} istheresidueof 7} in kx, j=1,...,n—1.

2. Theideaof the above constructionistofind afield ko{{t1}} ... {{t,_1}} isomor-
phicto K’ inside K without apriori giventopologieson K and K’. More precisely,
let t1, ...,t,—1 beasabove. For a =Y > p'h(a;) € K', let

oo
ftL...,tn,l(a) = szhtl ..... tn,l(az‘)

Then ft17...,tn,
that

.. K’ — K isan embedding of n-dimensional complete fields such

ftl,“qtn,l(irj):tj? .7 :17 7n_1

(see[MZ1, Prop. 1.1]).

3. In the case of a standard mixed characteristic field the following alternative
construction of the same topology is very useful.

Let K = E{{X}}, where E isan (n — 1)-dimensiona local field; assume that the
topology of E is aready defined. Let {V;};cz be a sequence of neighbourhoods of
zeroin E such that
(i) thereis c € Z suchthat Pr(c) C V; foral i € Z;

(ii) for every | € Z we have Pg(l) C V; for al sufficiently large i.

Put

Vivy = {D_biX’ b € Vi}.
Then al the sets V¢, form abase of neighbourhoodsof Oin K. (Thisisan easy but
useful exercisein the 2-dimensional case; in general, see Lemma 1.6 in [MZ1]).

4. The formal construction of hy, .. ; , worksalso in case char(K) = p, and
one need not consider this case separately. However, if one is interested in equal

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Part I. Section 1. Higher dimensional local fields 11

characteristic case only, all the treatment can be considerably simplified. (In fact, in

thiscase hy,,...;, , isjustthe obviousembedding of F' C kg into Ox = kx|[[t,]].)

1.3.2. Properties.

(1) K isatopological group which is complete and separated.

(2) If n > 1, then every base of neighbourhoods of O is uncountable. In particular,
there are maps which are sequentially continuous but not continuous.

(3) If n > 1, multiplication in K isnot continuous. Infact, UU = K for every open
subgroup U, since U D P(c) for some ¢ and U ¢ P(s) for any s. However,
multiplication is sequentialy continuous:

ai—a, 0FBi—B70= a8t —ap "t

(49 Themap K — K, «aw ca for ¢ #0 isahomeomorphism.

(5) Forafiniteextension /K thetopology of L = thetopology of finite dimensional
vector spacesover K (i.e., the product topology on KK1). Using this property
one can redefine the topology first for “ standard” fields

E{TL - T} (Tne2)) - (T0))

using the canonical lifting h, and then for arbitrary fields as the topology of finite
dimensional vector spaces.

(6) For afinite extension L/K the topology of K = the topology induced from L.
Therefore, one can use the Classification Theorem and define the topology on K
as induced by that on L, where L is taken to be a standard n-dimensional local
field.

Remark. Inpractical work with higher local fields, both (5) and (6) enables oneto use
the original definition of topology only in the simple case of a standard field.

1.3.3. About proofs. Theoutline of the proof of assertionsin 1.3.1-1.3.2isasfollows.
(Here we concentrate on the most complicated case char (K) = 0, char (K,,_1) = p;
the case of char (K) = p issimilar and easier, for details see [P]).

Sep 1 (see[MZ1, §1]). Fix first n — 1 local parameters (or, more generally, any
elements t1, ...,t,_1 € K suchthat v;(t;) > 0 and v;(t;) = 0 for j > 4).

Temporarily fix m; € K (i € Z), vy(m;) =4, and e; € Px(0), j=1,...,d, sO
that {e_j}j:l is abasis of the F-linear space K, _1. (Here F isasin 1.3.1, and &
denotestheresidueof « in K,,_1.) Let {U; };cz beasequence of neighbourhoods of
zeroin F, U; = F for dl sufficiently large 7. Put

d
U{Ul} = {Z TG * Zejhtl ’’’’’ tn_l(aij) P Qi € Ui,i0 € Z}

i>ig j=1

The collection of all such sets Uy, isdenoted by By .
Sep 2 ([MZ1, Th. 1.1]). In parallel one provesthat
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12 |. Zhukov

—the set By has a cofinal subset which consists of subgroups of K'; thus, By is
a base of neighbourhoods of zero of a certain topological group Ky, ... with the
underlying (additive) group K;

— Ky,,...+, , doesnot depend on the choice of {7;} and {e;};

—property (4) in1.3.2isvalidfor Ky, . ..

Sep 3 ([MZ1, §2]). Some propertiesof K, . ¢+
(1) in 1.3.2, the sequential continuity of multiplication.

Sep 4 ([MZ1, §3]). The independence from the choice of ¢4, ..., t,_1 iSproved.

We give here a short proof of some statementsin Step 3.

Observe that the topology of K. , isessentialy defined as atopology of a
finite-dimensional vector space over astandard field ko{{t1}} ... {{tn—1}}. (It will be
precisely o, if wetake {me; : 0 < i <e—1,1<j < d} asabasisof this vector
space, where e is the absolute ramification index of K, and m;+. = pm; for any i.)
This enables one to reduce the statements to the case of a standard field K.

If K isstandard, theneither K = E((X)) or K = E{{X }}, where E isof smaller
dimension. Looking at expansionsin X, it is easy to construct a limit of any Cauchy
sequencein K and to provethe uniquenessof it. (Inthecase K = E{{ X }} oneshould
use the alternative construction of topology in Remark 3 in 1.3.1.) This proves (1) in
1.3.2.

To provethe sequential continuity of multiplication in the mixed characteristic case,

Since a; — 0, 8; — 0, onecan easily seethat thereis ¢ € Z suchthat v, («;) > ¢
vp(6;) = ¢ for i > 1.

By the above remark, we may assumethat K isstandard,i.e., K = E{{t}}. Fixan
open subgroup U in K; wehave P(d) C U for someinteger d. One can assume that
U ="Vv,, Vi areopensubgroupsin E. Thenthereis mg suchthat Pr(d—c) C Vi,
for m > mg. Let

o = Zagr)tr’ 8 = Zbgl)tl, Er)7b5l) c E.

b1

are established, in particular,

Notice that one can find an o such that ag’“) € Pg(d—c¢) for r < ro and dl 1.
Indeed, if this were not so, one could choose a sequence 1 > r» > ... such that

agj) ¢ Pg(d — c) for some 4;. Itiseasy to construct a neighbourhood of zero Vr/j in
E suchthat Pr(d—c) C V., (”) ¢ V,.,. Now put V;! = E when r isdistinct from
any of r;, and U’ = Viyy. Then a;;, & U/ j=1,2, ... Theset {i,;} isobviously
infinite, which contradicts the condltlon o; — 0.

Similarly, bgl) € Pg(d —c) for | < lp and dl i. Therefore,

mo mo
;i = Z aler . Z st mod U,

r=rg I=lg
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Part I. Section 1. Higher dimensional local fields 13
and the condition (") — 0 for all r and I immediately implies a;3; — O.

1.3.4. Expansion into power series. Let n = 2. Then in characteristic p we have
F, (X)) ((Y)) = {>0:;;X7Y"}, where 6,; are elements of FF, such that for some ig
wehave 6;; = 0 for i < ig andfor every i thereis j(¢) suchthat 0,; = 0 for j < j(7).

Ontheother hand, thedefinition of thetopol ogy impliesthat for every neighbourhood
of zero U thereexists ig and for every i < ig thereexists j(i) suchthat 6X7’Y* c¢ U
whenever either i > ig or ¢ < ig,j > j(1).

So every formal power series has only finitely many terms X7Y outside U.
Therefore, it isin fact a convergent power seriesin the just defined topology.

Definition. Q C Z™ iscalled admissibleif forevery 1 <1 < n andevery ji+1, - .-, Jjn
thereis ¢ = i(ji+1, - - -, Jn) € Z such that

(il7 7Zn) € Qa Z.l'+':|.:.jl+].7 "'7in :jn :>il > i
Theorem. Let ¢4, ...,t, beasystemof local parametersof K. Let s bea section of

theresiduemap Ox — Ok /My suchthat s(0) = 0. Let Q be an admissible subset
of Z™. Then the series

Z biy, i i .t corverges  (bi,, i, € s(Ox/Mg))
(i17...,in)€Q

and every element of K can be uniquely written this way.

Remark. In this statement it is essential that the last residue field is finite. 1n a more
general setting, one should take a “good enough” section. For example, for K =
E{T1}} .. {70} (Thh+2) - - - ((T%)), where k is afinite extension of the fraction
field of W (Ky) and Kq isperfect of prime characteristic, one may takethe Teichmuller
section Ko — K41 = k{T1}} ... {{T:n}} composed with the obvious embedding
Km+1 — K.

Proof. We have

DIURSE: BRCEND SN SRSl

(il,...,in)EQ bES(OK/MK) (il,u',in)EQb

where Q, = {(i1, ...,in) € Q : by,..i, = b}. Inview of the property (4), it
is sufficient to show that the inner sums converge. Equivalently, one has to show
that given a neighbourhood of zero U in K, for dmost al (i1, ...,i,) € Q we
have ti*...ti» € U. This follows easily by induction on n if we observe that

i1 Tp—1 _ gt} by —
tl ‘e tn—l - htl,m,tn_l(tlzl ‘e tn,lzn 1).
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14 I. Zhukov

To prove the second statement, apply induction on n once again. Let » = v, (),
where « isagiven element of K. Then by the induction hypothesis

tra= Y by ()™ ()

(il)“‘7in—l)EQ’l‘

where Q, ¢ Z"1 isacertain admissible set. Hence

a= N bt b
(ilu"'zin—l)eQr
where v, («’) > r. Continuing this way, we obtain the desired expansion into a sum
over the admissibleset Q = (Q, x {r}) U (Q+1 x {r+1})U ...
The uniqueness follows from the continuity of theresiduemap Oy — K,,_1. O

1.4. Topology on K*

1.4.1. 2-dimensional case, char (ki) =p.

Let A be the last residue field Ko if char (K) = p, and let A = W(Kp) if
char (K) = 0. Then A iscanonically embedded into O, and it isin fact the subring
generated by the set R.

For a2-dimensional local field K with a system of local parameters t,, ¢ definea
base of neighbourhoods of 1 asthe set of all 1+ 50, + t{A[[tl,tz]], i1=>1, j>1.
Then every element o« € K* can be expanded as a convergent (with respect to the just
defined topology) product

a = 526310 [ [ (1 + 6:5t5t))
with 6 € R*,0,; € R,a1,a2 € Z. Theset S = {(j,7) : ;; 70} isadmissible.

1.4.2. Inthe general case, following Parshin's approach in characteristic p [P], we
define the topology 7 on K* asfollows.

Definition. If char (K,,_1) = p, then define the topology 7 on
K™ ~ Vi X (t1) X -+ X (t,) x R*

asthe product of theinduced from K topology on the group of principal units Vi and
the discrete topology on (t1) x --- X (t,) x R*.
If char (K) = char (K,,+1) =0, char (K,,) = p, where m < n — 2, thenwe havea
canonical exact sequence
1—1+Px(1,0,...,0) = O — O} ., — 1
——r

n—m—2

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Part I. Section 1. Higher dimensional local fields 15

Definethetopology = on K* ~ O3, x (t1) x --- x (t,) asthe product of the discrete
topology on (t1) x --- x (t,) and the inverse image of the topology 7 on O .

Then theintersection of all neighbourhoodsof 1isequal to 1+ P (1,0, ...,0) which
——

n—m—2

isauniquely divisible group.

Remarks. 1. Observe that K,,+; is a mixed characteristic field and therefore its
topology iswell defined. Thus, the topology 7 iswell defined in all cases.
2. A base of neighbourhoods of 1in Vi isformed by the sets

hUo) + h(Un)t,, + ... + W(U._1)te™ 1 + P (c),

where ¢ > 1, Up isaneighbourhood of 1in Vj,., Uy, ...,U._1 areneighbourhoods
of zeroin kg, h isthe canonical lifting associated with some local parameters, t¢,, is
the last local parameter of K. In particular, in the two-dimensional case 7 coincides
with the topology of 1.4.1.

Properties.

(1) Each Cauchy sequence with respect to the topology 7 convergesin K*.

(2) Multiplication in K* is sequentially continuous.

(3) If n < 2, then the multiplicative group K* is a topological group and it has a
countable base of open subgroups. K* is not atopological group with respect to
7 if m > 3.

Proof. (1) and (2) follow immediately from the corresponding properties of the topol-
ogy defined in subsection 1.3. In the 2-dimensional case (3) is obvious from the
description givenin 1.4.1. Next, let m > 3, andlet U be an arbitrary neighbourhood
of 1. We may assumethat n =m and U C Vx. From the definition of the topology
on Vix weseethat U D 1+ h(Ut, + h(Uz)tfl, where U1, U, are neighbourhoods of
0in kg, t, aprimeelementin K, and i the canonical lifting corresponding to some
choice of local parameters. Therefore,

UU + P(4) D (1+ h(U)t,) (1 + h(Ua)t2) + P(4)
= {1+ h(a)t, + h(b)t2 + h(ab)t> : a € Uy, b € Us} + P(4).
(Indeed, hA(a)h(b) — h(ab) € P(1).) Since U1Us = ki (see property (3) in 1.3.2), it
isclear that UU cannot liein aneighbourhood of 1 in Vi of theform 1+ h(kgk)t, +

h(k)t2 +h(U')t3 + P(4), where U’ # kg isaneighbourhood of 0in kg . Thus, K*
is not atopological group. O

Remarks. 1. From the point of view of class field theory and the existence theorem
one needs a stronger topology on K* than the topology 7 (in order to have more open
subgroups). For example, for n > 3 each open subgroup A in K* with respect to the
topology 7 possessesthe property: 1+t20 C (1+t30x)A.
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Atopology A, whichisthesequentia saturationof 7 isintroducedin subsection6.2;
it has the same set of convergence sequences as = but more open subgroups. For
example [F1], the subgroup in 1 +¢,0x topologically generated by 1+ 6ty ... ¢}
with (i1, ...,4,) Z(0,0, ...,1,2), i, > 1 (i.e, thesequential closure of the subgroup
generated by these elements) is openin A, and does not satisfy the above-mentioned
property.

One can even introduce a topology on K* which has the same set of convergence
sequencesas T and with respect to which K* isatopological group, see[F2].

2. For another approach to define open subgroups of K* see the paper of K. Kato
in this volume.

1.4.3. Expansion into convergent products. To simplify the following statements
we assume here char kx = p. Let B be afixed set of representatives of non-zero
elements of the last residuefield in K.

Lemma. Let {«a; : i € I} beasubset of Vi such that

(%) a; =1+ ) ot
I‘EQi
where b € B, and Q; C Z%} areadmissible setssatisfying the following two conditions:
(i) Q=U,c; Qi isan admissible set;
(i) Njes Qj =0, where J isany infinite subset of 1.

Then [, o; converges.

Proof. Fix a neighbourhood of 1 in Vi ; by definition it is of the form (1 + U) N
Vi, where U is a neighbourhood of O in K. Consider various finite products of
b@t7t .. trm which oceur in (*). It is sufficient to show that almost all such products
belongto U.

Any product under consideration has the form

— 1k ko 4l In
(x%) y=byt bttty
with I, > 0, where B = {b1, ...,bs}. We prove by induction on j the following
claim: for 0 < j < n andfixed l+1, ...,l, the element v amost awaysliesin U

(in case j = n we obtain the original claim). Let
f2={r1+ et it >1lrg, ..., € Q)

It is easy to seethat Q isan admissible set and any element of Q can be written as a
sum of elements of Q in finitely many ways only. This fact and condition (ii) imply
that any particular n-tuple (I, ...,[,) can occur at the right hand side of (xx) only
finitely many times. This provesthe base of induction (j = 0).

For j > 0, we see that [, is bounded from below since (1, ...,l,) € Q and
lj+1, ..., 1, arefixed. Ontheother hand, v € U for sufficiently large [; and arbitrary
k1, ... ks, 11, ..., l;_1 inview of [MZ1, Prop. 1.4] applied to the neighbourhood of
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Part I. Section 1. Higher dimensional local fields 17
zero tjiffl ...t;U in K. Therefore, we haveto consider only afinite range of values
c < l; < . Forany [; inthisrange the induction hypothesisis applicable. O

Theorem. For any r € Z} andany b € B fix an element

— 2 : ,by81 n
App = b; tl . th )
SEQr,b

such that b%* = b, and b5? = 0 for s < r. Suppose that the admissible sets
{Qp:reQ,,be B}

satisfy conditions (i) and (ii) of the Lemma for any given admissible set Q...
1. Every element a € K can be uniquely expanded into a convergent series

a = E ar,bm

I‘EQa

where b, € B, Q, C Z,, isan admissible set.
2. Every element « € K* can be uniquely expanded into a convergent product:

a= tzn R t;lbo H (1 + ar,br)v
rEQa

where by € B, b, € B, Q, C Z; isan admissible set.

Proof. Theadditive part of thetheoremis[MZ2, Theorem 1]. The proof of it isparallel
to that of Theorem 1.3.4.

To provethemultiplicative part, weapply inductionon n. Thisreducesthe statement
tothecase a € 1+ P(1). Hereone can construct an expansion and proveits uniqueness
applying the additive part of the theoremto theresidue of ¢ ~(“~D(q—1) in kx. The
convergence of all series which appear in this process follows from the above Lemma.
For details, see[MZ2, Theorem 2]. 0

Remarks. 1. Conditions (i) and (ii) in the Lemma are essential. Indeed, the infinite

products [](1+¢ +¢;"tx) and [[(1+¢} +¢2) do not converge. This means that the
=1 =1

statements of Theorems 2.1 and 2.2 in [MZ1] have to be corrected and conditions (i)

and (ii) for elements ¢, ¢ (r € Q.) should be added.

2. If the last residue field is not finite, the statements are still true if the system
of representatives B is not too pathological. For example, the system of Teichmuller
representatives is aways suitable. The above proof works with the only ammendment:
instead of Prop. 1.4 of [MZ1] we apply the definition of topology directly.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



18 |. Zhukov

Corallary. If char (K,_1) = p, then every element o« € K* can be expanded into a
convergent product:

Gexx)  a=te AP0 [[A+0n Lt ), 0ERT, 0y, ER

i1,

with {(i1, ...,4,) : 0;,....;, 70} beinganadmissibleset. Any series(x * * ) converges.

D] yeeny
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2. p-primary part of the Milnor K -groups and
Galois cohomologies of fields of characteristic p

Oleg Izhboldin

2.0. Introduction

Let I beafield and F° be the separable closure of F. Let F® be the maximal
abelian extension of F'. Clearly the Galois group G® = Gal(F®/F) is canonically
isomorphic to the quotient of the absolute Galois group G = Gal(F%*/F) modulo the
closure of its commutant. By Pontryagin duality, a description of G is equivalent to
a description of

Hom gont (G, Z/m) = Homcont (G, Z/m) = HY(F, Z/m).

where m runsover all positive integers. Clearly, it sufficesto consider the case where
m is apower of aprime, say m = p’. The main cohomological tool to compute the
group H(F,Z/m) isapairing

(, Vo HYF, Z/m) @ Ko (F)/m — HEY(F)

where the right hand side is a certain conomological group discussed below.
Here K, (F) for afield F' isthe nth Milnor K-group K, (F) = KM (F) defined
as
(F)o" )T

where J isthe subgroup generated by the elements of theform ¢ ® ... ® a,, suchthat
a; +a; =1 forsome ¢ # j. Wedenote by {as,...,a,} theclassof a1 ® ... ® a,,.
Namely, K, (F) isthe abelian group defined by the following
generators: symbols {ay, ..., a, } with a1,...,a, € F*
and relations:

{a1,...,a;a}, ...an} ={a1,...,a;,...an} +{a1, ..., a,..an}

{a1,...,an,} =0 ifa; +a; = 1for somei: and j withi 7 j.
We write the group law additively.
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20 O. Izhboldin

Consider the following example (definitions of the groupswill be given later).

Example. Let F' be afield and let p be a prime integer. Assume that there is an
integer n with the following properties:
(i) thegroup Hg*l(F) isisomorphicto Z/p,
(ii) the pairing
(, )t HA(F.Z/p) © Ku(F)/p — Hy™(F) ~ Z/p

is non-degenerate in a certain sense.
Then the Z/p-linear space H(F,Z/p) is obviously dual to the Z/p-linear space
K,(F)/p. On the other hand, H(F,Z/p) is dual to the Z/p-space G®/(G¥)».
Therefore there is an isomorphism

Wpp Kn(F)/p =~ G®/(GP)P.

It turnsout that this example can be applied to computations of thegroup G2 /(G®)?
for multidimensional local fields. Moreover, it is possible to show that the homomor-
phism W, can be naturally extended to a homomorphism Wr: K, (F) — G® (the
so called reciprocity map). Since G isaprofinite group, it follows that the homomor-
phism Wp: K, (F) — G factors through the homomorphism K,,(F)/DK,(F) —
G® wherethe group DK, (F) consists of all divisible elements:

DK, (F) = Np>1mIG,(F).
This observation makes natural the following notation:

Definition (cf. section 6 of Part ). For afield F' andinteger n > 0 set
K, (F) = K,(F)/DK(F),
where DK, (F) := (1,51 MK (F).

The group K (F) for ahigher local field F' endowed with a certain topology (cf.
section 6 of this part of the volume) is called a topological Milnor K -group K'"°P(F)
of F.

The example shows that computing the group G is closely related to computing
the groups K, (F), K!(F), and H**'(F). The main purpose of this section is to
explain some basic properties of these groups and discuss several classical conjectures.
Among the problems, we point out the following:

e discuss p-torsion and cotorsion of the groups K,,(F) and K (F),
e study an analogue of Satz 90 for the groups K,,(F) and K:(F),
e computethegroup H:*(F) intwo “classical” caseswhere F iseither the rational

function field in one variable F' = k(t) or the formal power series F' = k((t)).

We shall consider in detail the case (so called “non-classical case”) of afield F' of
characteristic p and m = p.
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2.1. Definition of H**1(F) and pairing ( , )m

To define the group H;*(F) we consider three cases depending on the characteristic
of thefield F'.

Case 1 (Classical). Either char (F') =0 or char (F) = p isprimeto m.
In this case we set
HYY(F) = HYNYE, p5).
The Kummer theory gives rise to the well known natural isomorphism F*/F*™ —

HY(F, iu,,). Denote theimage of an element a € F* under this isomorphism by ().
The cup product gives the homomorphism

F*®®F*_>Hn(F7:U’%n7 al®"'®an_>(a17"'7an)
—_————
where (a1, -..,a,) = (a)U ---U(ay,). Itiswell knownthat theelement (a1, ..., a,)

iszeroif a; +a; =1 for some i 7 j. From the definition of the Milnor K -group we
get the homomorphism

Nm: KM(F)/m — H™(F, "), {at, ...,an} — (a1, ..., am).

Now, we define the pairing ( , ),. asthefollowing composite

HYF,Z/m) @ Kp(F)/m 220 gYF,2,/m) © H"(F, y&") 2 H2YE, 580,

m

Case2. char(F)=p#0 and m isapower of p.
To simplify the exposition we start with the case m = p. Set

H*Y(F) = coker (Qf: 2 Q /dQp )
where
d(adba A -+ Adbp) =da Adby A -+ A db,
dbs dby, , dby dby, 1
_ = ) = — _ = 4+ dO"
p(abl/\ Abn) (a a)bl/\ /\bn dQp

(p = C1—1 where C ! is the inverse Cartier operator defined in subsection 4.2).
Thepairing (, ), isdefined asfollows:
()i F/o(F) x Ko(F)/p — Hy™(F),

(@ b1, - by o a2 p g G
b1 by,

where F/o(F) isidentified with H(F,Z/p) via Artin-Schreier theory.
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; n+l i ; n+l
Todefinethegroup H () foranarbitrary 7 > 1 wenotethat thegroup H**(F)

is the quotient group of Q7. In particular, generators of the group H;”(F) can be
written in the form adb; A --- A db,,. Clearly, the natura homomorphism

db db,,
FRF'® - @ F — H"Y(F), a®bl®~-®anab—1A~-/\b—
ﬁf_/ 1 n

n

is surjective. Therefore the group Hg*l(F) is naturally identified with the quotient
group F@ F*® ---@ F*/J. Itisnot difficult to show that the subgroup J isgenerated
by the following elements:
(@’ —a)@b1® -+ ® by,
a®Ra®@by® - R by,
a®b® ---®by,, where b; = b; for some i 7 j.
Thisdescription of the group Hg”(F) can be easily generalized to define H;;Ll(F)

for an arbitrary i > 1. Namely, we define the group H gfl(F) as the quotient group

Wi(F)QF*® ---QF*/J
where W;(F) is the group of Witt vectors of length < and J is the subgroup of
Wi(F)® F* ® --- ® F* generated by the following elements:
Fw) —w) @b & -+ R by,
(@,0, ....0)®a®@by® -+ R by,
Wb ® -+ ® by, where b; = b; forsome i 7 j.
Thepairing ( , ),: isdefined asfollows:

()t WilB)/p(Wi(F) x Kn(F)/p" — HpH(F),

('Z,U,{b]_, ,bn})'—>’UJ®b1® ®bn
where p = F —id: W;(F) — W;(F) and the group W;(F)/o(W;(F)) is identified
with HY(F,Z/p") viaWitt theory. This completes definitions in Case 2.

Case3. char(F)=p#0 and m =m'p’ where m’ > 1 isaninteger primeto p and
12> 1.

The groups H,"7}(F) and H]:"(F) are already defined (see Cases 1 and 2). We

m/’

define the group H:*(F) by the following formula:
HPY(F) = HWNF) @ HPHF)

m/’

Since HY(F,Z/m) ~ HY(F,Z/m') ® HYF,Z/p") and K, (F)/m ~ K,(F)/m’ ®
K,.(F)/p*, we can define the pairing ( , ), asthe direct sum of the pairings (, ),
and (, ),:. This completes the definition of the group H™Y(F) and of the pairing

¢ -
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Remark 1. Inthecase n = 1 or n = 2 the group H. (F) can be determined as
follows:

HY(F)~ HYF,Z/m) and  H2(F)~,,Br(F).

Remark 2. Thegroup H”*}(F) isoften denoted by H"*1(F,Z/m (n)).

2.2. Thegroup H"Y(F)

In the previous subsection we defined the group H™*1(F) and the pairing (, ), for
an arbitrary m. Now, let m and m’ be positive integers such that m’ isdivisible by
m. Inthis case there exists a canonical homomorphism

i HEPYEF) — HEY(F).
To define the homomorphism i,, ..,/ it sufficesto consider the following two cases:

Casel. Either char(F) =0 or char(F) =p isprimeto m and m’.
This case corresponds to Case 1 in the definition of the group H™*(F) (see sub-
section 2.1). We identify the homomorphism i,,, ,,,» with the homomorphism

H"HE, p") — HHE, g
induced by the natural embedding 1,,, C fty-

Case2. m and m' arepowersof p = char (F).

We can assume that m = p* and m’ = p' with i < i/. This case corresponds to
Case 2 in the definition of the group HZ;*Y(F). Wedefine 4., ,,,» asthe homomorphism
induced by

Wi(F)QF*"® ...F* > Wy(F)Q F*® ...F*,
(al7“‘?ai)®bl® "'®bn'_>(07"'703a13"'7ai)®b1® ®bn

The maps i, ,,» (Wwhere m and m' run over all integers such that m’ is divisible
by m ) determine the inductive system of the groups.

Definition. For afield F' and an integer n set
n+l — I n+l
H N (E) =lim,, H(E).

Conjecture 1. The natural homomorphism H"*(F) — H"*1(F) isinjective and the
image of this homomor phism coincideswith the m-torsion part of the group H"*1(F).
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This conjecture follows easily from the Milnor-Bloch—K ato conjecture (see subsec-
tion 4.1) in degree n. In particular, it isproved for n < 2. For fields of characteristic
p we have the following theorem.

Theorem 1. Conjecture 1 istrueif char (F) =p and m = p’.

2.3. Computing thegroup H»*'(F) for somefields

We start with the following well known result.

Theorem 2 (classical). Let ' bea perfect field. Supposethat char (F) = 0 or char (F)
isprimeto m. Then

HPHF (1) ~ Hy™N(F) © Hp(F)
HYYF@) ~HYY e [ HL(FI/FE).

monicirred f(t)

It is known that we cannot omit the conditions on F' and m in the statement of
Theorem 2. To generalize the theorem to the arbitrary case we need the following nota-
tion. For acomplete discrete valuation field & and its maximal unramified extension
Ky definethe groups Hy, (K) and H, (K) asfollows:

H (K)=ker (HL(K) — HA(Kw))  and  HP(K) = H(K)/HE ((K).

Notethat for afield K = F((t)) weobviously have K = FP((t)). We aso note that
under the hypotheses of Theorem 2 we have H"(K) = Hy, ,(K) and H"(K) = 0.
The following theorem is due to Kato.

Theorem 3 (Kato, [K1, Th. 3§0]). Let K be a complete discrete valuation field with
residuefield k. Then

m

In particular, H2'5 (F (1)) ~ HEPH(F) @ H(F).

HM(K) ~ HE (k) @ H (k).

m

This theorem plays a key role in Kato's approach to class field theory of multidi-
mensional local fields (see section 5 of this part).

To generalizethe second isomorphism of Theorem 2 we need the following notation.
Set

Hi'so(F (1)) = ker (HpH(F () — Hy™H(FS(1))) and

HRHE @) = Hy M (F )/ Hygn(F ().
If thefield I satisfies the hypotheses of Theorem 2, we have
H2' (P (1) = Hi NP (1) and HJEPH(E(#)) = 0.
In the general case we have the following statement.
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Theorem 4 (I1zhboldin, [12, Introduction]).

Hi'so(FO) =~ Hy (e [ Hy (FIO/F0),

monicirred f(t)

Hyt (F @) = [T H M F@))
where v runs over all normalized discrete valuations of the field F'(t) and F(t),
denotes the v-completion of F'(t).

2.4. Onthegroup K,(F)

In this subsection we discuss the structure of the torsion and cotorsion in Milnor
K -theory. For simplicity, we consider the case of prime m = p. We start with the
following fundamental theorem concerning the quotient group K,,(F')/p for fields of
characteristic p.

Theorem 5 (Bloch—-K ato—Gabber, [BK, Th. 2.1]). Let F' beafield of characteristic p.
Then the differential symbol

d day,
At Ko(F)/p— Qf. {ar o an} = =2 A =0
1

isinjective and itsimage coincides with the kernel v,,(F") of the homomorphism g (for
the definition see Case 2 of 2.1). In other words, the sequence

dp

0 —— K.(F)/p Qp —— Qp/dQpt

iS exact.

This theorem relates the Milnor K -group modulo p of afield of characteristic p
with a submodule of the differential module whose structure is easier to understand.
The theorem is important for Kato's approach to higher local class field theory. For a
sketch of its proof see subsection A2 in the appendix to this section.

There exists a natural generalization of the above theorem for the quotient groups
K, (F)/p* by using De Rham-Witt complex ([BK, Cor. 2.8]).

Now, we recall well known Tate's conjecture concerning the torsion subgroup of the
Milnor K -groups.

Conjecture 2 (Tate). Let F' beafield and p bea primeinteger.
(i) If char(F)Zp and ¢, € F, then ,K,,(F)={(} - Kp—1(F).
(ii) If char (F) =p then ,K,(F)=0.

This conjecture is trivial in the case where n < 1. In the other cases we have the
following theorem.
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Theorem 6. Let F' beafield and n bea positive integer.

(1) Tate'sConjecture holdsif n < 2 (Sudin, [9)]),
(2) Part (ii) of Tate's Conjecture holds for all n (I1zhboldin, [11]).

The proof of this theorem is closely related to the proof of Satz 90 for K -groups.
Let usrecall two basic conjectures on this subject.

Conjecture 3 (Satz 90 for K,,). If L/F is a cyclic extension of degree p with the
Galoisgroup G = (o) then the sequence

. N
Ko(L) =% K, (L) =25 K, (F)
iS exact.

Thereis an analogue of the above conjecture for the quotient group K,,(F)/p. Fix
the following notation till the end of this section:

Definition. For afield F' set

kn(F) = Kn(F)/p.
Conjecture 4 (Small Satz 90 for k,,). If L/F isa cyclic extension of degree p with
the Galois group G = (o), then the sequence

ZF/L@(].—O’
_

kn(F) & k(D) L k(L) 2ET k()

is exact.
The conjectures 2,3 and 4 are not independent:

Lemma (Suslin). Fix a prime integer p and integer n. Then in the category of all
fields (of a given characteristic) we have

(Small Satz90 for k,,) + (Tate conjecturefor ,K,,) <= (Satz90for K, ).
Moreover, for a given field F' we have
(Small Satz 90 for k,,) + (Tate conjecturefor ,K,,) = (Satz90for K,,)
and

(Satz90for K,,) = (small Satz90for k., ).

Satz 90 conjectures are proved for n < 2 (Merkurev-Suslin, [MSL1]). If p = 2,
n = 3, and char (F) # 2, the conjectures were proved by Merkurev and Suslin [MS]
and Rost. For p = 2 the conjecturesfollow from recent results of Voevodsky. For fields
of characteristic p the conjectures are proved for all n:
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Theorem 7 (Izhboldin, [11]). Let F' beafield of characteristic p and L/F beacyclic
extension of degree p. Then the following sequenceis exact:

0 — Ko (F) = (L) 2% K,(L) 25 K, (F) — H™(F) — H™Y(L)

2.5. Onthegroup K!(F)
In this subsection we discuss the same issues, as in the previous subsection, for the
group K (F).
Definition. Let ' beafield and p beaprimeinteger. We set
DE,(F)= (| mKn(F) and D,K,(F)=()p K.(F).

m>1 >0

We define the group K (F') asthe quotient group:
K,(F) = Ko(F)/DE,(F) = Ko(F)/ (1) mE,(F).

m>1

Thegroup K (F) isof specia interest for higher classfield theory (see sections 6,
7 and 10). We have the following evident isomorphism (see also 2.0):

Kt(F) ~im (Kn(F) —lim,, Kn(F)/m> :

The quotient group K (F)/m is obviously isomorphic to the group K, (F)/m. As
for the torsion subgroup of K (F), itisquite natural to state the same questions as for
the group K, (F).

Question 1. Arethe K*-analogue of Tate's conjecture and Satz 90 Conjecture true for
the group K (F)?

If weknow the (positive) answer to the corresponding question for thegroup K,,(F),
then the previous question is equivalent to the following:

Question 2. Isthegroup DK, (F) divisible?

At first sight this question looks trivial because the group DK,,(F") consists of all
divisible elements of K, (F). However, the following theorem shows that the group
DK, (F) isnot necessarily adivisible group!

Theorem 8 (Izhboldin, [13]). For every n > 2 and prime p thereis a field ' such
that char (F)) Zp, ¢, € F and
(1) Thegroup DK, (F) isnotdivisible, and the group D,K>(F) isnot p-divisible,
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(2) The K'-analogue of Tate's conjectureisfalsefor K!:
PG (F) 7{Gp} - K, 1 (F).
(3) The K*-analogue of Hilbert 90 conjectureis false for group K (F).

Remark 1. Thefield I satisfying the conditions of Theorem 8 can be constructed as
the function field of some infinite dimensional variety over any field of characteristic
zero whose group of roots of unity isfinite.

Quiteadifferent constructionfor irregular primenumbers p and F' = Q(,,) follows
from works of G. Banaszak [B].

Remark 2. If F isafield of characteristic p thenthegroups D, K,,(F) and DK, (F)
are p-divisible. This easily implies that , K/ (F) = 0. Moreover, Satz 90 theorem
holdsfor K inthe case of cyclic p-extensions.

Remark 3. If F isamultidimensional local fieldsthenthegroup K (F) isstudiedin
section 6 of this volume. In particular, Fesenko (see subsections 6.3-6.8 of section 6)
gives positive answers to Questions 1 and 2 for multidimensional local fields.
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A. Appendix to Section 2

Masato Kurihara and Ivan Fesenko

This appendix aims to provide more details on several notions introduced in section 2,
as well as to discuss some basic facts on differentials and to provide a sketch of the
proof of Bloch—Kato—Gabber’s theorem. The work on it was completed after sudden
death of Oleg Izhboldin, the author of section 2.

Al. Definitions and properties of several basic notions
(by M. Kurihara)

Before we proceed to our main topics, we collect here the definitions and properties of
several basic notions.

Al.l1. Differential modules.

Let A and B becommutativeringssuchthat B isan A-algebra. We define Q}B/A
to be the B-module of regular differentials over A. By definition, this B-module
QlB /A is a unique B-module which has the following property. For a B-module
M we denote by Der,(B, M) the set of all A-derivations (an A-homomorphism
p:B — M iscaled an A-derivation if p(zy) = xp(y) + ye(x) and p(x) = 0 for
any x € A). Then, ¢ induces g‘a:QlB/A — M (¢ =@ od where d isthe canonical

derivation d: B — Q}B/A), and ¢ — @ yields anisomorphism
Dera(B, M) = Homp(QF, 4, M).

In other words, Q1 /4 isthe B-module defined by the following
generators. dx forany = € B
and relations:

d(zy) = zdy + ydx
dr=0 forany z € A.
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If A =27, wesimply denote QlB/Z by Q.
When we consider Q% for alocal ring A, thefollowing lemmais very useful.

Lemma. If A isalocal ring, we have a surjective homomor phism
Ay A* — QY

a®bl—>ad|0gb=a%b.

The kernel of this map is generated by elements of the form

k l

D (ai®a) =Y (b @b;)

i=1 i=1
for a;, b; € A* suchthat £ a;, = =!_b;.
Proof. First, we show the surjectivity. It isenough to show that xdy isinthe image of
theabovemap for =, y € A. If y isin A*, zdy istheimageof xy ® y. If y isnot
in A*, y isinthe maximal ideal of A, and 1+ y isin A*. Since xzdy = zd(1+ y),
xdy istheimageof z(1+y) ® (1+v).

Let J bethe subgroup of A ® A* generated by the elements

k !
D (ai®a) =Y (b @b;)
i=1 i=1
for a;, b; € A* suchthat =% a; = =\_,b;. Put M = (A ®z A*)/J. Sinceitisclear
that J isinthe kernel of the map in the lemma, a« ® b — adlogb induces a surjective
homomorphism M — Q% , whose injectivity we have to show.

Weregard A ® A* asan A-modulevia a(z ® y) = ar ® y. We will show that .J
isasub A-moduleof A ® A*. Toseethis, it isenough to show

k l

Z(xai (= ai) — Z(.’L‘bz (=) bz) cJ

i=1 i=1
forany z € A. If x ¢ A*, = canbewrittenas x =y + z for some y, z € A*, sowe
may assumethat = € A*. Then,

K !
Z(mai ® a;) — Z(xbz ® b;)
i=1 i=1

k I
= Z(mai ® xra; — ra; @ x) — Z(mbi ® xb; — xb; ® x)

=1 =1
k l

= Z(xaz ® ra;) — Z((EbL ® xb;) € J.
=1 =1
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Thus, J isan A-module, and M = (A ® A*)/J isalsoan A-module.
In order to show the bijectivity of M — QL we construct the inverse map
QY — M. By definition of the differential module (see the property after the defini-
tion), it is enough to check that the map
p:A— M r—rr (fzeAY)
r— l+x)® Q+x) (fxgAY)
isa Z-derivation. So, it isenoughto check p(zy) = zp(y) + yp(x). Wewill show this

in the case where both  and y are in the maximal ideal of A. The remaining cases
are easier, and are |eft to the reader. By definition, zp(y) + yp(x) isthe class of

r(l+y)@(Q+y)+y(l+2) @ (L+2)

=(l+2)l+y)l+y) - L+y)(1+y)
+(1+y)(l+2)@ (1+2) - (L+7)®(1+1)

=(l+)l+y)@Q+)1+y) —(1+z) @ (1 +2)

—A+y) @0 +y).
But the class of thiselementin M isthesameastheclassof (1+xy)® (1+xy). Thus,
© isaderivation. This completes the proof of the lemma. O

By this lemma, we can regard QY asagroup defined by the following
generators: symbols [a,b} for a € A and b € A*
and relations:

[a1 + a2, b} = [a1,b} + [ap, b}
[a,b1bo} = [a, b1} +[az, ba}
k ! k 1
Z[ai, CLZ‘} = Z[b“ bz} wherea;’'sand b;'s satlsfy Z a; = Z b;.
=1 =1 i=1 i=1
Al.2. n-thdifferential forms.

Let A and B be commutative rings such that B isan A-algebra. For a positive
integer n > 0, wedefine Q7 , by

%/A = /\ QlB/A'
B

Then, d naturally defines an A-homomorphism d: Q% , — Qg‘}h, and we have a
complex
n—1 n n
T QB/A — Qp/q — QB+/];4 — .

which we call the de Rham complex.
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For a commutative ring A, which we regard as a Z-module, we simply write Q"
for Q7 /7. For alocal ring A, by Lemma Al.1, we have Q% = A", (A @ A*)/J),
where J isthe group asin the proof of LemmaA1l.1. Thereforewe obtain

Lemma. If A isalocal ring, we have a surjective homomor phism
A® (A" — QF
db db,,
GaRbL® ... by, > a—T A A
by by
The kernel of this map is generated by elements of the form

k l

D (i®a @b ®..@bi_1) =Y (bi©b @b ... ®by_1)
i=1 =1
and
a®b®..00b, with b; =b; for some i 7 j.

A1.3. Galois cohomology of Z/p"(r) for afield of characteristic p > 0.

Let F beafield of characteristic p > 0. Wedenote by F5 the separable closure
of F' inanalgebraic closureof F.

We consider Galois cohomology groups H4(F, —) := H4(Ga(F*P/F), —). For an
integer » > 0, we define

HUF,Z/p(r)) = H"(GaA(F®/F), Qs og)
where Qs jog is the logarithmic part of Q%.«, Namely the subgroup generated by

dlogai A ... Adloga, foral a; € (F=P)*.
We have an exact sequence (cf. [I, p.579])

0 — Qpsp jog — Qs —— Qpap /A — O
where F isthe map

dby db,
Fla— A ... =
(a b A A b'r) a

Since QY«p isan F-vector space, we have
H"(F,Qlhep) =0
forany n > 0 and r» > 0. Hence, we aso have
H"(F, Qs /dQjs) = 0
for n > 0. Taking the cohomology of the above exact sequence, we abtain
H"™(F, Qjsp jog) = 0

dby db,.
P—= A A .
b1 b,
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for any n > 2. Further, we have an isomorphism

HY(F, Qe jog) = cOker(Qy =5 Q1 /dQ )
and

HO(F, Qo og) = keN(Q —— Qp /A0 ).
Lemma. For afield F' of characteristic p > 0 and n > 0, we have

H™Y(F, Z,/p (n)) = coker(Qp ~—% Q. /dQ )
and
H"(F,Z/p(n)) = ker(Qp —— Q7. /dQY).

Furthermore, H"(F,Z/p (n — 1)) isisomorphic to the group which has the following
generators. symbols [a, by, ...,b,,_1} Where a € F, and bq,...,b,_1 € F*
and relations:

[ar +ap, by, ..., bnfl} =lay,bs, ..., bn,l} +[az, b1, ..., bn,l}

[a, b1,...., blb;, -~-bn—1} = [a, by, ..., b;, ...bn_l} + [a, b1,...., b;, -~-bn—1}
[a,a,bp,....;0,_1} =0

[ap — a,bl,bz, ceeny bn—l} =0

[a,b1,....,0,—1} =0 whereb; = b; for somei 7 j.

Proof. The first half of the lemma follows from the computation of H" (F, Qfsp |0g)
above and the definition of HY(F,Z/p (r)). Using

H™F,Z/p(n — 1)) = coker(Q 1 Z=% Qn-1/dqQn?)
and Lemma A 1.2 we obtain the explicit description of H"(F,Z/p (n — 1)). 0

We sometimes use the notation H}(F') which is defined by
Hp(F)=H"(F,Z/p(n —1)).

Moreover, for any i > 1, we can define Z/p' (r) by using the de Rham-Witt
complexes instead of the de Rham complex. For a positive integer ¢ > 0, following
Ilusie[1], define HY(F, Z/p'(r)) by

HYE,Z/p"(r)) = HT™" (F, WiQfsn jog)

where W; Qe |4 1S the logarithmic part of W; Qe .
Though we do not give here the proof, we have the following explicit description of
H"™(F,Z/p' (n — 1)) using the same method asin the case of i = 1.
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Lemma. For a field F' of characteristic p > O let W;(F") denote the ring of Wtt
vectors of length ¢, andlet F: W;(F) — W,;(F) denote the Frobenius endomorphism.
Forany n >0 and i > 0, H"(F,Z/p" (n — 1)) isisomorphic to the group which has
the following
generators. symbols [a, b1, ...,b,_1} where a € W;(F), and b1,...,b,,_1 € F*
and relations:
a1 +az,b1,..., b1} =[a1,b1,...,b 1} +[az,b1, ..., 01}
[a, b, ...., bjb;», ...bn_l} =Ja,b,...., bj, ...bn_]_} +[a, by, ...., b;», ...bn_l}
[©,...,0,a,0,...,0),a,bs,....b,_1} =0
[F(CL) —a, bl? b27 ceeey bn,l} = 0
[a,b1,....,0,_1} =0 whereb; = b, for somej 7 k.
We sometimes use the notation

H.(F)= H"(F,Z/p' (n — 1)).

A2. Bloch-Kato-Gabber’'stheorem (by I. Fesenko)

For afield k of characteristic p denote
v = (k) = H™(k, Z/p (n)) = ker(p: Qf — Qp /dQ ™),

dby db,, dby dby, ~1
=F -1 (aga—= N —2 p_ - AN —E QR
P (abl/\ /\bn)»—>(a a)bl/\ /\bn dQy;
Clearly, the image of the differential symbol
di: K, (k)/p — QF, {at, ...,an} — —daal A ---/\—daan
1 n

isinside v, (k). We shall sketch the proof of Bloch—-Kato—Gabber’s theorem which
statesthat dj, isanisomorphism between K, (k)/p and v, (k).
A2.1. Surjectivity of thedifferential symbol dy: K,,(k)/p — v, (k).
It seems impossible to suggest a shorter proof than original Kato's proof in [K, §1].
We can argue by induction on n; the case of n =1 isobvious, so assume n > 1.

Definitions—Properties.

(1) Let {b;}ics bea p-baseof k (I isanorderedset). Let S betheset of al strictly
increasing maps
si{1,...,n} — 1.
For two maps s,t:{1,...,n} — I write s < t if s(i) < (i) for al 7 and
s(2) # t(7) for some 1.
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(2) Denote dlog a := a~tda. Put
ws =dlog by A -+ Adlog by.

Then {w; : s € S} isabasisof Q} over k.
(3) Foramap #:1 — {0,1,...,p— 1} suchthat 6(i) =0 for aimost all i set

be = [ [ 7.
Then {byw,} isabasisof Q) over kP.

(4) Denote by Q7 (6) the kP-vector space generated by byws,s € S. Then Q7 (0) N
dQZ‘1 = 0. For an extension [ of k, suchthat £ > [P, denote by Ql”/k the
module of relative differentials. Let {b;};,c; be a p-base of [ over k. Define
Q?/k(e) foramap 6:1 — {0,1, ...,p — 1} similarly to the previous definition.
The cohomology group of the complex

Q.H0) — Q7Y (0) — Q5H0)

iszeroif 6 Z0 andis Ql”/k(O) if 6=0.
Weshall use Cartier’ stheorem(which can be moreor lesseasily proved by induction
on |l : k|): the sequence
0— I"/k* — Qfy, — Q. /dl
is exact, where the second map isdefined as b mod k* — dlog b and the third map is
themap adlog b — (a? — a)dlog b +dl.

Proposition. Let Q}(<s) bethe k-subspaceof Q) generatedbyall w, for s >t € S.
Let k1 =k andlet « beanon-zero element of k. Let I befinite. Suppose that

(@ — a)w,s € QP(<s) +dQr L.
Thenthereare v € Q}(<s) and
x; € kP({b; 1 j <s(i)}) for 1<i<n
such that
aws =v+dlog xqa A--- Adlog x,.

Proof of the surjectivity of the differential symbol. First, suppose that k»~* = k& and
I isfinite. Let S = {s1,...,8,} With sg > --- > s,,,. Let s0:{1,...,n} — I
be a map such that so > s1. Denote by A the subgroup of Q) generated by
dlogxqy A --- ANdlog x,. Then A C v,. By inductionon 0 < 5 < m using the
proposition it is straightforward to show that v,, C A + Q}'(<s;), and hence v,, = A.

To treat the general case put c(k) = coker(k.,,(k) — v,(k)). Since every fieldisthe

direct limit of finitely generated fields and the functor ¢ commutes with direct limits, it
is sufficient to show that ¢(k) = O for afinitely generated field k. In particular, we may
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assumethat k& hasafinite p-base. For afinite extension k' of k thereisacommutative
diagram
kn(K) —— vp(K)

Nk//kl Trk.//kl

kn(k) —— (k).

Hencethecomposite c¢(k) — c(k') M c(k) ismultiplicationby |k’ : k|. Therefore,
if |k : k| isprimeto p then c¢(k) — (k") isinjective.

Now pass from k to afield [ which is the compositum of al [; where ;41 =
L("Y1,_1), lo=k. Then 1 =1*~1, Since l/k isseparable, | hasafinite p-baseand
by the first paragraph of this proof c¢(l) = 0. The degree of every finite subextension in
l/k isprimeto p, and by the second paragraph of this proof we conclude ¢(k) =0, as
required. 0

Proof of Proposition. First we prove the following lemmawhich will help uslater for
fields satisfying k?~1 = k to choose a specific p-baseof k.

Lemma. Let [ bea purely inseparable extension of & of degree p and let kP—1 = k.
Let f:1 — k bea k-linear map. Then thereisa non-zero ¢ € [ suchthat f(c!) =0
forall 1<i<p—1.

Proof of Lemma. The [-spaceof k-linear mapsfrom [ to k& isone-dimensional, hence
f =ag forsome a € [, where g:1 = k(b) — Q}/k/dl Sk, x— xdlog b mod dl for
every ¢ € [. Let a = gdlog b generate the one-dimensional space Qll/k/dl over k.
Thenthereis h € k suchthat gPdlog b — ha € di. Let z € k besuchthat z?~1 = h,
Then ((g/2)? —g/z)dlog b € dl and by Cartier’ stheorem we deducethat thereis w € [
suchthat (g/z)dlog b =dlog w. Hence a = zdlog w and Qll/k =dlUkdlog .

If (1) =adlogb#0,then f(1) = gdlog c with g € k,c € I* andhence f(c!) =0
foral 1<i<p—1. O

Now for s: {1, ...,n} — I asin the statement of the Proposition denote
ko= kP({bi 10 <s(D)}), k1= kP({bi i < s())), ko= kP({bi 10 < s())).

Let |k : k1| =p".

Let a =3 ,ahbg. Assumethat a & kp. Thenlet 0, besuchthat j > s(n) isthe
maximal index for which 6(j) #0 and x4 # 0.

Q7 (8)-projection of (a” — a)w, isequa to —ahbyw, € QP(<s)(0) + dQr~1(H).
Log differentiating, we get

—ab (> 0(i)dlog b;)by A w, € dQR(<s)(0)
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which contradicts —z40(j)bed l0g b; A w, & dQ(<s)(0). Thus, a € k».
Let m(1) < --- < m(r — n) be integers such that the union of m’sand s’sis
equa to [s(1), s(n)] N Z. Apply the Lemmacto the linear map

Frk1— Oy jro /A9 = ko, b bawy A d10g by A+ -+ A d10g byn(r—n).
Then thereisanon-zero ¢ € k1 such that
daws A d10g by A -+ Ad10g by —ny € dQ L for 1<i<p—1.

Hence Q; . (0)-projection of c'aws A d10g by A -+ A d10g byir—py fOr 1 < i <
p — 1 iszero.
If ¢ € ko then Q’l;z/ko(O)—projection of aws A dlog by, A -+ Adlog by,—n) IS
zero. Dueto the definition of kg we get
= (a? — a)ws A d10Q b1y A -+ A d10g byy(r—p) € koz/ko
Then Q) »/ko (0)-projection of 3 iszero, andsois Q) ko /o (0)-projection of
aPws A d1og b1y A -+ - A d10g bpy(r—n),

acontradiction. Thus, ¢ & ko.
From dkg C Zi<s(l) kPdb; we deduce dkq /\ Q"‘1 C Qi (<s). Since ko(c) =

ko(bs()), thereare a; € ko suchthat by = ZZ —o a;c'. Then
adlog bygy A+ Adlog by(ny = a’dlog by - -- Adlog b,y Adlog ¢ mod Qf(<s).
Define s: {1, ...,n — 1} — I by s'(j) =s(j +1). Then
aws = vy +ad'wy Adlog ¢ with vy € QP (<s)
and c'a'wy A dlog e Adlog by A -+ Adl0g byyr—n) € ko Jikye Theset
I'={c} U{b;: s(1) < i< s(n)}
isa p-base of kp/ko. Since c'a’ for 1 < i < p — 1 have zero k(0)-projection with
respect to I’, there are aj € ko, aj € @gzokaby With by = [T 1) icyn bi such
that o’ = ag + af.

The image of aw, A d1og by,,) A -+ A d10g by, (r—rn) With respect to the Artin-
Schreier map belongsto Q; , andsois

(@' —a)dlog e Awg A d10g by A -+ A d10g byyge—n)
which is the image of
a'dlog c Awg A dlog by A -+ A d10g byyr—n)-
Then a'” — ag, as ko(0)-projection of a’” —a’, iszero. So o’ — a’” = aj.
Notethat d(ajwy) A dlog ¢ € dQj . (<s) = dQ} 7,1 (<s) Adlog c.
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Hence d(ajws) € ng/k1 (<s)+dlog cA ko/k Therefore d(ajwy) € ko/k (<s)
and ajwy = o+ 3 with a € Qk/k (<s), B € ker(d Qg/kl — Q7).

Since k(0)-projection of a} is zero, Q' Ik 1 (0)-projection of ajwy iszero. Then
we deduce that 5(0) = >°, c, 1< zhwy, S0 djwy = a+ B(0) + (8 — £(0)). Then
B—3(0) € ker(d: Q;; /,j — Q) S0 —P(0) € dQ}! /,3 Hence (¢ —a'")wy = djwy
belongs to Q}\7% (< ') + dQ}~ 2, By induction on n, there are v/ € Q} (<),

x; € kP{b; : ] < s(@)} such that ¢’'wy = v" +dlog za A --- A dlog x,,. Thus,
aws=vlidlogc/\v’idlogc/\dlong/\‘--/\dlogxn. O

A2.2. Injectivity of the differential symbol.

We can assumethat k is afinitely generated field over IF,,. Then thereisafinitely
generated algebraover IF,, with alocal ring being adiscrete valuation ring O such that
O/M isisomorphic to & and the field of fractions E of O is purely transcendental
over [F,.

Using standard resultson K, (I(t)) and Qﬁt) one can show that theinjectivity of d,
implies the injectivity of d;;). Since d, isinjective, sois dg.

Define k,(0) = ker(k,(FE) — k,(k)). Then k,(O) is generated by symbols and
there is a homomorphism

k’n(O) - kn(k)a {ala ---aan} - {a_].7 "'7%}7
where @ istheresidueof a. Let k,,(O, M) beitskernel.
Define v,(0) = ker(Qf — QF /ngfl), vn (0, M) = ker(v,(0) — v, (k)). There
is ahomomorphism &, (0) — v,(0) such that
{a1, ...,an} — dlog ag A --- Adlog a,.
So thereis a commuitative diagram
0 —— kn(O,M) - kn(o) - kn(k) — 0

A

0 —— (O, M) —— v, (0) —— (k)

Similarly to A2.1 one can show that ¢ is surjective [BK, Prop. 2.4]. Thus, d;, is
injective. 0
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4. Cohomological symbol
for hensdlian discrete valuation fields
of mixed characteristic

Jinya Nakamura

4.1. Cohomological symbol map

Let K beafield. If m isprimetothecharacteristic of K, there existsan isomorphism
hl,K: K*/m - Hl(K7 /~Lm)
supplied by Kummer theory. Taking the cup product we get
(K™ /m)! — HYK, Z/m(q))
and this factors through (by [T])
hg ikt Kq(K)/m — HY(K, Z/m(q)).
Thisis called the cohomological symbol or norm residue homomorphism.

Milnor-Bloch—-Kato Conjecture. For every field K and every positive integer m
which is primeto the characteristic of K the homomorphism %, x isanisomorphism.

This conjecture is shown to be truein the following cases:
(i) K isanalgebraic number field or afunction field of one variable over afinitefield
and g = 2, by Tate[T].
(ii) Arbitrary K and ¢ = 2, by Merkur’ev and Suslin [MS1].
(iii) ¢ = 3 and m is a power of 2, by Rost [R], independently by Merkur’'ev and
Sudlin[MS2].
(iv) K isahenselian discrete valuation field of mixed characteristic (0,p) and m isa
power of p, by Bloch and Kato [BK].
(v) (K, q)arbitrary and m isapower of 2, by Voevodsky [V].
For higher dimensional local fields theory Bloch—-Kato's theorem is very important
and the aim of thistext isto review its proof.
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Theorem (Bloch—Kato). Let K be a henselian discrete valuation fields of mixed char-
acteristic (0, p) (i.e, the characteristic of K iszero and that of the residuefield of K
is p > 0), then

hg it Ko(K)/p" — HYK,Z/p"(q))
isan isomorphismfor all n.

Till the end of this section let K be as above, k = ki theresiduefield of K.

4.2. Filtration on Ky(K)

Fix aprime element 7 of K.

Definition.

K (K), m=0
({1+Mp} - Ko1(K)) m > 0.
Put gr, K (K) = Up, Ky(K)/Up+1K4(K).

U K () = {

Then we get an isomorphism by [FV, Ch. IX sect. 2]
Kq(k) ® Ky-a(k) 2 groK (k)
po ({21, -+ wg} {yns s yg-1}) = {71, - Tt + {01, - 01,7}
where z isalifting of x. Thismap po dependson the choice of aprime element 7 of
K.
For m > 1 thereisasurjection
QI e Q172 L gr, K (K)
defined by

d dy,_
<mﬂ/\---/\ Yg—1

Y1 Yg—-1

,0> SRS Tt

d dy,— -~ —
<0,mﬂ/\ RN M) — {1+ 72, Y1, ., Yg2, T}
U1 Yq—2

Definition.
kqo(K) = Ky(K)/p, he(K) = HY(K, Z/p(q)),
Unka(K) = imUnn Ko(K)) inky(K),  Upnh9(K) = hy i (Un kg(K)),
I h(K) = Unh1(K)/Uppar h1(K).
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-1
Proposition. Denote v, (k) = ker(Q? =S Q7 /dQ¢~1) where c1 is the inverse
Cartier operator:

d d d d
xﬂ/\...Aﬁ,_)mPﬂ/\.../\ﬂ‘

Y1 Yq Y1 Yq
Put ¢’ = pe/(p — 1), where e = vk (p).

(i) There exist isomorphisms v,(k) — kq(k) for any ¢; and the composite map
denoted by pg

po: Vg(k) ® vg_1(k) = kq(k) @ kq_1(k) = drok,(K)

is also an isomor phism.
(i) If 1< m < e and ptm, then p,,, inducesa surjection

P2 QI g kg (K).
(iii) If 1< m < €' and p | m, then p,, factorsthrough
P QU287 0 Q172 ) 7872 gr, ko (K)

and p,, isasurjection. Herewe denote Z{ = Z1Qf = ker(d: Q} — QZ”).
(iv) If m=¢’ € Z, then p.. factorsthrough
P QI A+a0) 2t 6 QI /(1 +aC) 282 — greky(K)

and p., isasurjection.
Here a istheresidueclassof pr—¢, and C isthe Cartier operator

d d d d
mpﬂ/\.../\ﬂ,_)xﬂ/\.../\ﬁ’

U1 Yq U1 Yq
(v) If m > ¢, then Ormkq(K) =0.

Qi — 0.

Proof. (i) follows from Bloch—-Gabber—Kato's theorem (subsection 2.4). The other
claims follow from calculations of symbols. 0

Definition. Denote the left hand side in the definition of p,, by G%,. We denote

hq, K

the composite map G, L, O kq(K) —— or,hi(K) by p,,; the latter is also
surjective.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



46 J. Nakamura
4.3

In this and next section we outline the proof of Bloch—Kato's theorem.

4.3.1. Norm argument.

We may assume ¢, € K to prove Bloch—-Kato's theorem.
Indeed, |K () : K| isadivisor of p — 1 and thereforeis primeto p. There exists
a norm homomorphism Ny, x: Kq(L) — K4 (K) (see [BT, Sect. 5]) such that the
following diagram is commutative:

Nr/x

K(K)/p"  ——  Ky(L)/p" Ky(K)/p"

lhq,]{ lhq,L lhq,K

HYK,Z/p"(q)) ——— HYL,Z/p"(q)) —— HUEK,Z/p"(q))

where the left horizontal arrow of the top row is the natural map, and res (resp. cor)
is the restriction (resp. the corestriction). The top row and the bottom row are both
multiplication by |L : K|, thus they are isomorphisms. Hence the bijectivity of h, x
follows from the bijectivity of h, ; and we may assume ¢, € K.

4.3.2. Tate'sargument.
To prove Bloch—Kato’s theorem we may assumethat n = 1.
Indeed, consider the cohomological long exact sequence
< — HYK, Z/p(q) > HUK, Z/p" q)) B> HUK, Z/p"(@)) — ...
which comes from the Bockstein sequence

mod p

0—2Z/p" 5 Z/p" — Z/p — 0.

We may assume ¢, € K, so H*"Y(K,Z/p(q)) ~ he—1(K) and the following diagram
is commutative (cf. [T, §2]):

{*7Cp} mod p

kgo1(K) —25 K (K)/p"~t  —L—  K(K)/p" kg (K)
J/hqfl,K hq,Kl hq,Kl hq,Kl
ha-Y(K) — HU(K, Z/pYq) —2— HIK, Z/p"(q) 22 hi(K).

Thetop row is exact except at K ,(K)/p"~! and the bottom row is exact. By induction
on n, we have only to show the bijectivity of h, x: k,(K) — h9(K) forall ¢ inorder
to prove Bloch—Kato's theorem.
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4.4. Bloch—-Kato's Theorem

We review the proof of Bloch—Kato's theorem in the following four steps.
[ P Ormkq(KC) — gr,, h4(K) isinjectivefor 1 < m < €’.

[l Ppo:groky(K) — groh?(K) isinjective.

I h9(K) = Ughd(K) if k isseparably closed.

IV hi(K) = Uphi(K) for genera k.

44.1. Step .

Injectivity of p,, ispreserved by taking inductive limit of k. Thuswe may assume
k is finitely generated over I, of transcendence degree » < oo. We also assume
¢p € K. Thenwe get

Oreh™3(K) = U h"™(K) 7 0.

For instance, if » = 0, then K isalocal field and U, h?(K) = ,Br(K) = Z/p. If
r > 1, one can use a cohomological residue to reduce to the case of » = 0. For more
details see [K 1, Sect. 1.4] and [K2, Sect. 3].

For 1 < m < €', consider the following diagram:

Gy, x GLZt D g () @ g2 (E)
wml cup productl
Qp/dQi—t - qrr2 P, gro h2(K)

where ,,, is, if ptm, induced by the wedge product QZ~* x Q774 —, Q7 /dQr 1,
andif p | m,
ot ar? oyt o
Zq—l Zq—2 X Zr+1—q 7r=4q
1 1 1 1
(21,22, Y1, y2) ¥ 1 A dy2 + 22 A dys,

m 71
£ Q1 4oy

and thefirst horizontal arrow of the bottom row is the projection
Q1/dQI™t — QF /(1+aC)Z} = GIF?
since Q7*1 =0 and dQ? ' € (1+aC)Z]. Thediagram is commutative, Qf /dQr~*

is a one-dimensional kP-vector space and ¢,, is a perfect pairing, the arrows in the
bottom row are both surjectiveand gr.. h"*2(K) # 0, thus we get the injectivity of p,,.
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44.2. Step 1.

Let K’ be a henselian discrete valuation field such that K ¢ K’, e(K'|K) =1
and k- = k(t) where ¢ isanindeterminate. Consider

grohq(K) “25 grihT ().
Theright hand sideis equal to Qz(t) by (1). Let ¢ bethe composite

Ul+rt

va(K) & vg_1(K) 2% groh()) 2% grin*i(K') = QY.
Then

¢<%/\ .../\%’0> :t%/\ .../\%7
1 Tq T Tq

d dzx,— d dzx,—
@Z)(O,ﬂ/\-"/\ ql):idt/\ﬂ/\.../\ ql.
1 Tg—1 1 Tg—1

Since t istranscendental over k, v isan injection and hence po isalso aninjection.

4.4.3. Step 1.
Denote sh?(K) = Upgh4(K) (theletter s means the symbolic part) and put

C(K) = h9(K)/sh(K).

Assume g > 2. The purpose of thisstep isto show C'(K) =0. Let K beahenselian
discrete valuation field with algebraically closed residue field % suchthat K C K,
k C k- and the valuation of K is the induced valuation from K. By Lang[L], K
isa Cy-field in the terminology of [S]. This means that the cohomological dimension
of K isone, hence C(K) = 0. If therestriction C(K) — C(K) isinjective then we
get C(K) = 0. To prove this, we only have to show the injectivity of the restriction
C(K) — C(L) forany L = K(b'/?) suchthat b € O% and b ¢ k..
We need the following lemmas.

Lemma 1. Let K and L be as above. Let G = Gal(L/K) and let sh?(L)¢ (resp.
shi(L)g ) be G-invariants (resp. G-coinvariants). Then
() shi(K) = shi(L)¢ =% shi(K) isexact.

cor

(i) shi(K) <= shi(L)e =5 shi(K) isexact.

Proof. A nontrivial calculation with symbols, for more details see ([BK, Prop. 5.4].

Lemma2. Let K and L be asabove. The following conditions are equivalent:
() hTYEK) = b YL)g <5 ht LK) is exact.
(i) he=Y(K) L ho(K) " pa(L) isexact.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Part . Section 4. Cohomological symbol for henselian discrete valuation field 49

Proof. Thisis a property of the cup product of Galois cohomologies for L/K. For
more details see [BK, Lemma 3.2]. 0

By induction on ¢ we assume sh?~1(K) = h?1(K). Consider the following
diagram with exact rows:

ht~YK)
ub

0 —— shi(K) —— h{(K) —— C(K) —— 0

r&sl res resl

0 —— shi(L)¢ —— hI(L)* —— C)°

cor l cor

0 —— shi(K) —— hi(K).

By Lemma 1 (i) the left column is exact. Furthermore, due to the exactness of the
sequence of Lemma 1 (ii) and the inductional assumption we have an exact sequence

RIYEK) L& Y (L) — hIY(K).
So by Lemma 2
h=Y (k) L hy(K) " pa(r)

is exact. Thus, the upper half of the middle column is exact. Note that the lower half of
the middle column s at least a complex because the composite map cor o res isequal to
multiplication by |L : K| = p. Chasing the diagram, one can deduce that all elements
of the kernel of C(K) — C(L)¢ comefrom h?~1(K) of the top group of the middle
column. Now h9~1(K) = sh?~1(K), and theimage of

sha= 1K) 2% h(K)

is also included in the symbolic part sh9(K) in h9(K). Hence C(K) — C(L)¢ isan
injection. The claimis proved.

4.44. Step 1V.
We use the Hochschild—Serre spectral sequence
H"(Gy, h(Ky)) = h7"(K).
For any ¢,
Qlep >~ Qf @ kP, Z1Q% e ~ Z1Q% @pp (K5P)P.
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Thus, gr,,,h9(Ky) =~ gr,h1(K) Qe (K5P)? for 1 < m < ¢’. Thisisadirect sum of
copiesof k5P, hence we have

HYGy, 1h"(Kyr)) ~ Urh4(K) /U hY(K),
H" (G, Urh?(Ky)) =0

for r > 1 because H" (G, k=) = 0 for » > 1. Furthermore, taking cohomologies of
the following two exact sequences

0 — U1h?(Ky) — h¥(EKy) — Vie & VZ;pl — 0,

l* —1
0 — Vs & Z1 Qs —— Qjser — 0,

we have
HOGy,, h'(Ky)) 2 sh(K) /U hY(K) ~ kUK)/Ua k9(K),
HY Gy, hi(Ky)) ~ HYGr, Vs & visg)
~ (Qf/(1-C)Z1Q)) & (QF /(1 — 02108,
H"(Gy, h"(Ku)) =0

for r > 2, sincethe cohomological p-dimension of GG, islessthan or equal to one(cf.
[S, 11-2.2]). By the above spectral sequence, we have the following exact sequence

0— (@ 1/1-0z{ He @ ?/1-0z %) — h(K)
— ky(K)/Ueky(K) — O.
Multiplication by the residue class of (1 — ¢,)” /7r€' gives an isomorphism
@ /a-ozi e @ /a- 0z
— QY /(L+aQ)Z{ ) @ (QF /(L +aQ)Z{?) = grerky(K),
hence we get h9(K) ~ k,(K).
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5. Kato's higher local class field theory

Masato Kurihara

5.0. Introduction

We first recall the classical local class field theory. Let K be afinite extension of Q,
or F,((X)). The main theorem of local class field theory consists of the isomorphism
theorem and existence theorem. In this section we consider the isomorphism theorem.
An outline of one of the proofsis asfollows. First, for the Brauer group Br(K), an
isomorphism
inv:Br(K) = Q/Z
is established; it mainly follows from an isomorphism
HY(F,Q/Z) = Q/Z

where F' istheresiduefield of K.
Secondly, we denote by X = Homeont(G'ic, Q/Z) the group of continuous homo-
morphisms from G = Gal(K /K) to Q/Z. We consider apairing

K*x Xg — Q/Z

(a, x) — inv(x, a)

where (x,a) is the cyclic algebra associated with x and a. This pairing induces a
homomorphism

Wy K* — Ga(K®/K) = Hom(X k., Q/Z)

which is called the reciprocity map.
Thirdly, for afinite abelian extension L/ K, we have adiagram

L Yt Ga(L®/L)

7| l

K* Y%, Gd(K®/K)
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54 M. Kurihara

which is commutative by the definition of the reciprocity maps. Here, N isthe norm
map and the right vertical map is the canonical map. This induces a homomorphism
Wy k: K*/NL* — Ga(L/K).

The isomorphism theorem tells us that the above map is bijective.
To show the bijectivity of W, we can reduce to the case where |L : K| isa
prime ¢. Inthiscase, the bijectivity followsimmediately from afamous exact sequence

% g 25 Br(k) 'S Br(L)

for a cyclic extension L/K (where Uy is the cup product with y, and res is the
restriction map).

Inthissectionwe sketch aproof of theisomorphism theoremfor ahigher dimensional
local field as an analogue of the above argument. For the existence theorem see the
paper by Kato in this volume and subsection 10.5.

5.1. Definition of H9(k)

Inthissubsection, for any field £ and ¢ > 0, werecall the definition of the cohomol ogy
group H4(k) ([K2], seeasosubsections2.1and 2.2 and A lintheappendix to section 2).
If char (k) =0, wedefine HY(k) asaGalois cohomology group

H(k) = H(k,Q/Z(q — 1))

where (¢ — 1) isthe (¢ — 1) st Tate twist.
If char (k) =p > 0, then following Illusie [I] we define

H(k, Z/p"(q — 1)) = H (b, W Qb 1og)-
We can explicitly describe H%(k,Z/p"(q — 1)) asthe group isomorphic to
Wa(k) @ (k)2 /1

where W, (k) isthe ring of Witt vectors of length », and J isthe subgroup generated
by elements of the form
w®by® -+ ®by_1 suchthat b; =b; for some i # j, and
o, ...,0,a,0, ...,O)®a®b1®---®bq_2, and
(F-D(w)®by®---®by—1 (F isthe Frobenius map on Witt vectors).
We define HY(k,Q,/Z,(q — 1)) = H_r}an(k:,Z/p”(q — 1)), and define

H(k) = HI(k, Qe/Z4 (q — 1))
14

where ¢ ranges over all prime numbers. (For ¢ # p, the right hand side is the usual
Galois cohomology of the (¢ — 1) st Tate twist of Q,/Zy.)
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Thenfor any k& we have

HY(k) = X; (X isasin 5.0, the group of characters),
H?(k) =Br(k)  (Brauer group).

We explainthe second equality inthe caseof char (k) = p > 0. Therelation between
the Galois cohomology group and the Brauer group iswell known, so we consider only
the p-part. By our definition,

H2(k, 7,/p™ (1)) = H(k, Wy Qs jog)-

From the bijectivity of the differential symbol (Bloch—Gabber—Kato’s theorem in sub-
section A2 in the appendix to section 2), we have

H?(k, Z/p" (1) = H*(k, (55" /(5®))").
From the exact sequence
0 — (KP)" Lo (k%) — (k%) /(KP)")"" — 0
and an isomorphism Br(k) = H?(k,(k*?)*), H2(k,Z/p"(1)) is isomorphic to the
p"-torsion points of Br(k). Thus, we get H(k) = Br(k).

If K isahenseliandiscretevaluationfield with residuefield F', we haveacanonical

map

i HI(F) — HI(K).
If char (K) = char (F'), this map is defined naturally from the definition of H9¢ (for
the Galois cohomology part, we use a natural map Gal(K5*/K) — Ga(Ky/K) =
Ga(F*/F)) . If K isof mixed characteristics (0, p), the prime-to- p-part is defined
naturally and the p-part is defined as follows. For theclass [w ® b1 ® --- ® b,_1] in
HY(F,Z/p"(q — 1)) wedefine i& ([w ® by ® -+ ® b,_1]) asthe classof

W) @b ® - ®by1

in HYK,Z/p"(q — 1)), where i:W,,(F) — HYF,Z/p") — HYK,Z/p") is the
composite of the map given by Artin—Schreier—Witt theory and the canonical map, and
b; isalifting of b; to K.

Theorem (Kato [K2, Th. 3]). Let K be a henselian discrete valuation field, = be a
prime element, and I’ be the residue field. WWe consider a homomor phism

i= @K, i Un): HI(F)® HY(F) — HY(K)
(a,b) — ik (a) +iB @)U
where i (b) U mr isthe element obtained from the pairing
HYK) x K* — HY(K)
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which is defined by Kummer theory and the cup product, and the explicit description
of Hi(K) inthe case of char (K) > 0. Suppose char (F) = p. Then i is bijectivein
the prime-to- p component. Inthe p-component, 7 isinjective and the image coincides
with the p-component of the kernel of HY(K) — HY(Ky) where Ky isthe maximal
unramified extension of K.

From this theorem and Bloch—K ato’s theorem in section 4, we obtain

Corollary. Assume that char (F) = p > 0, |F : FP| = p?~1, and that there is an
isomorphism HY(F) = Q/Z.
Then, 4 induces an isomor phism

H"YK) = Q/Z.
A typical example which satisfies the assumptions of the above corollary isa d-di-

mensional local field (if the last residue field is quasi-finite (not necessarily finite), the
assumptions are satisfied).

5.2. Higher dimensional local fields

We assume that K is a d-dimensiona local field, and I is the residue field of K,
which is a (d — 1)-dimensional local field. Then, by the corollary in the previous
subsection and induction on d, there is a canonical isomorphism

inv: H*Y(K) = Q/Z.

This corresponds to the first step of the proof of the classical isomorphism theorem
which we described in the introduction.
The cup product defines a pairing

Ky (K) x HY(K) — H"Y(K) ~ Q/Z.
This pairing induces a homomorphism
Wy K4(K) — Ga(K®/K) ~ Hom(HY(K), Q/Z)

which we call the reciprocity map. Since the isomorphism inv: H4(K) — Q/Z
is naturally constructed, for a finite abelian extension L/K we have a commutative
diagram

HY L) ™ )z,

=| l

H®YK) ™, Q/z.
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So the diagram

KoL) —2= Gd(L®/L)

¥ |
Ky(K) —%, Gd(K®/K)

is commutative where N is the norm map and the right vertical map is the canonical
map. So, asin the classical case, we have a homomorphism

Wk Kq(K)/NKy(L) — Ga(L/K).
Isomorphism Theorem. W,k isanisomorphism.

We outline a proof. We may assume that L/K is cyclic of degree ¢. Asin the
classical casein the introduction, we may study a sequence

Ka(L) 2 Ky(K) =5 H*Y(K) S HY(L),

but here we describe a more elementary proof.
First of all, using the argument in[S, Ch.5] by calculation of symbols one can obtain

[K4(K) : NEy(L)| < .

We outline a proof of thisinequality.

It is easy to see that it is sufficient to consider the case of prime ¢. (For another
calculation of the index of the norm group see subsection 6.7).

Recall that K,4(K) has afiltration U, K4(K) asin subsection 4.2. We consider
O Ka(K) = U Kg(K) /Uy Ka(K).

If L/K isunramified, the norm map N: K;(L) — K4(K) induces surjective ho-
momorphisms gr,,, K4(L) — gr,, Kq(K) foral m > 0. So U1 K4(K) isin NK4(L).
If we denote by F;, and F' the residue fields of L and K respectively, the norm
map induces a surjective homomorphism K ,(F1)/¢ — Kq(F)/¢ because K4(F)/¢ is
isomorphic to H4(F,7/¢(d)) (cf. sections 2 and 3) and the cohomological dimension
of F' [K2,p.220] is d. Since groK4(K) = Kq4(F)® K4_1(F) (seesubsection4.2), the
above implies that K ;(K)/N K,4(L) isisomorphicto Ky 1(F)/NKy4_1(FL), which
is isomorphic to Gal(F/F) by class field theory of F (we use induction on d).
Therefore |Ky4(K) : NKy4(L)| = ¢.

If L/K istotally ramified and ¢ is primeto char (F'), by the same argument (cf.
the argument in [S, Ch.5]) as above, we have U1 K4 (K) € NK4(L). Let 7, bea
prime element of L, and mx = Ny k(mr). Then the element {aq,...,cq-1, 7K}
for a; € K* isin NK4(L), so K4(K)/NK4(L) isisomorphicto Ky(F')/¢, which
is isomorphic to HY(F,Z/¢(d)), so the order is ¢. Thus, in this case we also have
|Kd(K) . NKd(L)| =/.
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Hence, we may assume L/K isnot unramified and is of degree ¢ = p = char (F).
Notethat K,(F) is p-divisiblebecauseof Q4 = 0 and the bijectivity of thedifferential
symbol.

Assumethat L/K istotally ramified. Let 7, beaprimeelementof L, and o a
generator of Gal(L/K), andput a = o(rz)r; " —1, b= Ny, x(a), and vg(b—1) = .
We study the induced maps gr.,(,) Kq(L) — dr,, Kq(K) fromthenormmap N onthe
subguotients by the argument in [S, Ch.5]. We have U;+1 K4(K) € NK4(L), and can
show that there is a surjective homomorphism (cf. [K1, p.669])

Q' — Ka(K)/NKy(L)
such that
zdlogyr A ... Adlogyg—1 — {1+Zb,y1, ..., Ya—1}
(z,y; areliftingsof = and y; ). Furthermore, from
Npk(L+za) =1+ (P —2)b (mod Uj+1 K¥),
the above map induces a surjective homomorphism
QLY ((F — 1)QL 1 +dQ%2) — Ky(K)/NKy(L).

The source group is isomorphic to H4(F,Z/p(d — 1)) which is of order p. So we
obtain |K4(K) : NK4(L)| < p.

Now assumethat L/K isferociously ramified, i.e. Fy,/F ispurely inseparable of
degree p. We can use an argument similar to the previousone. Let h be an element of
O suchthat F, = F(h) (h=h mod M ). Let o beagenerator of Gal(L/K), and
put a = o(h)h~1 —1, and b = Np,/k(a). Then we have a surjective homomorphism
(cf. [K1, p.669])

QL L/((F - QL +dQ4?) — Ky(K)/NKu(L)
such that
zdlogyy A ... Adlogyg_o A dIogNg, ;p(h) — {1+ b, 41, ..., Ya—2, 7}
(7 isaprimeelement of K'). Soweget |K,(K): NK4(L)| < p.

Soin order to obtain the bijectivity of W ,x, wehaveonly to check the surjectivity.
We consider the most interesting case char (K) =0, char (F)=p >0, and / =p. To
show the surjectivity of W, x, we have to show that thereis an element = € Ky(K)
suchthat y Uz # 0 in H¥*1(K) where x isacharacter correspondingto L/K. We
may assume a primitive p-th root of unity isin K. Suppose that L is given by an
equation X? = a for some a € K\ K?. By Bloch—Kato’s theorem (bijectivity of
the cohomological symbolsin section 4), we identify the kernel of multiplication by p
on H®Y(K) with H™Y(K, Z/p(d)), and with K 41(K)/p. Then our aim isto show
that thereis an element = € K (K) suchthat {z,a} #0 in kg1(K) = Kg1(K)/p.
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(Remark. The pairing K1(K)/p x Kq4(K)/p — Ka+1(K)/p coincides up to a sign
with Vostokov’s symbol defined in subsection 8.3 and the |atter is non-degeneratewhich
provides an alternative proof).

We use the notation of section 4. By the Proposition in subsection 4.2, we have

K31 (K)/p = kar1(K) = U kga1(K)
where e’ = vk (p)p/(p — 1). Furthermore, by the same proposition there is an isomor-
phism
HYF,Z/p(d — 1)) = QF/((F — QL +dQ% %) — kasa(K)
such that
zdlogyy A ... Adlogyg_1 — {1+Zb,y1, ..., Yg_1,7}

where 7 isauniformizer, and b isacertain element of K suchthat vx(b) =¢’. Note
that HY(F,Z/p(d — 1)) isof order p.

This shows that for any uniformizer = of K, and for any lifting t4,...,t4—1 Of a
p-baseof F, thereisan element z € Og such that

{1+ We,x,tl, woytg_1,m} 70

in kg+1(K).

If the class of a isnotin Upki(K), we may assume a isauniformizer or a isa
part of alifting of a p-baseof F'. Soitis easy to see by the above property that there
existsan = suchthat {a,z} # 0. If theclassof a isin U k1(K), itisaso easily seen
from the description of U, k4+1(K) that thereexistsan = suchthat {a,z} Z 0.

Suppose a € U;ky(K) \ Uj+1k1(K) suchthat 0 < i < /. Wewrite a = 1+ 7'a’
for aprimeelement = and o’ € O.. First, we assumethat p does not divide i. We
use aformula (which holdsin K»(K))

{(1-a1-pg1={1-af,—a}+{l-af,1-F} —{1-aB,1-a}
for a 70,1, and 8 # 1, L. From thisformulawe havein ko(K)
{1+7%d 1+ 77} = {1+ d'b,n'd’}
for b € Ok. Soforalifting t4,...,t4_1 of a p-baseof F' we have
{1+7mid , 1+7¢ b ty, .ty = {1+ 7% a'b, 7 e, .. ty_1}
= i{1+7re/a’b,7r,t1,...,td_l}

in kge1(K) (herewe used {1+ 7€z, uq,...,ug} = O for any units u; in kg (K)
which follows from Q¢ = 0 and the calculation of the subquotients gr,,k4+1(K) in
subsection 4.2). So we can take b € Ok such that the above symbol is non-zero in
kq+1(K). This completes the proof in the case where i isprimeto p.
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Next, we assume p divides 7. We also use the above formula, and calculate
{1+ 7%, 1+ @ +bm)n® L ) = {1+ 72/ (A + br), 1 + b, 7}
= {1+7°a'b(1 + brr), a' (1 +br), 7}

Since we may think of «’ as a part of alifting of a p-base of F', we can take some
x={1+@+br)r® "1 1 1, ..., tq o} suchthat {a,z} 70 in kg (K).

If ¢ isprimeto char (F), for the extension L/ K obtained by an equation X* = a,
we can find = suchthat {a,z} # 0 in K41(K)/¢ in the same way as above, using
Kg1(K)/l = groKg+1(K) /€ = K4(F)/¢. In the case where char (K) = p > 0 we
can use Artin—Schreier theory instead of Kummer theory, and therefore we can argue
in asimilar way to the previous method. This completes the proof of the isomorphism
theorem.

Thus, the isomorphism theorem can be proved by computing symbols, once we
know Bloch—Kato's theorem. See also a proof in [K1].
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6. Topological Milnor K -groups of higher local fields

Ivan Fesenko

Let FF = K,,...,Ko =F, bean n-dimensional local field. We use the notation of
section 1.

In this section we describe properties of certain quotients K '°P(F) of the Milnor
K -groups of F' by using in particular topological considerations. This is an updated
and simplified summary of relevant results in [F1-F5]. Subsection 6.1 recalls well-
known results on K -groups of classical local fields. Subsection 6.2 discusses so
called sequential topologies which are important for the description of subquotients of
K'™©P(F) in terms of a simpler objects endowed with sequential topology (Theorem 1
in 6.6 and Theorem 1 in 7.2 of section 7). Subsection 6.3 introduces K'°P(F), 6.4
presents very useful pairings (including Vostokov’s symbol which is discussed in more
detail in section 8), subsection 6.5-6.6 describe the structure of K'°P(F) and 6.7 deals
with the quotients K (F')/I; finally, 6.8 presents various properties of the norm map on
K -groups. Note that subsections 6.6—6.8 are not required for understanding Parshin’s
classfield theory in section 7.

6.0. Introduction

Let A beacommutativeringandlet X bean A-module endowed with some topology.
A set {x;};c; of elements of X is called a set of topological generators of X if
the sequential closure of the submodule of X generated by this set coincides with X.
A set of topological generators is called a topological basis if for every j € I and
every non-zero a € A ax; doesn't belong to the sequential closure of the submodule
generated by {z;}iz;.

Let I beacountableset. If {z;} isset of topological generatorsof X then every
element = € X can beexpressed asaconvergentsum > a;z; withsome a; € A (note
that it is not necessarily the case that for all a; € A thesum > a;x; converges). This
expressionisuniqueif {x;} isatopologica basisof X; then provided additionin X
is sequentially continuous, we get > a;z; + > bix; = (a; +b;)x;.
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Recall that in the one-dimensional case the group of principal units Uy r is a
multiplicative Z,-module with finitely many topological generators if char (F)) = 0
and infinitely many topological generatorsif char (') = p (seefor instance [FV, Ch. |
§6]). Thisrepresentation of U  and acertain specific choice of its generatorsis quite
important if one wants to deduce the Shafarevich and Vostokov explicit formulas for
the Hilbert symbol (see section 8).

Similarly, the group Vx of principal units of an n-dimensional local field F' is
topologically generated by 1+ 0tir ... 4", 6 € p,_1 (see subsection 1.4.2). This
leads to a natural suggestion to endow the Milnor K -groupsof F' with an appropriate
topology and use the sequential convergenceto simplify calculationsin K -groups.

On the other hand, the reciprocity map

Wpi K, (F) — Ga(F®/F)

is not injective in general, in particular ker(Wr) D ﬂl>1lKn(F) Z 0. So the Milnor
K -groups are too large from the point of view of class field theory, and one can pass
to the quotient K,,(F)/ (1,51 K (F) without loosing any arithmetical information

on F. The latter quotient coincides with K P(F) (see subsection 6.6) which is
defined in subsection 6.3 as the quotient of K,,(F) by the intersection A,,(F) of al
neighbourhoodsof 0in K, (F) withrespecttoacertaintopology. Theexistencetheorem
in class field theory uses the topology to characterize norm subgroups Ny, K, (L) of
finite abelian extensions L of F as open subgroups of finite index of K,,(F) (see
subsection 10.5). Asacorollary of the existencetheoremin 10.5 one obtainsthat in fact

[ HEn(F) = An(F) = ker(Wr).
1>1
However, the class of open subgroups of finiteindex of K,,(F) can be defined without

introducing thetopology on K,,(F'), seethepaper of Kato in thisvolumewhich presents
adifferent approach.

6.1. K-groupsof one-dimensional local fields

The structure of the Milnor K -groups of aone-dimensional local field F' iscompletely
known.

Recall that using the Hilbert symbol and multiplicative Z,-basis of the group of
principal unitsof F' one obtains that

Ko(F) ~ TorsKo(F) & mKo(F), where m = | Tors F*|, TorsKx(F') ~ Z/m

and m K>(F) isanuncountableuniquely divisiblegroup (Bass, Tate, Moore, Merkur’ ev;
seefor instance[FV, Ch. 1X §4]). Thegroups K,,(F) for m > 3 areuniquely divisible
uncountable groups (Kahn [Kn], Sivitsky [FV, Ch. IX §4]).
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6.2. Sequential topology

We need dlightly different topologies from the topology of F and F™* introduced in
section 1.

Definition. Let X be a topological space with topology 7. Define its sequential
saturation A:
asubset U of X is open with respect to \ if for every a € U and a convergent
(with respect to 7) sequence X > «; to o admost al «; belong to U. Then
o — 0= Oy 7 Q.

Hencethe sequential saturation isthe strongest topology which has the same conver-
gent sequences and their limits as the original one. For avery elementary introduction
to sequential topologies see [S].

Definition. For an n-dimensional local field I denoteby )\ the sequential saturation
of the topology on F' defined in section 1.

The topology A is different from the old topology on F' defined in section 1 for
n > 2: for example, it F =T, ((t1)) ((t2)) then Y = F\ {tht;? +t,°t] 10,5 > 1}
is open with respect to A and is not open with respect to the topology of F' definedin
section 1.

Let A\, on F* be the sequentia saturation of the topology = on F* defined in
section 1. It isashift invariant topology.

If n =1, therestrictionof A\, on Vx coincides with the induced from .

The following propertiesof A (A, ) are similar to those in section 1 and/or can be
proved by induction on dimension.

Properties.
(1) a,Bi —0=a; -6 —0;
A A

2 B —1l=a8t— 1
\ \

* *

(3) forevery «; € Up, afi = 1;

(4) multiplication is not continuous in general with respectto \,;

(5) every fundamental sequence with respectto A (resp. A, ) converges,

(6) Ve and F*™ areclosed subgroupsof F* for every m > 1,

(7) Theintersection of all open subgroupsof finite index containing a closed subgroup
H coincideswith H.

Definition. Fortopological spaces X1, ..., X; definethe x-product topology on X x
.-+ x X; asthe sequential saturation of the product topology.
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6.3. K"%-groups

Definition. Let )\, be the strongest topology on K,,(F) such that subtraction in
K,,,(F) and the natural map

(28 (F*)m - m(F)7 QD(CM]_, cee 7am) = {(a17 v 7am}

are sequentially continuous. Then the topology \,, coincides with its sequential
saturation. Put

Am(F) = (") open neighbourhoods of 0.
Itis straightforward to seethat A,,,(F) isasubgroup of K,,(F).

Properties.

(1) A,(F) isclosed: indeed A,,(F) 3 z; — x impliesthat x = x; +y; with y; — 0,
S0 z;,y; — 0, hence x = x; +y; — 0, S0 z € A\, (F).

(2) Put VK,,(F) = {{Vr}  K,,_1(F)) (Vr isdefined in subsection 1.1). Since the
topology with V K ,,,(F) and its shifts asasystem of fundamental neighbourhoods
satisfies two conditions of the previous definition, one obtains that A,,,(F) C
VK, (F).

3) A1 =A..

Following the original approach of Parshin [P1] introduce now the following:

Definition. Set
K P(F) = K (F) /A (F)
and endow it with the quotient topology of A,, which we denote by the same notation.
This new group K}ﬁp(F) is sometimes called the topological Milnor K -group of
F.
If char (K, _1) =p then K1 = K;.

If char (K,,_1) = 0 then K(K) # K1(K), since 1+ Mg, (which is uniquely
divisible) is a subgroup of A1(K).

6.4. Explicit pairings

Explicit pairings of the Milnor K -groups of F' are quite useful if one wants to study
the structure of K'°P-groups.
The general method is as follows. Assume that thereis a pairing

(,):AxB—Z/m
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of two Z/m-modules A and B. Assume that A is endowed with a topology with
respect to which it hastopological generators «;; where ¢ runsover elementsof atotally
ordered countableset 7. Assumethat for every j € I thereisanelement 3; € B such
that

(aj, ;) =1 mod m, (0, B;) =0 modm forali>j.

Then if aconvergent sum > c;«; isequal to 0, assumethat thereisaminima j with
non-zero c¢; and deduce that
0= Zci<aiaﬁj> =¢j,

acontradiction. Thus, {«;} form atopological basisof A.

If, in addition, for every 5 € B\ {0} thereisan o € A suchthat («, 3) 70, then
the pairing ( , ) isobviously non-degenerate.

Pairings listed below satisfy the assumptions above and therefore can be applied to
study the structure of quotients of the Milnor K -groupsof F'.

6.4.1. “Valuation map”.
Let 9: K,.(K,) — K,_1(K,_1) be the border homomorphism (see for example
[FV, Ch.1X §2]). Put

0=0p Ko(F) 2 Ky 1(Kuo1) 2 ... 2 Ko(Ko)=Z, o({t1, ..., ta}) =1

for asystem of local parameters ¢4, ... ,t, of F'. Thevauation map v doesn't depend
on the choice of a system of local parameters.

6.4.2. Tame symbol.
Define

K (F) /(g — 1) x F*/F* 9 - Kpa(F)/(g — 1) — F} — pg-1, ¢ =Kol
by
Kpa(P)/(q -1 2 KoK /(g - 1) 2 .. 2 Ki(Ko) /(g — D) =F — pg1.

Herethemap F; — 1,1 isgiven by taking multiplicative representatives.
An explicit formula for this symbol (originally asked for in [P2] and suggested in
[F1]) is simple: let ¢4, ...,t, be asystem of local parameters of F and let v =

(v1, ...,v,) bethe associated valuation of rank n (see section 1 of this volume). For
elements aq, ..., a,4+1 Of F* thevalue t(aq, az, ..., a,+1) isequa tothe (g — 1)th
root of unity whose residue is equal to the residue of
b ¥
art.. nﬁll( 1)

in the last residue field Fy, where b =", vs(b;)vs(b;)b; ;, b is the determinant
of the matrix obtained by cutting off the j th column of the matrix A = (v;(c;)) with
thesign (—1)/~1, and b; ; isthe determinant of the matrix obtained by cutting off the
ithand jth columns and sth row of A.
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6.4.3. Artin—Schreier—Witt pairing in characteristic p.
Define, following [P2], the pairing
(, 1o Ku(B)/p" % Wo(F)/(F — YW, (F) — W, (F,) ~ Z/p"
by (F isthe map defined in the section, Some Conventions)
(CMO, vy Oy (ﬂ()? v 7ﬂ7")]7’ = TrKo/]Fp (707 ... 7’77")

wherethe i th ghost component v isgivenby resx, (6@ajtda A - Aaytday).
For its properties see [ P2, sect. 3]. In particular,
(1) for x € K, (F)

(z, V(Bo, - .-, Br-1)l+ = V(z,(Bo, - .., Br-1)lr—1
where asusual for afield K
VW, _1(K) — Wi(K), V(Bo, ...,8--1) =0, 5o, ..., B-1);
(2) for xz € K,,(F)
(z, A(Bo, - - -, Br)lr—1 = Alz,(Bo, -, B>
wherefor afield K
A:W(K) — W, 1(K), A(Bo, ---,Br-1,6:) = (Bo, - -+ Br—1)-
(3) If Tréo=1then ({t1,...,tn},60], =1. If i; isprimeto p then
({L+0t . 5t oty ot ), 0007 Y ] = 1

6.4.4. Vostokov’ssymboal in characteristicO.
Suppose that ji,- < F* and p > 2. Vostokov’s symbol

V( ) )’I": Km(F)/pr X Kn+1fm(F)/pr - Kn+1(F)/pr — Hpr
is defined in section 8.3. For its properties see 8.3.

Each pairing defined above is sequentially continuous, so it induces the pairing of
KSP(F).

6.5. Structure of K©P(F). |

Denote VK (F) = ({V¢} - K [(F)). Using the tame symbol and valuation v as
described in the beginning of 6.4 it is easy to deduce that

Kn(F) ~ VK, (F) & 20 & (Z/(q — 1))"™
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with appropriate integer a(m), b(m) (see [FV, Ch. IX, §2]); similar calculations are
applicable to KP(F). For example, Z(™ correspondsto &({t;,, ..., t;, }) with
1<p<--<jm<n

Tostudy V K,,(F) and VKtmOp(F) thefollowing elementary equality isquite useful

af «

1—a}+{1_ﬁ’1+ l—a}'
Notethat v(a5/(1 — «)) = v(a) + v(B) if v(a),v(5) > (O, ...,0).

For £, € Vr one can apply the previous formulato {e,n} € KEO'D(F) and using
the topological convergence deduce that

{5777} = Z {piati}

with units p; = p;(e,n) sequentially continuously depending on ¢, 1.
Therefore VK. }SP(F) is topologically generated by symbols

{1-a,1-8}={a,1+

{1+ttt Y € g1

In particular, K'%,(F) = 0.
Lemma. (51 K (F) C Ay (F).
Proof. First, IK,.(F) C VK,,(F). Let x € VK,,(F). Write

T = Z{aj,tjl, e ,tjm_l} mod A, (F), «ay € Vp.
Then

pra=d {oh b {ty, ot b A A € A(F).
It remainsto apply property (3) in 6.2. O

6.6. Structureof K©P(F). 11

This subsection 6.6 and the rest of this section are not required for understanding
Parshin’s class field theory theory of higher local fields of characteristic p which is
discussed in section 7.

The next theorem relates the structure of VKfifp(F) with the structure of asimpler
object.

Theorem 1 ([F5, Th. 4.6]). Let char (K,,_1) = p. The homomorphism
g: HVF - VKm(F)7 (6J) = Z {ﬁJvtjlv s 7tjm_1}
J

J:{jlw--ujrm—l}

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



68 |. Fesenko

induces a homeomor phism between [T Vi/g~ (A, (F)) endowed with the quotient of
the x-topology and V K ﬁ,olp(F); g~ Y\, (F)) isaclosed subgroup.

Since every closed subgroup of Vi isthe intersection of some open subgroups of
finiteindex in Vi (property (7) of 6.2), we obtain the following:

Corollary. A,,(F) =) open subgroups of finiteindexin K,,(F).

Remarks. 1. If F isof characteristic p, thereisacomplete description of the structure
of K }SP(F) in the language of topological generators and relations due to Parshin (see
subsection 7.2).

2. If char (K,,_1) = 0, thenthe border homomorphismin Milnor K -theory (seefor
instance [FV, Ch. 1X §2]) induces the homomorphism

VKm(F) - VKm(Kn—l) b VKm—l(Kn—l)‘

Its kernel is equal to the subgroup of V K,,,(F) generated by symbols {u, ...} with
u inthegroup 1+ Mg whichisuniquely divisible. So

VEP(F) = VP, 1) & VK (K, 1)
and one can apply Theorem 1 to describe V K1oP(F).

Proof of Theorem 1. Recall that every symbol {a1, ...,a,} in KP(F) can be
written as a convergent sum of symbols {3;,t;,, ...,t; _,} with 3; sequentially
continuously depending on «; (subsection 6.5). Hence thereis a sequentially continu-
ousmap f:Vp x From-1_, 1, Ve suchthat its composition with g coincides with
the restriction of themap : (F*)™ — KoP(F) on Vp & F*®m-1,

So the quotient of the x-topology of [[; Vr is < A, asfollowsfromthe definition
of A,,. Indeed, the sum of two convergent sequences x;,y; in [[, Vr/ g YN, (F))
converges to the sum of their limits.

Let U beanopensubsetin VK,,(F). Then ¢g~(U) isopeninthe x-product of the
topology []; V. Indeed, otherwise for some J there were asegquence af}) ¢ g~ XU)
which convergesto a; € g~(U). Then the properties of the map ¢ of 6.3 imply that
the sequence go(af})) ¢ U convergesto p(a;) € U which contradicts the openness of
U. O

Theorem 2 ([F5, Th. 4.5]). If char (F) = p then A, (F) is equal to (51 1K (F)
and isadivisible group.

Proof. Bloch-Kato—Gabber’stheorem (see subsection A2 in the appendix to section 2)
shows that the differential symbol
do do,y,

d: K, (F)/p — QF, {ag, ...,apm}r— — A - A
a1 A
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is injective. The topology of QY% induced from F' (as a finite dimensional vector
space) is Hausdorff, and d is continuous, so A,,,(F) C pK,,(F).

Since VK,,(F)/N\(F) ~ ][] £, doesn’t have p-torsion by Theorem 1 in subsec-
tion 7.2, A\, (F) = pA\,, (F). O

Theorem 3 ([F5, Th. 4.7]). If char(F) = 0 then A,,(F) is equal to (5 L (F)
and is a divisible group. If a primitive /th root (; belongsto F, then leifp(F) =
{G}- K2 o (F).

Proof. Toshow that p"V K,,,(F) D A,.(F) it sufficesto check that p"V K,,,(F) isthe
intersection of open neighbourhoods of p"V K, (F).

We can assume that 1., iscontained in F' applying the standard argument by using
(p, |F(up) : F|) =1 and [-divisibility of V K,,(F) for [ primeto p.

If » =1 then one can use Bloch—Kato's description of

Usz(F) +me(F)/Ui+1Km(F) +me(F)

in terms of products of quotients of Qﬂn_l (section 4). Q}(H_l and its quotients are

finite-dimensional vector spaces over K,,_1/K” ,, so the intersection of al neigh-
borhoods of zero there with respect to the induced from K, _; topology is trivial.
Therefore the injectivity of d implies A,,,(F) C pK,,.(F).

Thus, the intersection of open subgroups in V K,,(F) containing pV K,,(F) is
equa to pV K,,(F).

Induction Step.

For afield F' consider the pairing

()i Kn(F)/p" x H' S, pn ™) — HYNE, g

given by the cup product and the map F* — H(F, ppr). 1f p,r C F, then Bloch—
Kato's theorem shows that ( , ), can beidentified (up to sign) with Vostokov’s pairing
V().

For x € H™=™(F, p3"~™) put

Ay ={a € Kn(F): (o, x)r =0}

One can show [F5, Lemma4.7] that A, isan open subgroup of K,,(F).

Let o belong to the intersection of all open subgroups of V K,,,(F) which contain
p"VEK,(F). Then a € A, forevery y € H™1=(F, u5"~™).

Set L = F(u,-) and p® = |L : F'|. From the induction hypothesis we deduce that
a € pVK,,(F) and hence o = N, 3 for some 8 € VK,,,(L). Then

0=(a,X)r.r = (NL/rB:X)r.Fr = (B,ir/LX)r L

where i/, isthe natural map. Keeping in mind the identification between Vostokov's
pairing V.. and ( , ), forthefield L weseethat 3 isannihilated by ir/r, Kp+1—m(F)
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with respect to Vostokov's pairing. Using explicit calculations with Vostokov’s pairing
one can directly deduce that

ﬂ € (U - 1)Km(L) +pr_siF/LKm(F) +pr m(L)v
and therefore o € p" K,,,(F), asrequired.
Thus p” K,,,(F) = () open neighbourhoods of p"V K, (F).
To prove the second statement we can assumethat [ isaprime. If [ # p, then since
K }SP(F) is the direct sum of several cyclic groupsand V K }SP(F) and since [-torsion

of KiP(F) is p-divisibleand N,p"V KP(F) = {0}, we deduce the result.
Consider the most difficult case of I = p. Usethe exact sequence

RXn

0= ppl" — oty — pp™ — 0

p

and the following commutative diagram (see also subsection 4.3.2)

pp @ Ky 1(F)/p —— K (F)/p® P . m(F)/ps+l

! l l

HNF &™) s H™(F, &™) ——— H™(F, 7).

Wededucethat pz € A,,,(F) implies pr € N p" K(F), 0 2 = {¢}-a,_1+p" " 1b, 1
for some a; € K\ ,(F) and b; € K, P(F).

Define ¢: K'P | (F) — KxP(F) as ¢(a) = {¢,} - a; it isacontinuous map. Put
D, = z/;—l(pTKfifp(F)). The group D = ND,. isthe kernel of . One can show
[F5, proof of Th. 4.7] that {a,} isaCauchy sequencein the space ngﬁl(F)/D which

is complete. Hencethereis y € () (a,_1+ D,_1). Thus, = {¢,} -y in Kl (F).
Divisibility follows. O

Remarks. 1. Compare with Theorem 8in 2.5.

2. For more properties of K1oP(F) see[F5].

3. Zhukov [Z, §7-10] gave a description of K °P(F) in terms of topological
generators and relations for somefields F' of characteristic zero with small vz (p).

6.7. Thegroup K,,(F)/I

6.7.1. If aprimenumber [ isdistinct from p, then, since V is [-divisible, we deduce
from 6.5 that

Kn(F)/l ~ KP(F) /1 = (/1) & (Z/d)"™)
where d = ged(qg — 1,1).
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6.7.2. Thecaseof | = p ismoreinteresting and difficult. We use the method described
at the beginning of 6.4.

If char (F) = p thenthe Artin—Schreier pairing of 6.4.3 for = 1 helpsoneto show
that K P(F)/p hasthe following topological Z/p-basis:

{140ttt o )
where p t gcd(ia, ... ,0,), O0<(i1,...,i,), (=min{k:ptix} and  runs
over all elements of afixed basisof Kg over F,,.

If char (F) =0, ¢, € F*, thenusing Vostokov's symbol (6.4.4 and 8.3) one obtains
that K1 >P(F)/p has the following topological Z,-basis consisting of elements of two
types:

wo(j) = {1+ 0,apen/ 07D e/ )

where 1 < j < n, (e1, ...,e,) =vr(p) and 0, € p,_1 issuch that
1+0,45/®=D  per/®=1) goegrt belong to F*P
and

(140t 8t o, )

where p { ged(iq, ... ,4,), 0< (i1, ...,i,) <pler, ...,en)/(p— 1),
l=min{k:p1tiy}, where6 runsoverall elementsof afixedbasisof Ky over F,.
If ¢, & F*, then pass to the field F'(¢,) and then go back, using the fact that the

degree of F((,)/F is relatively prime to p. One deduces that KiP(F)/p hasthe
following topological Z,-basis:

(140t 8t o, )

where p { ged(ia, ... ,i,), 0< (i1, ..., 1) <plez, ..., en)/(p— 1),
l=min{k:p1tiy}, where6 runsoverall elementsof afixedbasisof Ko over F,.

6.8. The norm map on K'P-groups

Definition. Definethenormmapon K, P(F) asinducedby Ny, K, (L) — K, (F).
Alternatively in characteristic p one can define the norm map asin 7.4.

6.8.1. Put WUiq,... in = Ui17...,in/Ui1+1,...,in-

Proposition ([F2, Prop. 4.1] and [F3, Prop. 3.1]). Let L/F be a cyclic extension of
prime degree [ such that the extension of the last finite residue fields is trivial. Then
thereis s and a local parameter ¢, ; of L suchthat L = F(t, ). Let t1,...,¢,
be a system of local parameters of £, then ¢4, ...,t5 1, ...,t, iSa systemof local
parametersof L.
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Let [ = p. For agenerator o of Gal(L/F) let

O'tS7L

. :l+90t:1n"'tgfL“‘til+"'
S,

Then
@) if (41, ...,i,) < (r1, ...,7,) then

NL Pty i = Upig,...pia,..cpin, F

sends 0 € Ky to 67;
(2) if (ilv aZn) = (7"]_, s ,T‘n) then

NL Py, i = Upig,...sia,..cpin, F

sends 6 € Kg to 6P — 998_1;
(3) if (1, ..., jn) > O then

NL/F: uj1+7”1,...,pj5+rs,m,jn+rn,L - ujl+pT17"'1js+TS7"')j'rL+an1F
p—1
sends ¢ € Ko to —00, .

Proof. Similar to the one-dimensional case [FV, Ch. Il §1]. 0

6.8.2. If L/F iscyclicof primedegree | then

K'P(L) = ({L*} - gy K\ 4 (F))

where i, isinduced by theembedding F* — L*. For instance (we usethe notations
of section 1), if f(L|F) =1 then L isgenerated over F' by aroot of unity of order
primeto p; if e;(L|F) = [, then use the previous proposition.

Corollary 1. Let L/F beacyclic extension of prime degree [. Then
’K;OP(F) : NL/Fth@Op(L)’ =1
If L/F isasinthe preceding proposition, then the element
{1408 -t ] 1, S N
where theresidue of 6, in Ky doesn’t belong to the image of the map

607 —g00 1
Op ———— Of — Kp,

is agenerator of K P(F)/Ny pKnP(L).
If f(LIF)=1and ! #p, then

{9*7t13 af;a atn}
where 6. € ju,1\ pl_; isagenerator of KyP(F)/Np p KXP(L).
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If f(L|F)=1, then
{t1, ..., tn}

is agenerator of Ky °(F)/Ny/pKnP(L).

Coroallary 2. Ny, (closed subgroup) is closed and N / 1 (open subgroup) is open.
Proof. Sufficient to show for an extension of prime degree; then use the previous
proposition and Theorem 1 of 6.6. O
6.8.3.

Theorem 4 ([F2, §4], [F3, §3]). Let L/F beacyclic extension of prime degree [ with
a generator o then the sequence

KOP(F)/1 0 KP(L)/1 200 jelonry i M ey i
is exact.
Proof. Use the explicit description of K1 P/1 in6.7. O

This theorem together with the description of the torsion of K1P(F) in 6.6 imply:
Corollary. Let L/F becyclic with agenerator o then the sequence

Ktop(L) Ktop(L) Ktop(F)

iS exact.
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7. Parshin’s higher local class field theory
In characteristic p

Ivan Fesenko

Parshin’stheory in characteristic p isaremarkably simple and effective approach to all
the main theorems of class field theory by using relatively few ingredients.

Let F=K,, ...,Ko bean n-dimensional local field of characteristic p.

In this section we use the results and definitions of 6.1-6.5; we don’t need the results
of 6.6 —6.8.

7.1

Recall that the group Vi istopologically generated by
1+0tin ., 0€ R pt(in, ..., 01)

(see1.4.2). Note that

i1 {1+ O byt ) = {1 Ot Lt}

= {14080 R it = {140t 0, .. tin} =0,
since 99-1 =1 and Vi is (¢ — 1)-divisible. We deduce that

KR(F)=F};, {0t ...t} — 0, R
Recall that (cf. 6.5)
KP(F) ~Z® (Z/(¢—1D)" & VEXP(F),

where the first group on the RHS is generated by {t,, ..., #1}, and the second by
{6, ...,t, ...} (apply the tame symbol and valuation map of subsection 6.4).
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7.2. Thestructureof VK P(F)

Using the Artin—Schreier—Witt pairing (its explicit formin 6.4.3)
(, 1 KGP(F) /0" x Wo(F)/(F = DW,(F) = Z/p", r > 1

and the method presented in subsection 6.4 we deduce that every element of V K\ >P(F)
is uniquely representable as a convergent series

. i ~
Z a97in,“.,il{l+ et?nn R t117t17 s 7tl7 R 7tn}7 a97in,“.7i1 € Zp7

where 6 runsover abasis of the F,-space Ko, p{gcd(in, ..., i1) and
I=min{k: ptix}. Wealsodeducethat the pairing (, ] isnon-degenerate.

Theorem 1 (Parshin, [P2]). Let J = {j1, ..., jm_1} runover all (m — 1)-elements
subsets of {1,...,n}, m < n+1. Let &; be the subgroups of Vr generated by
1+0the .. ¢, 6 € p,1 suchthat p t ged(ia, ...,3,) and min{l:pte} ¢ J.
Then the homomor phism

x —topology
e I & = VEPRE), e Y {esti ooty )
J J:{jl7“'7j777.*1}

is a homeomor phism.

Proof. Thereisasequentially continuous map f:Vp x F*®m—1 _, [I, €5 suchthat
its composition with h coincides with the restriction of the map ¢: (F*)™ — K}ﬁp(F)
of 6.30n Vp @ F*®m—1,
So the topology of H}‘mpo'ogy & is < \,n, asfollowsfrom the definition of \,,,.
Let U beanopensubsetin VK,,(F). Then h~1(U) isopeninthe %-product of the
topology []; €. Indeed, otherwise for some J there were asequence af}) ¢ h1(U)

which convergesto oy € h~X(U). Then the sequence go(af})) ¢ U converges to
»(ay) € U which contradicts the openness of U'. O

Corollary. KiP(F) hasno nontrivial p-torsion; Np"V KwP(F) = {0}.
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7.3

Put W(F) = I|_r>n W,.(F)/(F — 1)IWV,.(F) with respect to the homomorphism
V:(ao, ...,a,_1) — (0,ao, ...,a,_1). From the pairings (see 6.4.3)

KIP(E) /" % WoF)/ @ = DW,(F) 2 2y — 2272
one obtains a non-degenerate pairing
(, l: K.(F) x W(F) - Q,/Z,
where K,,(F) = KxP(F)/ 0,512 K (F). From7.1and Corollary of 7.2 we deduce
() p"EKIP(F) = Tors, K P(F) = Tors K, P(F),

r>1

where Tors, is prime-to- p-torsion.
Hence

K, (F) = K(F)/ Tors K'°P(F).

7.4. Thenorm map on K'°P-groupsin characteristic p

Following Parshin we present an alternative description (to that one in subsection 6.8)
of the norm map on K'°P-groupsin characteristic p.
If L/F iscyclicof primedegree [, then it ismore or less easy to see that
KP(L) = ({L°) - ipy 1P (F))

where ip,;, isinduced by the embedding F* — L*. Forinstance, if f(L|F) =1 then
L isgenerated over F' by aroot of unity of order primeto p; if e;(L|F) =, thenthere
isasystem of local parameters tq, ...,t,, ..., t, of L suchthat ¢1, ...,t;, ..., iS
asystem of local parametersof F.

For such an extension L/F define[P2]

Npypi KP(L) — KP(F)

as induced by Ny ,p:L* — F*. For a separable extension L/F' find a tower of
subextensions

F=Fp-FHh—--—F,_1—F.=L
suchthat F;/F;_1 isacyclic extension of prime degree and define

NL/F = NFl/Fo 0---0 NFT/Fr,l‘
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To prove correctness use the non-degenerate pairings of subsection 6.4 and the
properties

(Np/rpo, Blpr = (0, ip/L Bl
for p-extensions;

t (Npjra, B) p = Heyip/LB)L
for prime-to- p-extensions (¢ is the tame symbol of 6.4.2).

7.5. Parshin’sreciprocity map

Parshin’s theory [P2], [ P3] deals with three partial reciprocity maps which then can be
glued together.

Proposition ([P3]). Let L/F beacyclic p-extension. Then the sequence

iFp/L

0 — Ko(F) 5 Ko(D) 5% Ko(L) “25 K, (F)
is exact and the cokernel of Ny, isacyclic group of order |L : F|.

Proof. The sequenceisdual (with respect to the pai ring of 7.3) to

W(F) — W(L) W(L) 5 W(F) — 0.
The norm group index is calculated by induction on degree. O

Hencetheclass of p-extensionsof F' and fgn(F) satisfy the classical classforma-
tion axioms. Thus, one gets ahomomorphism K,,(F) — Gal(F®P/F) and

W) KPRy — Gal(F¥P/F)

where FaP js the maximal abelian p-extension of F. In the one-dimensional case
thisis Kawada—Satake'stheory [KS].
The valuation map v of 6.4.1 induces a homomorphism

W: K 1P(F) — Gal(Fur/F),
{t1, ..., t,} — thelifting of the Frobenius automorphism of K™/ Ko;
and thetame symbol ¢ of 6.4.2 together with Kummer theory induces ahomomorphism
WD) K1) — GAl(F (" Vi1, ..., “ i)/ F).

The three homomorphisms LIJS?), LP%"), LIJS?/) agree [ P2], so we get the reciprocity
map
Yp: K(F) — Ga(F®/F)
with all the usual properties.
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Remark. For another rather elementary approach [F1] to class field theory of higher
local fields of positive characteristic see subsection 10.2. For Kato’s approach to higher
classfield theory see section 5 above.
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8. Explicit formulas for the Hilbert symbol

Sergel V. Vostokov

Recall that the Hilbert symbol for alocal field K with finiteresiduefield which contains
aprimitive p™ th root of unity ¢,~ isapairing

()t KT X KR = (G, (@, B)pn =670 7" =,
where Wy K* — Gal(K®/K) isthe reciprocity map.

8.1. History of explicit formulasfor the Hilbert symbol

Therearetwo different branchesof explicit reciprocity formulas(for theHilbert symbol).
8.1.1. Thefirst branch (Kummer’stype formulas).
Theorem (E. Kummer 1858). Let K = Q,(¢p), p 7 2. Thenfor principal units ¢,

)y = Cpres(log n(X)dlog e(X)XP)

(e,m
where e(X)|x=¢,—1 =€, n(X)|x=¢,—1 =71, &(X),n(X) € Z,[[X]]".

Theimportant point isthat one associatesto the elements ¢, n the series (X)), n(X)
in order to calculate the value of the Hilbert symbol.

Theorem (1. Shafarevich 1950). Complete explicit formula for the Hilbert normresidue
symbol (o, B)pn, o, 5 € K*, K D Q,((n), p 72, usingaspecial basis of the group
of principal units.

This formula is not very easy to use because of the special basis of the group of
units and certain difficulties with its verification for n > 1. One of applications of this
formulawas in the work of Yakovlev on the description of the absolute Galois group of
alocal field in terms of generators and relations.

Complete formulas, which are simpler that Shafarevich’'s formula, were discovered
in the seventies:
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Theorem (S. Vostokov 1978), (H. Brickner 1979). Let a local field K with finite
residue field contain Q,(¢,») and let p # 2. Denote Og = W(kk), Tr =Troy/z, .
Thenfor o, € K*

(Oé,,@)pn - p'l;r res q)(a7ﬂ)/§? CD(OZ,,@) — l(@)gfldg - l(g)%@Ad@A

where o = 0X™(1+ (X)), 0 € R, ¥ € XOo[[X]], is such that a(r) = «,
5= @p” -1,

) = ]—l) log(a? /a”),

(Z aiXi>A =Y Frobg(a) X", a; € Oo.

Note that for the term X7 in Kummer's theorem can be written as X7 =
1/(¢? —1) mod p, since ¢, =1+m andso s = (P —1=(1+X)?—1=X? mod p.

Theworks[V1] and [V 2] contain two different proofs of thisformula. One of them
is to construct the explicit pairing

(a7 ﬂ) - Cp-!:r res CD(a, ﬁ)/§

and check the correctness of the definition and all the properties of this pairing com-
pletely independently of class field theory (somewhat similarly to how one works with
the tame symbol), and only at the last step to show that the pairing coincides with the
Hilbert symbol. The second method, also followed by Brikner, is different: it uses
Kneser's (1951) calculation of symbols and reduces the problem to a simpler one: to
find aformulafor (e, 7),» where = isaprime element of K and ¢ isaprincipal unit
of K. Whereasthe first method is very universal and can be extended to formal groups
and higher local fields, the second method works well in the classical situation only.

For p = 2 explicit formulas were obtained by G. Henniart (1981) who followed to
a certain extent Bruckner's method, and S. Vostokov and |. Fesenko (1982, 1985).

8.1.2. The second branch (Artin—Hasse' stype for mulas).

Theorem (E. Artinand H. Hasse 1928). Let K = Q,((p»), p 7 2. Thenfor aprincipal
unit ¢ and prime element = = (,» — 1 of K

Tr(—lo " Trie— 1 1o n
(€ Gon)pm = Cpn (~log<)/p . (e, mpn = (pn (7™ Cpn log €)/p

where Tr = Tr g /q,, -

Theorem (K. Iwasawa 1968). Formula for (g,7),» where K = Q,((p»), p 72, €,71
areprincipal unitsof K and vg(n — 1) > 2vk(p)/(p — 1).
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To some extent the following formula can be viewed as aformula of Artin—Hasse's
type. Sen deduced it using his theory of continuous Galois representations which itself
isageneralization of a part of Tate'stheory of p-divisible groups. The Hilbert symbol
isinterpreted as the cup product of H1.

Theorem (Sh. Sen1980). Let |K : Q,| < o0, (p» € K, andlet = bea prime element
of Og. Let g(T'),h(T) € W(kg)[T] be suchthat g(r) = 8 # 0, h(r) = (m. Let
a € Ok, vi(a) = 2vk(p)/(p — 1). Then

.1 G o
(0. B =G €= 25 Tl i/ (;ﬂw) % o9 “)‘

R. Coleman (1981) gave a new form of explicit formulas which he proved for
K = Q,(¢pn). Heusesformal power series associated to norm compatible sequences
of elements in the tower of finite subextensions of the p-cyclotomic extension of the
ground field and his formula can be viewed as a generalization of |wasawa’'s formula.

8.2. History: Further developments

8.2.1. Explicit formulas for the (generalized) Hilbert symbol in the case where it is
defined by an appropriate class field theory.

Definition. Let K be an n-dimensional local field of characteristic 0 which contains
aprimitive p™ th root of unity. The p™ th Hilbert symbol is defined as

m

KPR [p™ x K*[K*" — (), (a, B)pm =A¥Yx@=1 " = g,
where Wg: KI®(K) — Gal(K®/K) isthe reciprocity map.

For higher local fields and p > 2 complete formulas of Kummer's type were
constructed by S. Vostokov (1985). They are discussed in subsections 8.3 and their
applications to K -theory of higher local fields and p-part of the existence theorem
in characteristic O are discussed in subsections 6.6, 6.7 and 10.5. For higher local
fields, p > 2 and Lubin—Tate formal group complete formulas of Kummer’stype were
deduced by |. Fesenko (1987).

Relations of the formulas with syntomic cohomologies were studied by K. Kato
(1991) in a very important work where it is suggested to use Fontaine-Messing's syn-
tomic cohomologies and an interpretation of the Hilbert symbol as the cup product
explicitly computable in terms of the cup product of syntomic cohomologies; this
approach implies Vostokov’sformula. On the other hand, Vostokov’sformulaappropri-
ately generalized defines a homomorphism from the Milnor K -groupsto cohomology
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groups of asyntomic complex (see subsection 15.1.1). M. Kurihara (1990) applied syn-
tomic cohomol ogiesto deduce |wasawa’ s and Coleman’s formulasin the multiplicative
case.

For higher local fields complete formulas of Artin—Hasse's type were constructed
by M. Kurihara (1998), see section 9.

8.2.2. Explicit formulasfor p-divisible groups.

Definition. Let F' be aformal p-divisible group over thering Og, where Ko isa
subfield of alocal field K. Let K contain p™-division pointsof F'. Definethe Hilbert
symbol by

K™ x F(MK) - ker[pn]v (OZ, ﬁ)p" = LPK(O‘)(’Y) —F7, [pn] (7) = 67
where Wy K* — Gal(K®/K) isthe reciprocity map.

For formal Lubin—Tate groups, complete formulas of Kummer’stype were obtained
by S. Vostokov (1979) for odd p and S. Vostokov and |. Fesenko (1983) for even p. For
relative formal Lubin-Tate groups complete formulas of Kummer’stype were obtained
by S. Vostokov and A. Demchenko (1995).

For local fields with finite residue field and formal Lubin—Tate groups formulas of
Artin—Hasse's type were deduced by A. Wiles (1978) for K equal to the [#™]-division
field of the isogeny [x] of aforma Lubin-Tate group; by V. Kolyvagin (1979) for
K containing the [7"]-division field of the isogeny [7]; by R. Coleman (1981) in
the multiplicative case and some partial cases of Lubin-Tate groups; his conjectura
formulain the general case of Lubin—Tate groupswas proved by E. de Shalit (1986) for
K containing the [7"]-divisionfield of theisogeny [«]. Thisformulawas generalized
by Y. Sueyoshi (1990) for relative formal Lubin-Tate groups. F. Destrempes (1995)
extended Sen’sformulas to Lubin-Tate formal groups.

J—M. Fontaine (1991) used his crystalline ring and his and J—P. Wintenberger's
theory of field of norms for the p-cyclotomic extension to relate Kummer theory with
Artin—Schreier—Witt theory and deduce in particular some formulas of wasawa's type
using Coleman’spower series. D. Benois(1998) further extended this approach by using
Fontaine-Herr's complex and deduced Coleman’s formula. V. Abrashkin (1997) used
another arithmetically profinite extension (L = UF; of F, F; = F;_1(m;), 70 =m;_1,
mo being aprime element of F') to deduce the formula of Briickner—Vostokov.

For formal groups which are defined over an absolutely unramified local field Ky
(e(Ko0|Qp) = 1) and therefore are parametrized by Honda's systems, formulas of
Kummer’s type were deduced by D. Benois and S. Vostokov (1990), for n = 1 and
one-dimensional formal groups, and by V. Abrashkin (1997) for arbitrary n and arbi-
trary formal group with restriction that K contains a primitive p™ th root of unity. For
one dimensional formal groups and arbitrary n without restriction that K contains a
primitive p™ th root of unity in the ramified case formulaswere obtained by S. Vostokov
and A. Demchenko (2000). For arbitrary n and arbitrary formal group without restric-
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tionson K Abrashkin'sformulawas established by Benois (2000), see subsection 6.6
of Part II.

Sen’'sformulaswere generalizedto all p-divisible groupsby D. Benois(1997) using
an interpretation of the Hilbert pairing in terms of an explicit construction of p-adic
periods. T. Fukaya (1998) generalized the latter for higher local fields.

8.2.3. Explicit formulasfor p-adic representations. The previously discussed ex-
plicit formulas can be viewed as a description of the exponential map from the tangent
space of a formal group to the first cohomology group with coefficients in the Tate
module. Bloch and Kato (1990) defined a generalization of the exponential map to
de Rham representations. An explicit description of this map is closely related to the
computation of Tamagawa numbers of motives which play an important role in the
Bloch—Kato conjecture. The description of this map for the @, (n) over cyclotomic
fields was given by Bloch—Kato (1990) and Kato (1993); it can be viewed as a vast
generalization of Iwasawa’'s formula (the case n = 1). B. Perrin-Riou constructed an
Iwasawa theory for crystalline representations over an absolutely unramified local field
and conjectured an explicit description of the cup product of the cohomology groups.
There are three different approaches which culminate in the proof of this conjecture
by P. Colmez (1998), K. Kato—M. Kurihara-T. Tsuji (unpublished) and for crystalline
representations of finite height by D. Benois (1998).

K. Kato (1999) gave generalizations of explicit formulas of Artin—Hasse, Iwasawa
and Wiles type to p-adically complete discrete valuation fields and p-divisible groups
which relates norm compatibl e sequencesin the Milnor K -groups and trace compatible
sequences in differential forms; these formulas are applied in his other work to give
an explicit description in the case of p-adic completions of function fields of modular
curves.

8.3. Explicit formulasin higher dimensional fieldsof characteristicO

Let K bean n-dimensiona field of characteristic O, char (K,,_1) = p, p > 2. Let
C¢pm € K.

Let tq, ...,t, beasystem of local parametersof K.

For an element

a=tr . tf A+ agtl . 1), 0 € R a; € W(Ko),
(1, ---+Jn) > (O, ...,0) denoteby « thefollowing element
Xir XA+ ag X XY

in F{X1}}...{{X,}} where F' isthe fraction field of W(Kp). Clearly « is not
uniquely determined even if the choice of a system of local parametersis fixed.
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Independently of class field theory define the following explicit map

V(i ()™ = (Gom)
by the formula

Trres ®(aq, ..., « S
V(OZ]_, . Oén+]_)m = pm ( b ’ 7’L+1)/_’ (D(OZ]_, e 7O[nq—]_)
(- ”1 dag doi—1  dain® dan1®
=D e ll) oA A A E e A A
ay a1 Qi+l Qn+1

=1

Where $= Cpmp - l’ Tr = Tr W(Ko)/va res= reSXl,‘..,Xnv
I(a) = Iog (e”/e®), (O asXi L xIN 8 = 3 Frob(as) X2 - XL,

Theorem 1. Themap V(, )., iswell defined, multilinear and symbolic. It induces a
homomor phism

K (K)/p™ x K*/K*P" — ji,m
and since V' is sequentially continuous, a homomor phism
V(Y KP(K)/p™ x K*JK*P" — pym

which is non-degenerate.

Comment on Proof. A set of elements ¢4, ...,t,, j,w (where j runsover a subset
of Z")iscalled a Shafarevich basis of K*/K**™ if
(1) every a € K* can be written as a convergent product o = till . tin I 5;%0
mod K*P", b;,c € Z,.
2 V({t, ...,tn},gj)m =1, V({ts, .. tn},w)
An important element of a Shafarevich basis is w(a) = E(as(X))|x, =t,,....x;=t;

where
2

B(f(X)) = exp<(1+ Sals )(f(X))>

a € W(Ko).
Now take the following elements as a Shafarevich basisof K*/K*P":
— ¢dements iy, ..., t,,
— eements e, = 1+0tJ ... ¢t where p{gcd(j1, ..., Jn),
0< (1, -+ Jn) < plet, ..., en)/(p — 1), where (e, ...,e,) = v(p), v isthe
discrete valuation of rank n associated to tq, ..., %,
—  w =w(a) where a isan appropriate generator of W (Kp)/(F — L)W (Ko).
Using thisbasisit isrelatively easy to show that V'( , ),,, isnon-degenerate.
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In particular, for every 6 € R* thereis §’ € R* such that
V({l + et;" s t,_'i|_17 tl? M 757 et 7t'ﬂ}7 1 + e/tﬁe"/(p_l)_i" e tiel/(p_l)_il)m = Cpm

where i; isprimeto p, 0 < (i1, ...,i,) <ple1, ...,en)/(p—1) and (e1, ...,€e,) =

v(p).

Theorem 2. Every open subgroup N of finite index in K'°P(K) such that N O
p™ K P(K) isthe orthogonal complement with respect to V(. ),,, of asubgroup in
K* K",

Remark. Given higher local class field theory one defines the Hilbert symbol for [
suchthat [ isnot divisible by char (K), u; < K* as

(O Kn(K)/lx K*JK*Y = (¢),  (z,8), =4¥x@)-1

where 4! = 3, Wg: K, (K) — Ga(K®/K) isthe reciprocity map.

If [ isprimeto p, then the Hilbert symbol (, ); coincides (up to a sign) with the
(¢ — 1)/Ith power of the tame symbol of 6.4.2. If | = p™, then the p™ th Hilbert
symbol coincides (up to asign) with the symbol V(, ),,.
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9. Exponential maps and explicit formulas

Masato Kurihara

In this section we introduce an exponential homomorphism for the Milnor K -groups
for a complete discrete valuation field of mixed characteristics.

In general, to work with the additive group is easier than with the multiplicative
group, and the exponential map can be used to understand the structure of the multi-
plicative group by using that of the additive group. Wewould like to study the structure
of K,(K) for acomplete discrete valuation field /& of mixed characteristicsin order
to obtain arithmetic information of K. Note that the Milnor K -groups can be viewed
as a generalization of the multiplicative group. Our exponential map reduces some
problems in the Milnor K -groups to those of the differential modules Q;,  whichis
relatively easier than the Milnor K -groups.

As an application, we study explicit formulas of certain type.

9.1. Notation and exponential homomor phisms

Let K be acomplete discrete valuation field of mixed characteristics (0, p). Let Ok
be the ring of integers, and F' beitsthe residue field. Denote by ord,: K* — Q the
additive valuation normalized by ord,(p) = 1. For n € O we have an exponential
homomorphism

exp,: 0 — K*,  aw expna) =Y (na)"/n!
=)

if ord,(n) > 1/(p —1).
For ¢ > 0 let K,(K) bethe ¢thMilnor K -group, and define K ,(K) asthe p-adic
completion of K (K), i.e.

K (K) =limK,(K) ® Z/p".
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92 M. Kurihara

For aring A, we denote as usual by Qi the module of the absolute differentials,
ie Q} =Q,. Forafield F of characteristic p and a p-base I of F, Qf isan
F-vector space with basis dt (t € I). Let K be as above, and consider the p-adic
completion Q}  of Q}

Qp, =limQs, ©Z/p".

Wetakealifting I of a p-base I of F, andtakeaprimeelement 7 of K. Then, ﬁl

isan Ox-module (topologlcally) generated by dm and dT (T € I) ([Ku1, Lemma
1.1]). If I isfinite, then Q1 is generated by dm and dT (T € I) in the ordinary
sense. Put

QY =04,
Theorem ([Ku3]). Let n € K bean element such that ord,(n) > 2/(p — 1). Thenfor
q > 0 there exists a homomor phism

exp@: QY — K (K)

such that
db db,_
expﬁf)(ab—l Ao A LY = {exp(na), b, . .., by_1}
1 q—
forany a € O andany by, ...,b,—1 € OF.
Note that we have no assumptionon F' ( F' may beimperfect). For by, ...,b,_1 €
Ok wehave

exp(a-dby A -+ Adby_1) = {expnaby - - bg_1),b1, ... bg-1}.

9.2. Explicit formula of Sen

Let K be afinite extension of Q, and assume that a primitive p" th root ¢, isin
K. Denoteby Ky thesubfield of K suchthat K /Ky istotally ramified and Ko/Q,
is unramified. Let = be a prime element of O, and g(T') and h(T) € Ok, [T] be
polynomias such that g(r) = 5 and h(rm) = (,», respectively. Assumethat o satisfies
ord,(a) > 2/(p— 1) and 3 € O}. Then, Sen'sformula([S]) is

1
@H=Gr o= T, (2510

where (o, 3) isthe Hilbert symbol defined by (c, 5) = v 1Wg(a)(y) where 4?" = 3
and Wy isthe reciprocity map.

The existence of our exponential homomorphism introduced in the previous sub-
section helps to provide a new proof of this formula by reducing it to Artin—Hasse's

log )
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formulafor (o, (pn). Infact, put £ = Q,((,»), andlet n bean element of £ such that
ord,(n) = 2/(p — 1). Then, the commutative diagram

~ ex ~
0L 2 Ry(K)

Trl Nl
QL P Rk

(N: IA(Z(K) — I?z(k) is the norm map of the Milnor K -groups, and Tr'ﬁ1 —

Q1 is the trace map of differential modules) reduces the calculation of the H|Ibert
symbol of elements in K to that of the Hilbert symbol of elements in k& (namely
reduces the problem to Iwasawa' sformula[l]).

Further, since any element of ﬁ%}k can be written in the form ad,» /(,», we can
reduce the problem to the calculation of (c, (,n).

In the same way, we can construct a formula of Sen’stype for a higher dimensional
local field (see [Ku3]), using a commutat