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All Fuchsian Schottky groups are
classical Schottky groups

Jack Button

Abstract Not all Schottky groups of Möbius transformations are classi-
cal Schottky groups. In this paper we show that all Fuchsian Schottky
groups are classical Schottky groups, but not necessarily on the same set of
generators.
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1 Introduction

A Schottky group of genus g is a group of Möbius transformations acting on
the Riemann sphere C generated by g elements Ai; 1 � i � g , each of which
possesses a pair of Jordan curves Ci; C

0
i � C, with the property that the 2g

curves are mutually disjoint and that Ai maps Ci onto C 0i where the outside
of Ci is sent onto the inside of C 0i . Direct use of combination theorems tells us
that the resulting group is free on g generators, is discrete with a fundamental
domain the region exterior to the 2g curves, and consists entirely of loxodromic
and hyperbolic elements.

If in addition we can take all the Jordan curves to be geometric circles then the
resulting group is called a classical Schottky group (or sometimes in order to
be more speci�c we say it is classical on the generators A1; : : : ; Ag ). Marden
[2] showed that not all Schottky groups are classical Schottky groups. Put very
briefly, he argued that the algebraic limit of classical Schottky groups must be
geometrically �nite and so his isomorphism theorem implies that the ordinary
set Ω of this limit cannot be empty. But most groups on the boundary of
Schottky space have an empty ordinary set, so Schottky space strictly contains
classical Schottky space. However, this argument is certainly non-constructive,
raising the question of �nding an explicit nonclassical Schottky group. Zarrow
[7] claimed to have found such an example, but the paper of Sato [5] shows
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that it is in fact a classical Schottky group. A little later Yamamoto [6] did
construct a nonclassical Schottky group.

The purpose of this paper is to show that if we examine the most straightfor-
ward cases where we might expect to �nd a counterexample, namely Fuchsian
Schottky groups, then this approach is doomed to failure as all such groups are
classical Schottky groups. Speci�cally we show that:

(1) Given a Fuchsian Schottky group G of any genus g then there exists a
generating set for G of g hyperbolic Möbius transformations on which G is
classical.

(2) The Fuchsian Schottky group G is classical on all possible generating sets
if and only if g = 2 and G is generated by a pair of hyperbolic elements with
intersecting axes.

(3) There exists a Fuchsian group which is Schottky on a particular generating
set, but which cannot be classical on those generators.

The author would like to thank the referee for comments on an earlier draft of
this paper.

2 Proof of Main Theorem

Given any �nitely generated Fuchsian group G (namely a discrete subgroup
of PSL(2;R)) containing no elliptic elements, we form the quotient surface
S = U=G where U is the upper half plane. The complete hyperbolic surface S
has ideal boundary @S = (R \ ΩG)=G, where R is the boundary of U in the
Riemann sphere C and ΩG is the ordinary set of G. Note that G is Schottky
if and only if S is a closed surface minus at least one hole (although S cannot
be a one-holed sphere). This is because a Fuchsian group G with a quotient
surface S as above must be free and purely hyperbolic, and this implies (see,
say [3]) that G is indeed Schottky.

If S is a surface of genus n with h holes then G will be a free group of some rank
r . The process of doubling S along its boundary corresponds to considering
the quotient of the whole ordinary set ΩG by G. As G is a Schottky group,
ΩG=G is topologically a closed surface of genus r . Therefore we conclude that
r = 2n+ h− 1 (with n � 0; h � 1 and r � 1).

The idea of the proof of theorem 1 is that given any such surface S = U=G, we
�nd a particular reference surface, homeomorphic to S , which has a system of
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simple closed geodesics γ1; : : : ; γr corresponding to a generating set for G. We
also �nd disjoint complete simple geodesics l1; : : : ; lr on this reference surface
which are properly embedded (they can be thought of as having their endpoints
up the \spouts"), where li intersects γi once and is disjoint from γj (j 6= i).
We will �nd that if we cut along these geodesics l1; : : : ; lr , a disc is obtained.
We are then able to transfer these curves across to S . By viewing the process
upstairs in the upper half plane U we get a fundamental domain for G, and
then we can see directly that G is classical Schottky on our generating set.

Theorem 1 Given a Fuchsian Schottky group G of any genus g then there
exists a generating set for G of g hyperbolic Möbius transformations on which
G is classical.

Proof We prove the result by taking a standard Fuchsian classical Schottky
group Gn;h for each possible topological surface of genus n and h holes, and
transfer the two sets of geodesics to curves on any other surface homeomorphic
to U=Gn;h . These can be replaced by geodesics with all necessary properties
preserved.

First consider h = 1. We choose 2n hyperbolic elements A1; : : : ; A2n so that
their axes all intersect at the same point, and ensure that Gn;1 = hA1; : : : ; A2ni
is classical Schottky by choosing the multipliers of the Ai in order to obtain for
each group hAii a fundamental domain �i consisting of the intersection of the
exteriors of two geodesics Li and L0i = Ai(Li) so that all conditions of the free
product combination theorem are satis�ed; namely that

�i [�j = U for i 6= j and
\
i

�i 6= ;:

Then we have a fundamental domain �n;1 (homeomorphic to a disc) for the
discrete group Gn;1 . There is one cycle of boundary intervals and so by the
discussion above, the surface Sn;1 = U=Gn;1 is indeed of genus n with boundary
a circle.

We can project the axes of Ai down onto the surface to obtain our simple closed
geodesics γi , and do the same with each Li , which gives us the complete simple
geodesic li right up to its two endpoints on the boundary. These have the
appropriate properties mentioned earlier, and we see that the surface becomes
a disc after cutting along all the geodesics l1; : : : l2n .

The group G2;1 and the projection of these geodesics are illustrated in �gures
1 and 2.
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Figure 1 Figure 2

In order to construct Gn;h when h � 2, take Gn;1 and choose an open interval
I between one endpoint of some Li and the nearest endpoint of a neighbouring
geodesic Lj . This interval lies inside the ordinary set of Gn;1 . Then inductively
nest h−1 geodesics inside the previous one, so that each geodesic has endpoints
in I . We then �nd hyperbolic transformations A2n+1; : : : ; A2n+h−1 with axes
these geodesics and with each transformation having two geodesics Li and
L0i = Ai(Li), where 2n+1 � i � 2n+h−1, which it pairs. If these fundamental
domains are correctly placed then Gn;h = hA1; : : : A2n+h−1i is a discrete group
having the correct quotient surface Sn;h = U=Gn;h with a disc for a fundamental
domain �n;h , where @�n;h consists of 4n+ 2h− 2 geodesics Li and L0i , along
with the same number of intervals of R. The geodesics and intervals alternate
as we go round the boundary of the disc. Also the projections of these axes and
of these paired geodesics which de�ne γi and li have all the same properties as
mentioned before. The case n = 1, h = 5 is pictured in �gures 3 and 4.

Now given any Fuchsian Schottky group G with quotient surface S and bound-
ary @S , there exists a homeomorphism

h: Sn;h [ @Sn;h 7! S [ @S

for some n and h. We also have natural continuous projections

p : U [ (ΩGn;h \ R) 7! Sn;h [ @Sn;h
q : U [ (ΩG \ R) 7! S [ @S

where p and q are both covering maps, and both domains are simply connected
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Figure 3 Figure 4

covering spaces of their images (where the elementary neighbourhoods of points
downstairs are open discs, or half discs for points on the boundary).

By the lifting theorem, we have a continuous map

H: U [ (ΩGn;h \ R) 7! U [ (ΩG \ R)

which is a lift of hp, so that hp = qH . By reversing p and q , we see that H is
a homeomorphism.

Take any element g 2 Gn;h . This is a deck transformation of p and so pg =
p. Conjugating g by H , we have q(HgH−1) = q , thus HgH−1 is a deck
transformation of q and therefore H de�nes an isomorphism of Gn;h onto G
by conjugation.

Note that H maps U to U and ΩGn;h \ R to ΩG \ R, because it is a lift of h
which sends boundary points to and from boundary points. Therefore the image
under H of the fundamental domain �n;h is a disc in U . But H(@�n;h) will
consist of 4n+2h−2 disjoint closed intervals of R, along with curves H(Li) and
H(L0i) lying entirely in U apart from their endpoints which are also endpoints of
these intervals of R. We �nd that the order in which the images under H of the
Li , L0i and the intervals appear around @H(�n;h) = H(@�n;h) � U [ (ΩG \R)
is the same as the original order around @�n;h (or the opposite order if H is
orientation reversing).

By setting Bi = HAiH
−1 we obtain a generating set for G, and because Ai

sends the geodesic Li to L0i , we see that Bi sends the curve H(Li) to the curve
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H(L0i). Also it is easy to check that the disc H(�n;h) is a fundamental domain
for the action of G on U . In particular, the intersection of the exteriors in U
of H(Li) and H(L0i) is a fundamental domain for hBii. We replace these two
curves by geodesics Mi and M 0i = Bi(Mi) which have the same endpoints. Just
as in [1], this gives us 2n+h−1 pairs of geodesics freely homotopic to the curves
they replaced, and paired by a generating set Bi with another fundamental
domain Di for each group hBii that lies between these two geodesics. The
free product combination theorem can be applied to hB1i; : : : hB2n+h−1i, as
Di [ Dj = U for i 6= j and

T
iDi 6= ;. We can see this by looking at the

endpoints of the geodesics which have not been changed when passing from
curves. Therefore, by reflecting this picture in the real axis, the group G is
generated by elements Bi , each of which possesses a pair of mutually disjoint
geometric circles Ci and C 0i , with the outside of Ci being sent by Bi onto the
inside of C 0i . By de�nition, G is a classical Schottky group.

>

>

> >

><

A B

AB BA

B−1A

BA−1

Figure 5

3 Proof of other Theorems

Suppose we are given any two hyperbolic elements A and B with di�erent axes.
We want to know when G = hA;Bi is free, discrete and purely hyperbolic (hence
Schottky). This problem falls naturally into two cases.

(A) The two hyperbolic elements have intersecting axes. Then it is well known
that G is free, discrete and purely hyperbolic if and only if the commutator
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Figure 6

ABA−1B−1 is hyperbolic. See for instance [4] where this is shown by explicitly
exhibiting two pairs of geometric circles, one paired by A and one by B . In this
case the quotient surface is a one holed torus and, as any generating pair will
have intersecting axes, we see that G is classical on every possible generating
pair.

Alternatively we can see this directly from section 1 by using the fact that there
will exist a homeomorphism from our standard surface to the quotient surface
of G that takes the two simple closed geodesics γ1; γ2 onto two curves freely
homotopic to the simple closed geodesics corresponding to any generating pair
of G.

(B) The hyperbolic elements have non-intersecting axes. If so then all gener-
ating pairs of G must have non-intersecting axes, or else we are back in case
(A).

First suppose G is a classical Schottky group on these two generators A and
B . Without loss of generality we can replace any generator by its inverse so
that we get a picture such as the one in �gure 5, with the arrows on the two
generators in the same direction. The quotient surface is a three holed sphere.
Note that the axis of AB projects down onto a \�gure of eight" geodesic, and
so this group cannot be classical on the generating pair hA;ABi.

Theorem 2 A group G that has a quotient surface which is not a one holed
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torus cannot be classical on all generating sets.

Proof We have already considered any G generated by two elements. Given
any G generated by three or more elements, we can �nd a pair of generators with
non-intersecting axes, and use the above argument on the subgroup generated
by this pair. As the subgroup is not classical on all generating sets, nor is
G.

Finally we show the existence of a Fuchsian group generated by two elements
which is Schottky, but not classical, on this generating pair.

Lemma 1 A group G = hA;Bi (where A and B are hyperbolic elements with
non-intersecting axes, oriented as in �gure 5) is classical on hA;Bi if and only if
both �xed points of B−1A lie in the interval between the repelling �xed points
of A and B .

Proof If we know G is classical on hA;Bi then we can build up a pattern of
nested circles as in �gure 5, and see the location of the �xed points of the axes
directly. Conversely if we only have information as in �gure 6 then we consider
the image of a suitable point x under the generators.

The axis of B−1A is sent to the axis of BA−1 by both generators, and also
note that the arrows on BA−1 and B−1A are as in the picture (for instance
consider the image of a �xed point of A). Then we choose any x inside the
interval enclosed by the axis of B−1A, and mark it and its images under A and
B . We can take any two points y and z in the interval between Ax and Bx,
and use these as endpoints for the geometric circles we require.

We can see that A−1y will be closer than x to the repelling �xed point of
A, and similarly with B−1z and B . This gives us four endpoints y; z;A−1y
and B−1z , one for each circle. We have four more endpoints to mark but this
choice is totally arbitrary: merely pick any point in the interval between A’s
�xed points, along with its image under A, and do the same for B too. This
provides us with our two pairs of circles which show that G is discrete, and
classical on hA;Bi.

Theorem 3 The Fuchsian group in �gure 7, which is Schottky on the gener-
ators A and B , is not classical on them.

Proof The exterior F of the two pairs of curves CA; C 0A (paired by A) and
CB ; C

0
B (paired by B ) is a fundamental domain, and is sent by the element

BA−1 inside the circle C(= B (CA)). The attracting �xed point of BA−1 must
lie inside C and therefore it separates the �xed points of A.
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