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On the fixed-point set of automorphisms of
non-orientable surfaces without boundary

M Izquierdo

D Singerman

Abstract Macbeath gave a formula for the number of fixed points for
each non-identity element of a cyclic group of automorphisms of a compact
Riemann surface in terms of the universal covering transformation group
of the cyclic group. We observe that this formula generalizes to determine
the fixed-point set of each non-identity element of a cyclic group of auto-
morphisms acting on a closed non-orientable surface with one exception;
namely, when this element has order 2. In this case the fixed-point set
may have simple closed curves (called ovals) as well as fixed points. In this
note we extend Macbeath’s results to include the number of ovals and also
determine whether they are twisted or not.
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1 Introduction

Let Y be a compact non-orientable Klein surface of genus p ≥ 3. By genus
here we mean the number of cross-caps of the surface. Let t: Y → Y be an
automorphism of order M . If 1 ≤ i < M and if i 6= M/2 then the fixed-point
set of ti consists of isolated fixed points and their number can be calculated,
as described below, by a formula which is completely analogous to Macbeath’s
formula [5] concerning automorphisms of Riemann surfaces. However, if M =
2N then the fixed-point set of the involution tN consists of a finite number
n of disjoint simple closed curves called ovals together with a finite number of
isolated fixed points [2], [6]. The ovals may be twisted or untwisted which means
that they have Möbius band or annular neigbourhoods respectively.
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In this note we calculate the number of ovals and isolated fixed-points of tN

and whether the ovals are twisted or not.

The information is given, as in Macbeath [5] in terms of the universal covering
transformation group.

The authors acknowledge Mälardalen University and the Swedish Natural Sci-
ence Research Council for financial support.

2 The universal covering transformation group

If Y is a compact non-orientable Klein surface of genus p ≥ 3 then the orientable
two-sheeted covering surface of Y has genus ≥ 2, so that the universal covering
space of Y is the upper half-plane H (with the hyperbolic metric) and the group
of covering transformations is a non-orientable surface subgroup K generated
by glide-reflections. If G is a group of automorphisms of Y then the elements
of G lift to a non-euclidean crystallographic (NEC) group Γ acting on H. There
is a smooth epimorphism

θ: Γ→ G (1)

whose kernel is K , where smooth means that θ preserves the orders of elements
of finite order in Γ. The transformation group (Γ,H) is called the universal
covering transformation group of (G,Y ).

Now let G = 〈t|t2N = 1〉 be a cyclic group of order 2N . As θ is smooth we
must have θ(c) = tN for every reflection c in Γ. Also we cannot have two
distinct reflections in Γ whose product has finite order. So it follows, in the
canonical presentation of NEC groups as given in [4] or [3], that Γ has empty
period cycles.

Thus Γ has signature of the form

s(Γ) = (g;±; [m1, ...,mn]; {( )k}) (2)

with k empty period cycles; then Γ has one of the two presentations depending
on whether there is a + or a − in the signature;

for the (+) case

x1, . . . , xn, e1, . . . , ek, c1, . . . , ck, a1, b1, . . . , ag, bg |
xmii = 1, i = 1, ..., n, c2j = cje

−1
j cjej = 1, j = 1, ..., k,

x1...xne1...eka1b1a
−1
1 b−1

1 ...agbgagh
−1b−1

g (3)
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for the (−) case

x1, . . . , xn, e1, . . . , ek, c1, . . . , ck, d1, ..., dg |
xmii = 1, i = 1, ..., n, c2j = cje

−1
j cjej = 1, j = 1, ..., k, x1...xne1...ekd

2
1...d

2
g (4)

In these presentations the generators xi are elliptic elements, the generators
cj are reflections, the generating reflections of Γ, and the generators ej are
orientation-preserving transformations called the connecting generators. Each
empty period cycle corresponds to a conjugacy class of reflections in Γ.

One important fact to note about these presentations is that the connecting
generator ej commutes with the generating reflection cj , and in fact the cen-
tralizer of cj in Γ is just the group gp〈cj , ej〉 ∼= C2 × C∞ . (See [8] )

3 The fixed-point set of a power of t

Let Y be a non-orientable surface of topological genus p ≥ 3 and let t be an
automorphism of order 2N . If 1 ≤ i < 2N and i 6= N then the number of
fixed points of the automorphism ti is given by Macbeath’s formula (see [5] ).
If ti has order d than ti has

2N
∑
d|mj

1
mj

(5)

fixed points, where mj runs over the periods in s(Γ).

This is because Macbeath’s proof (applying to Fuchsian groups) only uses the
facts that each period corresponds to a unique conjugacy class of elliptic ele-
ments of Γ, and each elliptic element has a unique fixed point in H. Now, the
number of isolated fixed points of ti is independent of the smooth epimorphism
θ above. However the epimorphism θ does play a part in the number of ovals
of tN .

Theorem 3.1 Let Y be a non-orientable surface of topological genus p ≥ 3.
Let G ∼= C2N = 〈t | t2N = 1〉 be a group of automorphisms of Y , and let θ and
Γ be as described in equations 1 and 2. If θ(ej) = tvj than the number of ovals
of the involution tN is

k∑
j=1

(N, vj) (6)

and the number of isolated fixed points of tN is

2N
∑

mj even

1
mj

.
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Proof Let Λ = θ−1(〈tN 〉) so that Λ contains the group K = Kerθ with index
2. Now, Λ must have signature of the form

s(Γ) = (g;±; [2(r)]; {( )s}) (7)

with r periods equal to 2 and s empty period cycles.

The reason that all periods in Λ are equal to 2 is because if mj in s(Γ) is even
then x

mj/2
j ∈ Λ and any elliptic element of Λ are conjugate to some xmj/2j (see

[7] ).

By results in [2] (see also [3]), r is the number of isolated fixed points of tN and
is given by Macbeath’s formula

2N
∑

mj even

1
mj

It also follows from [2] that the number of ovals of tN is just the number s
of period cycles in Λ, which corresponds to the number of conjugacy classes
of reflections in Λ. As a reflection cj in Λ belongs also to Γ and the group
Γ has k conjugacy classes of reflections, we just have to determine into how
many Λ–conjugacy classes the Γ–conjugacy class of cj splits. We shall use the
epimorphism θ to calculate this number.

There is a transitive action of Γ on the Λ–conjugacy classes of cj in Λ by
letting γ ∈ Γ map the reflection gcjg

−1 to gγcjγ
−1g−1 , with g ∈ Λ. (Because

Λ / Γ). Clearly, if λ ∈ Λ then λ has a trivial action on these Λ–conjugacy
classes. So we have an action of Γ/Λ ∼= C2N/C2

∼= CN on these classes. As the
centralizer of cj in Γ is just 〈cj , ej〉, the stabilizer of the Λ–conjugacy classes of
cj in Λ are the cosets Λ,Λej , . . . ,Λe

δj−1
j , where δj = expΛej , the least positive

power of ej that belongs to Λ. Now, let εj = expKej . Then either εj = δj or
εj = 2δj .

The additive group Z2N contains a subgroup isomorphic to ZN and a ∈ ZN
has order N

(N,a) in ZN so that a has the same order in Z2N if and only if
(2N, a) = 2(N, a). If (2N, a) = (N, a) then the order of a in Z2N is twice the
order of a in ZN and we then find that

εj = δj if (2N, vj) = 2(N, vj)

and
εj = 2δj if (2N, vj) = (N, vj),

where θ(ej) = tvj .
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By the above argument on the action of Γ/Λ on the Λ–conjugacy classes of cj
we see that the number of such classes is N/δj , which is

if εj = δj

N

δj
=

N

εj
=

N(2N, vj)
2N

=
(2N, vj)

2
= (N, vj),

or if εj = 2δj
N

δj
=

2N
εj

=
2N(2N, vj)

2N
= (2N, vj) = (N, vj)

Thus in both cases the generating reflection cj of Γ induces (N, vj) conjugacy
classes of reflections in Λ. Thus the number of ovals of tN in Y is

k∑
j=1

(N, vj) (8)

Theorem 3.2 The ovals of tN in Y induced by the j th period cycle in Γ are
twisted if (2N, vj) = (N, vj) and untwisted if (2N, vj) = 2(N, vj).

Proof As we have found in Theorem 3.1, the j th empty period cycle in Γ
induces (N, vj) empty period cycles in Λ. The generating reflections of these
period cycles are just conjugates of cj in Γ and, as the corresponding connecting
generator ej is just the orientation-preserving element generating the centralizer
of cj in Γ, we see that the connecting generator of each of the period cycles in
Λ induced by the j th period cycle in Γ is just conjugate to e

δj
j , δj = expΛej

as in the proof of Theorem 3.1. Now, let θ′: Λ → C2 = gp〈ξ〉, where ξ = tN ,
be the restriction of the epimorphism θ: Γ→ C2N . Then

if εj = δj

θ′(eδjj ) = θ′(eεjj ) = θ(eεjj ) = 1

if εj = 2δj

θ′(eδjj ) = θ′(e
εj
2
j ) = θ(e

εj
2
j ) = ξ,

ξ the generator of C2 . Generally, if c is the generating reflection of an empty
period cycle of Λ and e is the corresponding connecting generator then figures
1 and 2 show that θ′(e) = 1 corresponds to an untwisted oval while θ′(e) = ξ
corresponds to a twisted oval.

However, as in the proof of Theorem 3.1 εj = δj if and only if (2N, vj) =
2(N, vj) and hence we have untwisted ovals while εj = 2δj if and only if
(2N, vj) = (N, vj) and we have twisted ovals.
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ε

ε′

c(ε)

c(ε′)

F c(F )γ

ε

ε′

c(ε)

c(ε′)

F c(F)γ

Figure 1: θ′(e) = 1 so e ∈ K Figure 2: θ′(e) = ξ so ce ∈ K

4 Bounds and examples

In [6] (also see [2]) Scherrer showed that that if an involution of a non-orientable
surface of genus p has | F | fixed points and | V | ovals then

| F | +2 | V |≤ p+ 2.

In our examples we will show that for any integer N we can find a non-orientable
surface of genus p admitting a C2N action with generator t such that tN attains
the Scherrer bound.

Example 1 Bujalance [1] found the maximum order for an automorphism t
of a non-orientable surface Y of genus p ≥ 3; it is 2p for odd p and 2(p−1) for
even p. The universal covering transformation group Γ has signature s(Γ) =
(0; [2, p]; {( )}) for odd p, and signature s(Γ) = (0; [2, 2(p − 1)]; {( )}) for
even p. There is, essentially, only one way of defining the epimorphism θ in
each case:

if p is odd, we define θ: Γ → C2p by θ(x1) = tp , θ(x2) = t2 , θ(c) = tp , and
θ(e) = tp−2 ,

if p is even, we define θ: Γ→ C2(p−1) by θ(x1) = tp−1 , θ(x2) = t1 , θ(c) = tp−1 ,
and θ(e) = tp−2 .

Using Macbeath’s formula (5) we see that the involution tp has p fixed points
for surfaces of both odd and even genera. Now, if p is odd then the involution
tp also has, by Theorems 3.1 and 3.2, one twisted oval if p is odd as (p, p−2) =
(2p, p− 2) = 1. If p is even then the involution tp−1 has, by Theorems 3.1 and
3.2, one untwisted oval as (p−1, p−2) = 1 and (2(p−1), p−2) = 2(p, p−2) = 2.
We note that the involution tp obeys the Scherrer bound. Note that the orders
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of the cyclic groups in Bujulance’s examples are ≡ 2 mod 4. Our second
example shows that the Scherrer bound can be obtained for the involution in a
C4 action.

Example 2 Let Y be a non-orientable surface of genus p ≥ 3, and let t be
an automorphism of Y of order 4. Let Γ have signature

(0; +; [2(r), 4, 4]; ( )k)

and define a smooth epimorphism θ: Γ → C4 by mapping the generators of
order two to t2 , the two generators of order 4 to t and t−1 and the connecting
generators to the identity. We then find that for the involution t2 , | F |= 2r+2,
and | V |= 2k ,and p = 4k + 2r , so that we find infinitely many surfaces where
the Scherrer bound is attained for the involution in C4 . This is easily extended
to groups of order 4m by replacing the two periods 4 in the signature of Γ by
4m.
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