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Abstract

We describe a cooperad structure on the simplicial bar construction on a re-
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the ‘Lie’ operad structure on the homology groups of these derivatives. We also
extend the bar construction to modules over operads (and, dually, to comod-
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module over the operad formed by the derivatives of the identity.
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834 Michael Ching
Introduction

The motivation for this paper was an effort to construct an operad structure on
the derivatives (in the sense of Tom Goodwillie’s homotopy calculus [10, 11, 12])
of the identity functor I on the category of based spaces. Such an operad
structure has been ‘known’ intuitively by experts for some time but, as far as
the author knows, no explicit construction has previously been given. One piece
of evidence for such a structure is the calculation, due to various people, of the
homology of these derivatives. This homology is the suspension of the standard
Lie operad and so is itself an operad. It is reasonable to ask, therefore, if there
is an operad structure on the derivatives themselves! that induces this structure
on the homology.

Our construction is based on the partition poset model for the derivatives 0,1
described by Arone and Mahowald in [1]. They show that the derivatives are the
dual spectra associated to certain finite complexes known as the partition poset
complexes. In the present work we notice that these complexes are precisely
the simplicial bar construction? on the operad P in based spaces with P(n) =
SY for all n. Most of the paper is concerned with showing that such a bar
construction has a natural cooperad structure.> We do this by reinterpreting
the bar construction in terms of spaces of trees. The cooperad structure then
comes from a natural way to break trees apart. Taking duals, we get the
required operad structure on the derivatives of the identity. In fact, we can
view the derivatives of the identity as a cobar construction on the cooperad @
in spectra with Q(n) = S, the sphere spectrum, for all n.

In the final part of the paper (Section 9) we show that by taking homology
we do indeed recover the ‘Lie’ operad structure on H,(0,I). We do this by
introducing spectral sequences for calculating the homology of the topological
bar and cobar constructions. The E! terms of these spectral sequences can
be identified with algebraic versions of the bar and cobar constructions, which

'The Goodwillie derivatives of a homotopy functor are a sequence of spectra with
actions by the symmetric groups, but are only defined up to homotopy. By an operad
structure on these derivatives, we mean choices of models for these spectra in a suit-
able symmetric monoidal category, such as the category of S—modules of EKMM [6],
together with an operad structure on those models.

2See, for example, [16, Section 11.2.3] for the general form of the two-sided simplicial
bar construction.

3 After this paper was written, the author learnt that this result had already been
proved in unpublished work of Salvatore [17] using an alternative definition of the bar
construction on an operad. See Remark 4.7.
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Bar constructions for topological operads 835

in turn are related to the theory of Koszul duality for operads introduced by
Ginzburg and Kapranov in [9]. Our main result on this connection is that if
the homology of a topological operad P is Koszul, then the homology of the
bar construction B(P) is its Koszul dual cooperad. In our case of interest, we
deduce that the induced operad structure on the homology of the derivatives
of the identity is that of the Koszul dual of the cocommutative cooperad. This
is precisely the ‘Lie’ operad structure referred to above.

Outline of the paper

We now give a more detailed description of the paper. The first two sections are
concerned with preliminaries. In Section 1 we recall the notions of symmetric
monoidal and enriched categories and specify the categories we will be working
with in this paper. These are symmetric monoidal categories that are enriched,
tensored and cotensored over the category 7 of based compactly-generated
spaces (where 7 is a symmetric monoidal category with respect to the smash
product). It is to operads in these categories that we refer in the title when
we say ‘topological operads’. We also require an extra condition that relates
the symmetric monoidal structure to the tensoring over 7. This condition (see
Definition 1.10) is crucial to our later constructions. The two main examples
of categories satisfying our requirements are: based spaces themselves, and a
suitable symmetric monoidal category of spectra, such as that of EKMM [6].

In Section 2 we recall the definitions of operads and cooperads. We should
stress that the constructions of this paper apply only to what we call reduced
operads and cooperads. These are P with P(0) = % and P(1) = S the unit of
the symmetric monoidal structure. The bar construction can still be defined for
more general operads, but the cooperad structure described here does not seem
to extend to such cases. In this section we also define modules and comodules
over operads and cooperads respectively.

The real substance of the paper starts in Section 3. Here we define the trees
that will form the combinatorial heart of our description of the bar and cobar
constructions. It is not a coincidence that these trees are the same species used
by, for example, Getzler and Jones in their work [8] on the bar constructions for
algebraic operads and Koszul duality. We also describe what we call a weighting
on a tree (Definition 3.7), that is, a suitable assignment of lengths to the edges
of the tree. The spaces w(T) of weightings are at the heart of everything we
do in this paper.

In Section 4.1 we give our description of the bar construction on an operad
in terms of such trees. If P is an operad of based spaces, we can think of a
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836 Michael Ching

point in the bar construction B(P) as a weighted tree (that is, a tree with
lengths assigned to the edges) with vertices labelled by points coming from the
spaces P(n). See Definition 4.1 for a precise statement and Definition 4.4 for
a more formal approach. In Section 4.2 we show that what we have defined is
isomorphic to the standard simplicial bar construction on an operad.

In Section 4.3 we concern ourselves with the cooperad structure on B(P). This
is given by the process of ‘ungrafting’ trees (see Definition 4.14 and beyond).
This involves taking a weighted, labelled tree and breaking it up into smaller
trees. Finding the right way to weight and label these smaller trees gives us the
required cooperad structure maps.

One of the advantages of the way we have set up the theory is that the cobar
construction on a cooperad is strictly dual to the bar construction on an operad.
In Section 5 we go through the definitions and results dual to those of Section 4.

The short section Section 6 is devoted to a simple but key result (Proposition
6.4) that relates the bar and cobar constructions via a duality functor that
reduces to Spanier-Whitehead duality in the case of spectra. This result says
that, under the right circumstances, the dual of the bar construction on an
operad P is isomorphic to the cobar construction on the dual of P. This allows
us, later on, to identify the derivatives of the identity as the cobar construction
on a cooperad of spectra.

Before turning to our main example and application, we deal in Section 7 with
the two-sided bar and cobar constructions. These include the bar construction
for a module over an operad and, dually, the cobar construction for a comodule
over a cooperad. To describe these requires a fairly simple generalization of
much of the work we did in Sections 3-4, in particular, a more general notion
of tree (see Definition 7.1).

Finally, in Section 8 we are able to complete the main aim of this paper. We
identify the partition poset complexes with a bar construction and deduce the
existence of an operad structure on the derivatives of the identity functor (Corol-
lary 8.8). We also give examples of modules over the resulting operad, including,
in particular, a module Mx naturally associated to a based space X.

The last section of the paper Section 9 is concerned with the relationship of our
work to the algebraic bar construction and Koszul operads. As promised, we
construct a spectral sequence (Proposition 9.39) relating the two and deduce
the result on Koszul duality (Proposition 9.48).

Geometry € Topology, Volume 9 (2005)



Bar constructions for topological operads 837

Future Work

The work of this paper raises various questions that seem to the author to
warrant further attention:

e What is the homotopy theory of the topological bar and cobar construc-
tions? In particular, how do they relate to known model structures on the
categories of operads and cooperads (see, for example, Berger-Moerdijk
[2))?

e Is there a deeper relationship between Goodwillie’s homotopy calculus
and the theory of operads? The present paper does not do any calculus,
the only connection being via the partition poset complexes. One might
ask, for example, if the derivatives of other functors can be described
and/or treated using these ideas.

e What object is described by an algebra or module over the operad formed
by the derivatives of the identity? In Remark 8.10 we show that a based
space X gives rise to such a module. How much of (the homotopy theory
of) the space X is retained by this module?
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1 Symmetric monoidal and enriched categories

On the one hand, the bar and cobar constructions are most easily defined
(and understood) in the category of based spaces. On the other hand, our
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838 Michael Ching

main application is in a category of spectra. We will develop the theory in a
general setting that encompasses both cases. This approach will also allow us
to appreciate more readily the duality between the bar and cobar constructions.

In this section we recall the basic theory of symmetric monoidal and enriched
categories (see [3, Section 6] for a detailed account). We state precisely (Defini-
tion 1.10) the structure we will require of a category to make the bar and cobar
constructions in it. The only material in this chapter that is not standard is the
definition of enriched symmetric monoidal categories or ‘symmetric monoidal
V—categories’ as we have called them (Definition 1.10). The ‘distributivity’
morphism described there is a key component of the constructions made later
in the paper and so we draw the reader’s attention to it now.

Definition 1.1 (Symmetric monoidal categories) A monoidal category con-
sists of

e a (locally small) category V,

e a functor —A—: VxV =V,

e a unit object I in V together with natural isomorphisms X A ] = X =
IAX,

e a natural associativity isomorphism X A (Y AZ)=Z (X ANY )N Z,

such that the appropriate three coherence diagrams commute [15, Section VII].
A symmetric monoidal category is a monoidal category together with

e a natural symmetry isomorphism X AY =Y A X,

such that four additional coherence diagrams also commute. We will denote
such a symmetric monoidal category by (V, A, I), or just V with the rest of the
structure understood.

Remark 1.2 We will not give names to the associativity and symmetry iso-
morphisms in a symmetric monoidal category. When we write unbracketed

expressions such as
XANYNZ

or unordered expressions such as

/\ X

acA
we mean any one particular choice of ordering and bracketing. Different choices
are related by the appropriate associativity and commutativity isomorphisms
between them. A map to or from a particular choice determines a map to or
from any other choice by composing with the relevant isomorphism.
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Bar constructions for topological operads 839

Definition 1.3 A closed symmetric monoidal category is a symmetric mon-
oidal category (V, A, I) together with a functor

VP xVY -V, (X,Y)— Map(X,Y)
and a natural isomorphism of sets
Homy (X AY, Z) & Homy (X, Map(Y, Z)),
where Homy(X,Y) is the set of morphisms from X to Y in the category V.
Remark 1.4 The natural isomorphism of sets in Definition 1.3 can be made

into an isomorphism within V. That is, in any closed symmetric monoidal
category there is a natural isomorphism

Map(X AY, Z) = Map(X, Map(Y, Z)).
See [3, Section 6.5.3] for details.
Definition 1.5 (Enriched categories) Let (V,A,I) be a given closed sym-

metric monoidal category. A )V —category or category enriched over )V consists
of

e aclass C,
e for each pair of elements C, D € C, an object Mapy,(C, D) of V,
e composition morphisms
Mapy,(C, D) A Mapy,(D, E) — Mapy,(C, E)
for each C,D,FE € C,

e identity morphisms
I— MapV(C7 C)

for each C € C,
that satisfy the appropriate conditions [3, Section 6.2.1]. We will denote such
a V—category by C with the rest of the structure understood.
Remark 1.6 We include some basic observations about enriched categories
from [3, Section 6.2].

(1) Let (Set, x,*) be the symmetric monoidal category of sets under cartesian
product. A Set—category is then the same thing as a (locally small)
category.

Geometry € Topology, Volume 9 (2005)
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(2) A V-—category C has an underlying category whose objects are the ele-
ments of C and whose morphisms C' — D are the elements of the set
Homy (I, Mapy,(C, D)), where I is the unit object of V. We often there-
fore think of a V—category C as a normal category with extra structure
given by the objects Mapy,(C, D).

(3) A closed symmetric monoidal category V is enriched over itself with
Mapy,(X,Y) := Map(X,Y).

Definition 1.7 (Tensoring and cotensoring) Let C be a V—category. A ten-
soring of C over V is a functor

VxC—C (X,0)—XaC
together with a natural isomorphism
Mapy,(X ® C, D) = Map(X, Mapy,(C, D)).
A category C tensored over V is a V—category together with a chosen tensoring.
A cotensoring of C over V is a functor
VP xC — C; (X,D)— Mape(X, D)
together with a natural isomorphism
Map,(C, Map¢(X, D)) = Map(X, Mapy,(C, D)).
A category C cotensored over V is a V—category together with a chosen coten-
soring.
Remark 1.8 Here are some basic observations about tensorings and cotensor-
ings.

(1) A closed symmetric monoidal category (V,A,I) is tensored and coten-
sored over itself with X ® Y := X AY and Mapy,(X,Y) := Map(X,Y).

(2) If C is tensored over V, we have natural isomorphisms
XAY)eC=Xe(Yel)

for X, Y € V and C € C. If C is cotensored over V, we have natural
isomorphisms

Mape (X A Y, C) = Mape (X, Map (Y, C))
for X, Y €V and C €C.

Geometry € Topology, Volume 9 (2005)



Bar constructions for topological operads 841

Proposition 1.9 Let C be a V—category. Then C°P has a natural enrichment
over V.4 If C is tensored, then C°P is naturally cotensored and vice versa.

Proof We define an enrichment on C°° by
MapV(Cop7 Dop) = Ma‘pV(D7 C)

where C°P is the object in C°P corresponding to C' € C. If —® — is a tensoring
for C then we get a cotensoring for C°P by setting

Mapeop (X, DP) := (X ® D)°P.
The required natural isomorphism comes from
Mapy,(C°P, Mapcop (X, DP)) = Mapy,(X ® D, C)
= Map(X, Mapy,(D,())
= Map(X, Mapy,(C°P, D°P)).

The vice versa part is similar. O

We are interested in categories that both are themselves symmetric monoidal
categories and are enriched over another symmetric monoidal category. The
following definition contains the properties of these that we require in this

paper.
Definition 1.10 Let (V,A,I) be a closed symmetric monoidal category. A
symmetric monoidal V —category consists of

e a symmetric monoidal category (C,A,S) with C enriched, tensored and
cotensored over V,

e a natural transformation
d: ( XAY)®(CAD)— (X®C)A(Y®D)
satisfying the following axioms:

e (Associativity) The diagram

(XAYAZ)®(CADAE) —%— (X AY)®(CAD))A(Z®E)

(X@O)VA((YAZ) @ (DAE) “2% (X ©C)A(Y @ D)A(Z @ E)

commutes for all X,Y,Z €V and C,D,FE €C.

“Here C°P denotes the opposite category of the category underlying C described in
Remark 1.6(2).
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842 Michael Ching

e (Unit) The composite
X@C2(XAD®(CAS) L (XeC)AI®S)2X®C

is the identity, for any X € V and C € C. Recall that I,S are the units
of the symmetric monoidal structures on V,C respectively.

The transformation d (for ‘distribute’) is our way of relating the symmetric
monoidal structures in the two categories. It will be essential in constructing
the cooperad structure on the bar construction of an operad (see Definition
4.26).

Remark 1.11 A closed symmetric monoidal category V is itself a symmetric
monoidal V-category with the transformation d given by the symmetry and
associativity isomorphism:

(XAY)A(CAD)=(XAC)A(Y AD)

Proposition 1.12 Let C be a symmetric monoidal V—category. Then CP is
naturally also a symmetric monoidal V—category.

Proof We already know from Proposition 1.9 that C°P is enriched, tensored
and cotensored over V and there is a canonical symmetric monoidal structure
on C° given by that on C. It therefore only remains to construct the map
d. The tensoring in C°P is given by the cotensoring in C. Therefore d for C°P
corresponds to the following map in C:

Map (X, C) A Mape(Y, D) — Mapo(X AY,C A D)
This is adjoint to a map

(X NY)® (Mape(X,C) AMapg(Y,D)) - CAD
constructed by first using d for C to get to

(X ® Mape (X, C)) A (Y @ Mape(Y, D))

and then using the evaluation maps

X ® Map¢(X,C) — C and Y ® Mape(Y, D) — D. O
An important property of the categories that we work with in this paper is
that they are pointed, that is, they have a null object * that is both initial and

terminal. The following proposition describes how null objects interact with
symmetric monoidal structures and enrichments.
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Proposition 1.13 Let (V,A,I) be a closed symmetric monoidal category that
is pointed with null object *. Then

* A X =% = Map(*, X) = Map(X, *)
for all X € V.

Moreover, let C be a category enriched over V. If C is tensored then x ® C' is
an initial object in C for all C € C. If C is cotensored then Map;(*, D) is a
terminal object in C for all D € C.

Finally, if C is both tensored and cotensored over V, then the initial and ter-
minal objects are isomorphic and so C is itself pointed.

Proof We observe that
Homy (x A X,Y) = Homy (%, Map(X,Y))

which has one element for any X,Y . This tells us that A X is initial and hence
isomorphic to *. The other isomorphisms in the first part of the proposition
are similar.

Next, the tensoring functor — ® C': V — C is a left adjoint so preserves an
initial object. Dually, the cotensoring functor Map,(—, D): V°P — C is a right
adjoint so preserves the terminal object. This gives us the second part.

Finally, if C is both tensored and cotensored, we get a map from the terminal
object to the initial object by

MapC(*aD) - I®MapC(*>D) — ®MapC(*7D)'

The first map here is an example of a general isomorphism C — I ® C' where
I is the unit object of V. The second map comes from [ — *. A map from
a terminal object to an initial object must be an isomorphism. Therefore C is
pointed. O

Examples 1.14 The categories with which we will mainly be concerned in
this paper are the following.

(1) Let 7 be the category of compactly generated based spaces and basepoint-
preserving continuous maps of [14]. Then 7 is a pointed closed symmetric
monoidal category under the usual smash product A, with unit the 0-
sphere S° and Map(X,Y) equal to the space of basepoint-preserving
maps X — Y.
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(2) Let Sp be the category of S—modules of EKMM [6]. Then (Sp, Ag, S) is a
symmetric monoidal 7—category, where S is the sphere spectrum and Ag
is the smash product of S—modules [6, Section II.1.1]. The enrichment,
tensoring and cotensoring are described in [6, Section VII.2.8]. For the
distributivity map d we have a natural isomorphism

d: (XAY)A(EAgF) = (X AE)Ag (Y AF)
given by the fact that X A E = (X AS) Ag E (see [6, Section 11.1.4]).

We will usually work with a general symmetric monoidal 7—category denoted
(C, A, S), but these examples will be foremost in our minds.

2 Operads and cooperads

In this section (C,A,S) denotes a pointed symmetric monoidal category with
null object . We will assume that C has all necessary limits and colimits and
write the coproduct in C as a wedge product using V.

Definition 2.1 (Symmetric sequences) A symmetric sequence in C is a func-
tor F' from the category of nonempty finite sets and bijections to C. For each
nonempty finite set A, the symmetric group X4 acts on F(A). We will write
F(n) for F({1,...,n}). Note that our symmetric sequences (and hence our
operads) do not have an F(0) term because our indexing sets are nonempty.
We will often write ‘finite set’ when we mean ‘nonempty finite set’ and these
will usually be labelled A, B,.... We write C* for the category of symmetric
sequences in C (whose morphisms are the natural transformations).

There are several different but equivalent ways to define operads (see Markl-
Shnider—Stasheff [16] for a comprehensive guide). We will use the following
definition.

Definition 2.2 (Operads) An operad in the symmetric monoidal category
(C, A, S) is a symmetric sequence P together with partial composition maps
—o4—: P(A)AP(B) — P(AU, B)

for each pair of finite sets A, B, and each a € A (where A U, B denotes
(A\{a}) I B), and a unit map

n: S — P(1).

The composition maps must be natural in A and B and must satisfy the
following four axioms:
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(1) The diagram

P(A) A P(B) A P(C)

Oa Kid‘/

P(AU, B)A P(C) —2— P(AU, BU, C)

idxob

commutes for all ¢« € A and b € B.

AUy (BU, C).)
(2) The diagram

P(A) A P(
P(A) A P(

o, Nid

B) A P(C)

C) A P(B)

0q ANid

P(A) A P(B U, C)

lw

(Notice that (A U,

P(AU, B) A P(C)

P(AUy C)A P(B) —*— P(AU, BU, C)

commutes for all a # a’ € A. (Notice that (AU,B)U,C =

(3) The diagram

commutes for all A.

(4) The diagram

commutes for all a €

obvious bijection A — AU, {1}.)
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A morphism of operads P — P’ is a morphism of symmetric sequences that
commutes with the composition and unit maps.

Definition 2.3 An augmentation of an operad P is a map ¢: P(1) — S such

that the composite
n

S —— P(1) —— §
is the identity on S. An augmented operad is an operad together with an
augmentation. An operad P is reduced if the unit map n: S — P(1) is an
isomorphism. A reduced operad has a unique augmentation given by the inverse
of the unit map. A morphism of augmented operads is a morphism of operads
that commutes with the augmentation.

Remark 2.4 Operads are a generalization of monoids for the symmetric mon-
oidal category (C,A,S). A monoid X in C gives rise to an operad Px with
Px(1) = X and Px(n) = x for n > 1. Conversely, given an operad P in the
symmetric monoidal category C, P(1) is a monoid in C.

An alternative definition of an operad is based on a monoidal structure on the
category of symmetric sequences. We define this monoidal structure now.

Definition 2.5 (Composition product of symmetric sequences) Let the com-
position product of the two symmetric sequences M, N be the symmetric se-
quence M o N with

(MoN)(A):= \/ M)A\ N(A4).

A=TT e, A, jeJ

The coproduct here is taken over all unordered partitions of A into a collection
of nonempty subsets {A4;};c;. The particular choice of indexing set is not
important in the sense that we do not sum over different J that index the same
partition. A bijection A — A’ determines a bijection between partitions of A
and partitions of A’ in an obvious way. Thus we match up the terms in the
coproducts that define (M o N)(A) and (M o N)(A"). If J and J' index two
corresponding partitions of A and A’ respectively, then we get a natural choice
of bijection J — J'. Moreover, if j € J and j' € J' correspond under this
bijection then we get a bijection A; — A;-, by restricting the bijection A — A’.
The actions of M and N on these bijections together give us an isomorphism

(M o N)(A) — (M o N)(A).

Thus M o N becomes a symmetric sequence in C.
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Definition 2.6 The unit symmetric sequence in the pointed symmetric mon-
oidal category (C,A,S) is the symmetric sequence I given by

14) = {s if |A] = 1;

x  otherwise;

where x is the null object of C.

Lemma 2.7 Let (C,A,S) be a pointed symmetric monoidal category. Then
for any symmetric sequence M there are natural isomorphisms

Mol=2M=]oM.

Proof For the finite set A, the only term that contributes to (M o I)(A)
comes from the partition of A into singleton subsets. This makes it clear that
Mol = M. The only term that contributes to (I o M)(A) comes from the
trivial partition of A into one subset, that is A itself. From this we see that
ToM=M. D

To get a monoidal structure on the category of symmetric sequences, we also
need an associativity isomorphism. This does not exist in general, although it
does in the case of the following lemma.

Lemma 2.8 Let (C,A,S) be a pointed symmetric monoidal category in which
A commutes with finite coproducts. Then there are natural isomorphisms
Lo(MoN)=(LoM)oN

for symmetric sequences L, M, N in C.

Proof Using the hypothesis that A commutes with finite coproducts, it is not
hard to see that each side is naturally isomorphic to the symmetric sequence
(Lo Mo N) given by

(Lo Mo N)(A) = \/ LIC)R \ M(B) A N\ N(Ay).
A=ILye p A, B=IT,cc: Be ceC beB

The coproduct here is over all partitions of A into nonempty subsets indexed
by some set B, together with a partition of B into subsets indexed by some C'.
Equivalently, the coproduct is indexed of pairs of partitions of A, one (indexed
by B) a refinement of the other (indexed by C). O

The following description of operads is due to Smirnov. See [16, Theorem 1.68]
for further details.
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Proposition 2.9 Let (C,A,S) be a pointed symmetric monoidal category in
which A commutes with finite coproducts. Then the composition product o
is a monoidal product on the category of symmetric sequences in C with unit
object I and unit and associativity isomorphisms given by Lemmas 2.7 and 2.8
respectively. In this case, an operad in C is precisely a monoid for this monoidal
product.

Proof One can easily check that the axioms for a monoidal structure are
satisfied. If P is an operad in C, the operad compositions make up a map

PoP— P
and the unit map 7 gives a map of symmetric sequences
I — P.

The operad axioms then translate into associativity and unit axioms that give
P the structure of a monoid under o. O

Remark 2.10 If C is a closed symmetric monoidal category then A has a right
adjoint and so preserves all colimits. In particular, the hypothesis of Lemma
2.8 holds and so we get a true monoidal structure on the symmetric sequences
in C.

Unfortunately, even when C is closed symmetric monoidal, its opposite category
C°P (with the standard symmetric monoidal structure) is unlikely to be closed.
Since we will want to dualize most of the results of this paper to be able to deal
with cooperads as well as operads, we need to get round this hypothesis. For
this, we notice that in general there are natural maps of symmetric sequences

(LoMoN)— Lo(MoN)
and
(LoMoN)— (LoM)oN

where (L o M o N) is defined as in the proof of Lemma 2.8. In general these
are not isomorphisms so we do not get a monoidal structure on the category
of symmetric sequences. However, it is possible to define monoids in this more
general case (see [5] for more details), and we get the following alternative
characterization of an operad.

Proposition 2.11 Let (C,A,S) be a pointed symmetric monoidal category.
An operad in C is equivalent to a symmetric sequence P together with maps

m: PoP—P;n: I —-P

of symmetric sequences such that the following diagrams commute:
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(1) Associativity:

(PoP)oP mel pop

7 X‘
(PoPoP) P

~ =

idom

Po(PoP) —— PoP

where the two initial arrows are the maps mentioned in Remark 2.10.

(2) Left unit:

idon
P —— PoP

(3) Right unit:

noid
P —— PoP

Remark 2.12 We will refer to an operad P as a monoid with respect to the
composition product, even when we do not in fact have a monoidal structure.
There are similarly defined notions of an object with a right or left action of a
monoid in this generalized setting. These give us right and left modules over
our operads which we now define.

Definition 2.13 (Modules over operads) A left module over the operad P is
a symmetric sequence M together with a left action of the monoid P, that is,
a map

l: PoM — M
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such that the diagrams

moid

(PoP)oM —— PoM

\
/

(PoPoM) M
\ /
PO(POM) idol PolM
and )
noid
M —— PoM
l
id
M
commute.

A right module over P is a symmetric sequence M with a right action of P,
that is a map
MoP— M

satisfying corresponding axioms. A (P, P)-bimodule is a symmetric sequence
M that is both a right and a left module over P such that

(PoM)oP —— MoP

PMP/ \M
/

T

Po(MoP) —— PoM
commutes. Clearly, P itself is a (P, P)-bimodule.

Remark 2.14 It’s useful to have a slightly more explicit description of a mod-
ule over an operad. The action map for a left P-module M consists of maps
P(r)yAM(Ay) A---ANM(A,) — M(A)
for every partition A =J];_, A; of a finite set A into nonempty subsets. Con-
versely, giving maps of this form that satisfy appropriate conditions uniquely

determines a left P-module. Similarly, a right module structure consists of
maps of the form

M(r) A P(A) A - A P(A,) — M(A).
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Remark 2.15 In the same way that operads are a generalization of monoids in
C, modules over those operads are generalization of modules over the monoids.
A module M over the monoid X gives rise to a module Pj; over the operad
Px described in Remark 2.4, with Py/(n) =% if n > 1 and Py (1) = M.

Remark 2.16 An augmentation for the operad P is equivalent to either a left
or right module structure on the unit symmetric sequence I.

The standard notion of an algebra over an operad is closely related to that of
a module. We briefly describe how this works.

Definition 2.17 (Algebras over an operad) An algebra over the operad P is
an object C € C together with maps

PR \C—C

acA

that satisfy appropriate naturality, associativity and unit axioms.
The following result allows us to construct a left P-module from a P-algebra.’

Lemma 2.18 Let C be an algebra over the operad P. Then there is a natural
left P—module structure on the constant symmetric sequence C' with C(A) = C
for all finite sets A.5

Proof The components of the module structure map Po(C — C' are given by
the algebra structure maps as follows:

P(r)AC(A))A---AC(A,) = P(r) AC™N — C = C(A) O

5There is a more basic way to view algebras over an operad as modules. This requires
us to introduce an M (0) term to our modules (that is, our symmetric sequences become
functors from the category of all finite sets, not just nonempty finite sets). With a
corresponding generalization of the composition product, and hence of the notion of
module, a P—algebra is equivalent to a left P—module concentrated in the M (0) term.
The reason we do not allow our modules to have this extra term is that the comodule
structure on the bar construction (see Section 7.2) would not then exist in general.

5The obvious converse to this Lemma is not true. That is, a constant symmetric
sequence together with a left P-module structure need not arise from a P-algebra.
The construction given in the proof of this lemma forces different components of the
module structure map to be the same which need not be the same in general.
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Definition 2.19 (Cooperads) The notion of a cooperad is dual to that of
an operad. That is, a cooperad in C is an operad in the opposite category
C°P with the canonical symmetric monoidal structure determined by that in C.
More explicitly, a cooperad consists of a symmetric sequence @) in C together
with cocomposition maps

Q(AUs B) — Q(A) AQ(B)

and a counit map

Q) — S

satisfying axioms dual to (1)—(4) of Definition 2.2. A morphism of cooperads
is a morphism of symmetric sequences that commutes with the cocomposition
and counit maps. A coaugmentation for a cooperad is a map S — Q(1) left
inverse to the counit map. A cooperad @ is reduced if the counit map is an
isomorphism.

Remark 2.20 The description of an operad as a monoid for the composition
product of symmetric sequences naturally dualizes to cooperads. We define
the dual composition product © of two symmetric sequences by replacing the
coproduct in Definition 2.5 with a product. That is:

MaNA) = [ M)A N\NWA4,).
A:HjeJAj jed

If A commutes with finite products (which is in general not likely) this is a
monoidal product of symmetric sequences (the result dual to Proposition 2.9)
and a cooperad is precisely a comonoid for this product. In general we can
define the triple product (Lo M S N) by replacing coproduct with product in
the definition given in the proof of Lemma 2.8. We then have natural maps

(LSM)3N — (LSMGSN) and L3(M3N)— (L5M3N)

which allow us to say what we mean by a comonoid in general. Thus we get the
result dual to Proposition 2.11, that a cooperad in C is a symmetric sequence
@ together with maps

Q@—QoQ and Q—1I

such that the corresponding diagrams commute. In particular we have a coas-
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sociativity diagram:
QoQ — (Q°Q)oQ

/ \ o
Q (QeQ0Q)
\

—

QoQ — Qo(Q°Q)

Remark 2.21 In [8] Getzler and Jones define a cooperad to be a comonoid
for the composition product o. In their case, o and o are equal because finite
products are isomorphic to finite coproducts in the category of chain complexes.

Definition 2.22 (Comodules over a cooperad) A left comodule C over the
cooperad @ is a left module over () considered as an operad in C°P. More ex-
plicitly, C' is a symmetric sequence together with a left coaction of the comonoid
Q, that is, a map C' — Qo C. Equivalently, we have a suitable collection of
cocomposition maps

C(A) = Q(r)AC(A) A AC(Ay)

for partitions A = [[;_; A;. Similarly a right comodule is a symmetric sequence
C with a right coaction C' — C'©Q, or equivalently, cocomposition maps

C(A) = C(r) AQ(A) A+ AQ(Ay).

A bicomodule is a symmetric sequence with compatible left and right comodule
structures. The cooperad @ is itself a (Q, Q)-bicomodule.

A coalgebra over a cooperad is the dual concept of an algebra over an operad
and the constant symmetric sequence with value equal to a Q—coalgebra is a
left Q—comodule.

3 Spaces of trees

As mentioned in the introduction to the paper, the key to finding a cooperad
structure on the bar construction on an operad is its reinterpretation in terms of
trees. These are the same sorts of trees used in many other places to work with
operads. See Getzler-Jones [8], Ginzburg-Kapranov [9] and Markl-Shnider—
Stasheff [16] for many examples.

Geometry € Topology, Volume 9 (2005)



854 Michael Ching

Definition 3.1 (Trees) A typical tree of the sort we want is shown in Figure
1. It has a root element at the base, a single edge attached to the root, and
no other vertices with only one incoming edge. We encode these geometric
requirements in the following combinatorial definition. A tree T is a finite
poset satisfying the following conditions:

(1) T has at least two elements: an initial (or minimal) element r, the root,
and another element b such that b <t forall t € T, t # r.

(2) For any elements t,u,v € T, if u < ¢ and v < ¢, then either v < v or
v <u.

(3) For any t < wu in T with ¢ # r, there is some v € T such that ¢ < v but
u L.

We picture a tree by its graph, whose vertices are the elements of T' with an
edge between t and wu if ¢ < u and there is no v with ¢t < v < w. An incoming
edge to a vertex t is an edge corresponding to some relation ¢t < u. Condition
(1) above ensures that the tree has a root r with exactly one incoming edge
(that connects it to b). The second condition ensures that this graph is indeed
a tree in the usual sense. The third condition ensures that no vertices except
the root have exactly one incoming edge.

More terminology: the maximal elements of the tree 7" will be called leaves.
From now on, by a vertex, we mean an element other than the root or a leaf
(see Figure 1). A tree is binary if each vertex has precisely two incoming edges.
The root edge is the edge connected to the root element. The leaf edges are the
edges connected to the leaves. The other edges in the tree are internal edges.
Given a vertex v of a tree, we write i(v) for the set of incoming edges of the
vertex v. We generally denote trees with the letters T, U, ... .

Remark 3.2 We stress that our trees are not allowed to have vertices with
only one incoming edge, as guaranteed by condition (3) of the definition. This
reflects the fact that we will deal only with reduced operads in this paper.

Definition 3.3 (Labellings) A labelling of the tree T' by a finite set A is a
bijection between A and the set of leaves of T'. An isomorphism of A-labelled
trees is an isomorphism of the underlying trees that preserves the labelling. We
denote the set of isomorphism classes of A-labelled trees by T(A). For a finite
set A, T(A) is also finite. For a positive integer n, we write T(n) for the set

T({L,...,n}).

Geometry € Topology, Volume 9 (2005)



Bar constructions for topological operads 855

— 1ealves —|

1
vertices
1
—
root

Figure 1: Terminology for trees

Example 3.4 There is up to isomorphism only one tree with one leaf. It has
a single edge whose endpoints are the root and the leaf. Thus T(1) has one
element. It is easy to see that T(2) also only has one element: the tree with
one vertex that has two input edges. Figure 2 shows T(1), T(2), T(3).

1 1 2
T(1) T(2)
1 2 3 1 2 3 2 3 1 3 1 2
T(3)

Figure 2: Labelled trees with three or fewer leaves
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Definition 3.5 (Edge collapse) Given a tree T' and an internal edge e, denote
by T'/e the tree obtained by collapsing the edge e, identifying its endpoints.
(In poset terms, this is equivalent to removing from the poset the element cor-
responding to the upper endpoint of the edge.) If u and v are those endpoints,
write w o v for the resulting vertex of T'/e. Note that T'/e has the same leaves
as T so retains any labelling. See Figure 3 for an example.

a b c a b c
®
v
e
U ~ Uowv
[ J
T T/e

Figure 3: Edge collapse of labelled trees

Definition 3.6 The process of collapsing edges gives us a partial order on the
set T(A) of isomorphism classes of A-labelled trees. We say that T' < T’ if
T can be obtained from 7" be collapsing a sequence of edges. We think of the
resulting poset as a category.

We now give our trees topological significance by introducing ‘weightings’ on
them.

Definition 3.7 A weighting on a tree T is an assignment of nonnegative
‘lengths’ to the edges of T' in such a way that the ‘distance’ from the root to
each leaf is exactly 1. The set of weightings on a tree 7' is a subset of the space
of functions from the set of edges of T' to the unit interval [0, 1] and we give it
the subspace topology. We denote the resulting space by w(T'). A tree together
with a weighting is a weighted tree.

Example 3.8 There is only one way to weight the unique tree 7' € T(1) (the
single edge must have length 1), so w(7T) = . For any n, T(n) contains
a tree T, with a single vertex that has n incoming edges. For this tree we
have w(T},,) = A! the topological 1-simplex or unit interval. Figure 2 displays
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another shape of tree with three leaves, one that has two vertices. For such
a tree U, we have w(U) = A?, the topological 2-simplex. Not all spaces of
weightings are simplices, but we do have the following result.

Lemma 3.9 Let T be a tree with n (internal) vertices. Then w(T) is home-
omorphic to the n—dimensional disc D". If n > 1, the boundary ow(T') is the
subspace of weightings for which at least one edge has length zero.

Proof Suppose T has [ leaves. Then it has n + [ total edges and using the
lengths of the edges as coordinates we can think of w(T) as a subset of R
For each leaf [; of T there is a condition on the lengths of the edges in a
weighting that translates into an affine hyperplane H; in R, Then w(T) is
the intersection of all these hyperplanes with [0, 1]***.

Now these hyperplanes all pass through the point that corresponds to the root
edge having length 1 and all other edges length zero. Therefore their intersec-
tion is another affine subspace of R"*. To see that they intersect transversely,
we check that each H; does not contain the intersection of the H; for j # 1.
Consider the point p; in R"* that assigns length 1 to each leaf edge except
that corresponding to leaf /;, and length 0 to all other edges (including the leaf
edge for [;). Since the equation for the hyperplane H; contains the length of
exactly one leaf edge, this point p; is in

(4

J#i
but not in H;. This shows that the H; do indeed intersect transversely. There-
fore their intersection is an n—dimensional affine subspace V of R+,

Finally, notice that, as long as n > 0, V passes through an interior point
of [0,1]"*!, for example, the point where all edges except the leaf edges have
length e for some small € > 0 and the leaf edges then have whatever lengths
they must have to obtain a weighting. It then follows that w(T) = V' N[0, 1]+
is homeomorphic to D™. If n = 0, there is only one tree and its space of
weightings is a single point, that is, D°.

For the second statement, notice that the boundary of w(7") is the intersection
of V with the boundary of the cube [0, 1]"*!. If a weighting includes an edge of
length zero, it lies in this boundary. Conversely, a weighting in this boundary
must have some edge with length either 0 or 1. If the root edge has length 1,
all other edges must have length 0. If some other edge has length 1, the root
edge must have length 0. In any case, some edge has length 0. O
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Definition 3.10 For each finite set A, the assignment 7" — w(7T') determines
a functor

w(=): T(A) - U
where U is the category of unbased spaces. To see this we must define maps
w(T/e) = w(T)

whenever e is an internal edge in the A-labelled tree T'. Given a weighting on
T /e we define a weighting on 7' by giving edges in 7" their lengths in 7'/e with
the edge e having length zero. This is an embedding of w(T'/e) as a ‘face’ of
the ‘simplex” w(T'). It’s easy to check that this defines a functor as claimed.

Let wo(T") be the subspace of w(T") containing weightings for which either the
root edge or some leaf edge has length zero. We set

T(T) = w(T) Jwo(T).

This is a based space with basepoint given by the point to which wy(7) has
been identified. If 7" is the tree with only one edge then wy(T") is empty. We
use the convention that taking the quotient by the empty set is equivalent to
adjoining a disjoint basepoint. So in this case, wW(T") = S°.

The maps w(7T'/e) — w(T') clearly map wy(T'/e) to w(T") and so give us maps
w(T/e) — w(T).

For each finite set A, these form a functor
w(—): T(A) =T

where 7 is the category of based spaces.

Example 3.11 Figure 4 displays the spaces w(T") for T' € T(3) and how the
functor w(—) fits them together. Recall that the poset T(3) has four objects:
one minimal object (the tree with one vertex and three incoming edges) and
three maximal objects (three binary trees with two vertices). As the picture
shows, the functor w(—) embeds a 1-simplex for the minimal object as one of
the 1-dimensional faces of a 2—simplex for each of the maximal objects. The
subspaces wy(7") are outlined in bold. Collapsing these we get the functor
w(—) which embeds S!' (for the minimal object) as the boundary of D? (for
each maximal object).
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1 2 3

Y

2 3 1
3 1 2

Y

Figure 4: Spaces of weightings of trees with three leaves

>w
% %>w
>w

4 Bar constructions for reduced operads

This section forms the heart of the paper. We show that by giving an explicit
description of the simplicial bar construction in terms of trees, we can construct
a cooperad structure on it. In Section 4.1 we give our definition of the bar
construction B(P) for an operad P in C. In Section 4.2 we show that this is
isomorphic to the standard simplicial reduced bar construction on P. Then in
Section 4.3 we prove the main result of this paper: that B(P) admits a natural
cooperad structure.

We will work in a fixed symmetric monoidal 7—category (C, A, S) where 7 is the
category of based compactly-generated spaces and basepoint preserving maps.
Since 7 is pointed, Proposition 1.13 implies that C too is pointed. We denote
the null object in C also by *. We assume that C has all limits and colimits.
The examples to bear in mind are C = 7 itself and C = Sp, which we take
to be the category of S—modules of EKMM [6], although other categories of
spectra could be used. We will use the notation developed in Section 1 for the
enrichment, tensoring and cotensoring of C over 7.

Before we start we should stress that the constructions in this paper only apply

Geometry € Topology, Volume 9 (2005)



860 Michael Ching

to reduced operads and cooperads. That is, those for which the unit (or counit)
map is an isomorphism. This is reflected in several places, most notably in
the fact that our trees are not allowed to have vertices with only one incoming
edge (see Remark 3.2). It is a necessary condition for our construction of the
cooperad structure on B(P).

4.1 Definition of the bar construction

We give two definitions of the bar construction for an operad. The first is
somewhat informal and relies on C being the category of based spaces, but
captures how we really think about these objects. The second is a precise
formal definition as a coend in the category C.

Definition 4.1 Let P be a reduced operad in 7. The bar construction on
P is the symmetric sequence B(P) defined as follows. A general point p in
B(P)(A) consists of
e an isomorphism class of A-labelled trees: T' € T(A),
e a weighting on 7" and,
e for each (internal) vertex v of T', a point p, in the based space P(i(v))
(recall that i(v) is the set of incoming edges of the vertex v),

subject to the following identifications:

e If p, is the basepoint in P(i(v)) for any v then p is identified with the
basepoint * € B(P)(A).
e If the internal edge e has length zero, we identify p with the point ¢ given
by
— the tree T'/e,
— the weighting on 7T'/e in which an edge has the same length as the
corresponding edge of T in the weighting that makes up p,’
—  Quov given by the image under the composition map

P(i(u)) A P(i(v)) — P(i(uov))
of (pu,pv) (notice that i(uov) =i(u) o, i(v)),

"This is the inverse image under the injective map
w(T/e) — w(T)

of the weighting corresponding to p. The condition that e has length zero says precisely
that the weighting for p is in the image of this map.
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— q¢ = p; for the other vertices t of T'/e.
e If a root or leaf edge has length zero, p is identified with x € B(P)(A).

A Dbijection o: A — A’ gives us an isomorphism o,: B(P)(A) — B(P)(4")
by relabelling the leaves of the underlying trees. In this way, B(P) becomes a
symmetric sequence in 7.

Example 4.2 Consider B(P)(1). There is only one tree with a single leaf and
only one weighting on it. It has no vertices so B(P)(1) does not depend at
all on P. With the basepoint (which is disjoint in this case because nothing is
identified to it) we get B(P)(1) = S°.

Next consider B(P)(2). Again there is only one tree, but this time it has a
vertex (with two incoming edges) and the space of ways to weight the tree is
the 1-simplex Al. Making all the identifications we see that

B(P)(2) = XP(2),

the reduced suspension of P(2).

Definition 4.3 (The functors P4) A key ingredient of the general definition
of the bar construction is that an operad P in C determines a functor
Pa(—): T(A)® — C.

where T(A), as always, is the poset of isomorphism classes of A—-labelled trees
ordered by edge collapse. For a tree T" we define

Pa(T):= N\ P(i@)

vertices v in T'

where we recall that i(v) is the set of incoming edges to the vertex v. If e is an
internal edge in 7" with endpoints v and v then there is a partial composition
map

P(i(u)) A P(i(v)) — P(i(uov)).

Using this we get a map
PA(T) — Pa(T/e).

The associativity axioms for the operad P ensure that these maps make P4(—)
into a functor as claimed.

Recall from Definition 3.10 that we have a functor
@(—): T(A) — T

given by taking the space of weightings on a tree, modulo those for which a
root or leaf edge has length zero.
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Definition 4.4 (Formal definition of the bar construction) Let the bar con-
struction of the reduced operad P be the symmetric sequence B(P) defined
by

TeT(A)
BP)(A) = (=) @iy Pa(-) = [ w(T) @ Pa(T)
This is the coend in C of the bifunctor
wW(—) @ Pa(—): T(A) x T(A)? — C.

(See [15] for the theory of coends.) The definition of the coend is a colimit over
a category whose objects are morphisms in T(A) and we will write the coend
above as
colim w(T) ® P4(T")
T<T'€T(A)
when we need to manipulate it as such.

A bijection A — A" induces an isomorphism of categories T(A) — T(A’) by the
relabelling of trees. If T+ T’ under this isomorphism then P4(T) = Pa(T")
and W(T) = w(T"). Therefore we get an induced isomorphism B(P)(A) —
B(P)(A’). This makes B(P) into a symmetric sequence in C.

Remark 4.5 To see that our two definitions of the bar construction are equiv-
alent when C = 7, recall that the coend is a quotient of the coproduct

\/ w(T) @ Pa(T).
TeT(A)

That is, a point consists of a weighted tree together with elements of the P(i(v))
for vertices v subject to some identifications. The maps Pa(T) — Pa(T'/e) and
w(T/e) — w(T) encode the identifications made in Definition 4.1.

Remark 4.6 Our definition of the bar construction is rather reminiscent of
the geometric realization of simplicial sets or spaces. This line of thought leads
to the definition of an arboreal object in C as a functor

T(A)® — C

in which T(A) plays the role of the simplicial indexing category A for simplicial
sets. With the spaces of weightings w(7T') playing the role of the topological
simplices, the bar construction B(P) can be thought of as the geometric real-
ization of the arboreal object P4(—). We will formalize and extend these ideas
in future work [4].
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Remark 4.7 The W -construction of Boardman and Vogt (also sometimes
called the bar construction) is defined in a very similar manner to B(P). It uses
slightly different spaces of trees and produces an operad instead of a cooperad.
See [19] for details. Benoit Fresse has noticed a relationship between W (P)
and B(P), namely that

B(P) = X Indec(W (P))

where ¥ is a single suspension (that is, tensoring with S!) and Indec de-
notes the ‘operadic indecomposables functor’. It is the cooperad structure on
Y Indec(W(P)), corresponding to that on B(P), that was described by Salva-
tore in [17].

Example 4.8 Let Ass be the operad for associative monoids in unbased
spaces. This is given by
Ass(n) =X,

(with the discrete topology and regular ¥,,—action). The composition maps are
the inclusions given by identifying

Y X Xy X oo X Mg,

with a subgroup of ¥, ,+..4+n,. We obtain an operad Ass; in 7 by adding a
disjoint basepoint to each of the terms of Ass. Let us calculate B(Assy).

The points p, € Assy(i(v)) required by Definition 4.1 can be thought of as
determining an order on the incoming edges to vertices of a tree. This allows
us to identify a point in B(Assy)(n) with a planar weighted tree with leaves
labelled 1,...,n. This breaks B(Ass;)(n) up into a wedge of n! terms, each
corresponding to an ordering of the leaves of the trees involved.

As we now show, each of these terms is an (n—1)-sphere. Think of constructing
a planar weighted tree with leaves labelled in a fixed order (say, 1,...,n) by
the following method. Connect the first leaf to the root with an edge of length
1. Then attach the second leaf at some point along the edge already drawn.
Attach the third leaf at some point along the path from the second leaf to the
root, and so on. The space of choices made in doing all this is [0,1]""! and we
obtain precisely the planar weighted trees we want in this manner (see Figure
5). The root edge or a leaf edge will have length zero if and only if at least
one of our choices was either 0 or 1. Hence the space we want is obtained by
identifying the boundary of [0,1]"~! to a basepoint. This gives S™~!.

Therefore we have
B(Ass)(n) = "1 A (S04
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Figure 5: Constructing planar weighted trees

where ¥, acts trivially on the S™ ! term and by translation on the non-
basepoints of (£,)4.

We can also picture what happens for n = 3 in terms of sticking together the
spaces W(T)AAss3(T) 4 for T € T(3). The w(T') are the quotients of the spaces
pictured in Figure 4 by the subspaces outlined in bold. To make up B(Assy)(3)
we need six copies of the 1-simplex (corresponding to the points in 4ss(3)) and
twelve copies of the 2—-simplex. (There are four points in Ass(2) x Ass(2) and
three trees of this type.) These fit together to form six disjoint copies of the
space of Figure 6, one for each permutation of 1,2,3. The type of tree used to
form each part is shown. When we collapse the bold subspaces to the basepoint

O
Y

Figure 6: One sixth of B(Assy)(3)

we get a wedge of six copies of S? as expected.
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4.2 Relation to the simplicial bar construction

In this section we show that B(P) is isomorphic to the geometric realization of
the standard simplicial bar construction on the reduced operad P. This simpli-
cial bar construction can be defined for any augmented monoid in a monoidal
category.® We have seen (Proposition 2.9) that under the right conditions an
operad is just a monoid for the monoidal product on the category of symmetric
sequences given by the composition product o. To define the simplicial bar
construction in general (that is, without the assumption that A commutes with
finite coproducts) we must say what we mean by higher iterates of o. For this
we use the following natural extension of the three-way product introduced in
the proof of Lemma 2.8.

Definition 4.9 (Iterated composition product) The composition product of

the symmetric sequences My, ..., M, is the symmetric sequence given by
(Mo -oM,)(A) = \/ Mi(ADA N Ma(Aso)A--An [\ Me(Ara)
Ai:]—[aEAi_l Aia ac€A ac€A,r_1

for each finite set A = A,. Here we are taking the coproduct over partitions
of A into subsets A, , indexed over a € A,_;, partitions of A,_; indexed over
A,_5, and so on. Equivalently we can view this coproduct as indexed over
sequences of r — 1 partitions of A, each a refinement of the next.

Remark 4.10 There is a natural map from (Mj o --- o M,) to any of the
symmetric sequences obtained by choosing ways to bracket this expression. All
the ‘obvious’ diagrams relating these maps commute. If A commutes with
finite coproducts in C then all these maps are isomorphisms and reflect the
associativity isomorphisms of the monoidal product o.

Definition 4.11 (Simplicial bar construction) Let P be a reduced operad in
C. The simplicial bar construction Be(P) is the simplicial object in the category
of symmetric sequences on C with

Bp(P)=Po---0oP.

For i =1,...,k — 1, face maps

di: Po---oP—Po---0oP
k k—1

8See [16, Section I1.2.3] for a discussion of different forms of the simplicial bar
construction.
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are given by
-~+oPoPo---—---0(PoP)o---—---0Po...

where we are using the operad composition Po P — P to compose the i*® and
i+1*™ factors. The maps dy and dj, are given by applying the augmentation
map P — [ to the first and last copies of P respectively. Degeneracy maps

sj: Po---oP —Po---0P
k k+1

are given for j = 0,...,k by using the unit map I — P to insert a copy of P
between the j™ and (j + 1) factors:

-~+oPoPo---=2...0PoJoPo--+—.--.0oPoPoPo---.

Remark 4.12 It is sufficient for this definition that P be augmented. How-
ever, we need P to be reduced to make the following identification of the sim-
plicial bar construction with B(P) as defined previously.

Proposition 4.13 Let P be a reduced operad in C. Then the geometric
realization® of Be(P) is isomorphic to the bar construction B(P).

Proof We give the proof for C = 7 (which is the only case we require in
this paper) based on the informal description of B(P) in Definition 4.1. The
same idea could be used to write a proof that works for any C using the formal
definition of B(P) as a coend.

The idea is that the iterated composition products that make up the simplicial
bar construction can be thought of in terms of sequences of partitions which in
turn are related to trees of the type we are using to define B(P).

We first give an explicit description of the n—simplices in Bo(P)(A). These are
given by the object

Enlarging on the last sentence of Definition 4.9, we can write this as a coproduct
over all sequences of partitions

0=X <M< <A1 <A =1

9The geometric realization of a simplicial symmetric sequence is defined pointwise:
|X|(A) = |X(A)|. Note that a simplicial symmetric sequence is the same thing as a
symmetric sequence of simplicial objects.
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of the set A, where A < p if A is finer than u (if two elements of A are in the
same block in A, they are also in the same block in p) and 6,T are the minimal
and maximal partitions with respect to this order. The terms in the coproduct
are appropriate smash products of the P(r). We get a factor of P(r) every
time one of the blocks of one of the partitions breaks up into r blocks in the
next partition along.

A point in the geometric realization |Be(P)| can be represented by a point in
the topological n—simplex A™ together with a choice of sequence of partitions

as described above and a point in the appropriate smash product of the spaces
P(r).

A sequence of partitions determines an A-labelled tree T as follows. (See
Figure 7 for an example when n = 3.) Take a vertex for each block of each \;
for i = 1,...,n. Add a root, and a leaf for each element of A. Two vertices
are joined by an edge if they come from consecutive partitions of the sequence
and the block for one is contained in the block for the other. Finally we add a
root edge from the A, vertex to the root and a leaf edge from each leaf to the
corresponding A\ vertex. (Notice that vertices in this tree might have only one
input edge — let’s allow this for the moment.)

Ao = (1)(2)B)(4)

A= (13)(2)(4)

Figure 7: Producing trees from sequences of partitions

A point in A" determines a weighting on the tree we have just constructed.
Thinking of A" as the subspace of R**! with g+ - -+ 2, = 1 and z; > 0,
we get a weighting by giving the root edge length z(, the edges connecting the
vertices for \;_1 to the vertices for \; length x; and the leaf edges length x,,.
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We can now remove the vertices with only one input edge, connecting their
input and output edges. This gives us a point in w(7") for some tree T" in the
sense of Definition 3.1.

Finally notice that because P(1) = S° (as P is reduced), the smash product
of spaces P(r) determined by the sequence of partitions is precisely Pa(T).
Therefore we actually obtain a point in B(P)(A).

It remains to show that this process sets up a homeomorphism between the
geometric realization |Be(P)(A)| and B(P)(A). There are a couple of key steps.
Firstly the degeneracy maps in the simplicial bar construction are isomorphisms
on terms in the coproduct. These correspond to inserting lots of vertices with
one input edge in our trees, which are then removed by our construction. So we
only have to worry about the identifications made by the face maps. The face
maps are given by removing partitions from the sequences, which corresponds
to edge collapse. Hence the identifications made in defining B(P) are the same
as those in defining the realization of Be(P). This completes the proof. O

4.3 Cooperad structure on the bar construction

Up to this point, all we have done is identify the simplicial bar construction
on a reduced operad in terms of trees. The main point of this paper is that
this identification allows us to see that there is a cooperad structure on the bar
construction. In this section we describe that structure. The key to getting the
cooperad cocomposition maps is the process of grafting (or rather ungrafting)
trees.

Definition 4.14 (Tree grafting) Let T be an A-labelled tree, let U be a
B-labelled tree and let a be an element of A. We define the grafting of U onto
T at a to be the tree T'U, U obtained by identifying the root edge of U to the
leaf edge of T' corresponding to a. Figure 8 below illustrates this process.

We denote the newly identified edge by e,. Every other edge of T'U, U comes
either from T or from U. The vertices of T'U, U are the vertices of T' together
with the vertices of U (and they have the same number of incoming edges).
Finally there is a natural A U, B-labelling of T'U, U, given by combining the
labellings of T" and of U.

We say that an AU, B-labelled tree is of type (A, B) if it is of the form T'U, U
for an A-labelled tree T and a B-labelled tree U. The next lemma says that
an A U, B-labelled tree is a grafting in at most one way. This is trivial but
crucial to the construction of the cooperad structure maps below.
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[t

TU, U

Figure 8: Tree grafting

Lemma 4.15 For any AU, B-labelled tree V' there is at most one pair (T, U)
such that V =T U, U.

Proof In the grafted tree T'U, U the ‘upper’ endpoint of the edge e, is a
vertex whose ‘parent leaves’ are labelled precisely by the elements of B. There
can be at most one such vertex v in V' and cutting along the edge immediately
below v produces the trees T, U that make up V. O

Definition 4.16 To give B(P) a cooperad structure we have to define maps
B(P)(AU, B) — B(P)(A) A B(P)(B) (4.17)

for finite sets A,B and a € A. A point p in B(P)(A U, B) consists of a
weighted tree V' labelled by AU, B together with elements of p, € P(i(v)) for
vertices v of V. We treat two cases:

(1) If V is not of the form T'U, U for an A-labelled tree T and a B-labelled
tree U, then we will map p to the basepoint on the right-hand side of
(4.17).

(2) If V is of this form (that is, it is of type (A, B)) then things are more
interesting. Below we describe how the map (4.17) is defined in this case.

Since V is of type (A, B), Lemma 4.15 tells us that there is a unique A-labelled
tree T' and a unique B-labelled tree U such that V =T U, U. We use these
trees as the basis for elements ¢ € B(P)(A) and r € B(P)(B) respectively.
What remains to be seen is how the weighting and vertex labels of V' determine
weightings and vertex labels for 7" and U.
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The vertex labels are easy because the vertices of T'U, U consist of the vertices
of each of T" and U with the same numbers of input edges. Therefore we take

Qv =Dy € P(i(v))
for vertices v of T" and

Ty = py € P(i(v))
for vertices u of U.

The way in which a weighting on T'U, U determines weightings on 7" and U
is the key part of our construction. This comes about via a map

T(T U, U) — w(T) AT(U) (4.18)

(recall that w(—) is the space of weightings on a tree with those that have zero
length root or leaf edges identified to a basepoint).

So take a weighting of T'U, U. Define a weighting on T' by giving the edges the
same lengths they had in T'U, U and giving the leaf edge for a the necessary
length to make the root-leaf distances equal to 1.10 Next define a weighting on
U by taking the lengths from T'U, U and scaling up by a constant factor to
make the root-leaf distances equal to 1 (the length of the root edge of U comes
from the length of the edge e, in T'U, U). The scaling factor is the inverse of
the total length of the U part of T'U, U. The only time this doesn’t work is if
all the U-edges in T'U, U (including e, ) are of length zero. However in that
case the weighting we just defined on T has a leaf edge of length zero and so
is the basepoint in w(7T"). This is almost enough to define a map of the form
(4.18). The only thing left to check is that if a leaf or root edge of T'U, U is of
length zero then the same is true of either of the chosen weightings on 7' and
U. This is clear. Figure 9 illustrates a particular case of the map (4.18).

This completes the definition of the cooperad structure maps (4.17):
B(P)(AU, B) — B(P)(A) A B(P)(B)
given, in summary, by:

q= (Tv {pv}vET)a r= (U, {pv}vEU) itV =Tuy, U;

= ‘/7 v
p= Vi {pu}) — {* otherwise.

with the weightings on T',U given by the map (4.18) just constructed.

We still have to check that these maps are well-defined. To see this we have to
look at the identifications made in the definition of B(P)(A U, B):

YTntuitively, we have collapsed the U part of the tree to a single edge with the same
overall length.
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a 3 1 2
x4y T4y Tty Tty
—
y
z Tty
T U

Figure 9: The map w(T U, U) — w(T) Aw(U)

e If p, equals the basepoint in P(i(v)) for any vertex v € V' then the same
will be true of the corresponding vertex in either 7" or U. Hence such a
p maps to the basepoint.

e If an interior edge e of the tree V underlying the point p is of length
zero, p is identified with another point p’ as described in Definition 4.1.
We have various possibilities:

(1) V is not of the form T'U, U in which case neither is V/e and both
p and p’ map to the basepoint.

(2) V=TU,U and e corresponds to an internal edge of 7. In this
case, the points ¢ and ¢ will be identified via the collapse of that
edge, and the points 7 and 7’ will be equal. So p and p’ map to the
same element of B(P)(A) A B(P)(B).

(3) V=TU,U and e corresponds to an internal edge of U. This is
similar to case (2).

(4) V=TU,U and e is the edge e, obtained from identifying the root
edge of U with the a—leaf edge of T'. In this case V/e is no longer
of the form T'U, U and so p’ maps to the basepoint. But in the
weighting on U determined by that on T U, U the root edge has
length scaled up from the length of e, which is therefore zero. So
the point r is the basepoint in B(P)(B) and so p also maps to the
basepoint.

e We have already checked in the definition of the map (4.18) that if a root
or leaf edge in p is of length zero, then the same is true of at least one of ¢
and 7. Therefore such a p maps to the basepoint in B(P)(A)AB(P)(B).

This completes the check that our maps (4.17) are well-defined. The final piece
of the cooperad structure for B(P) is a counit map B(P)(1) — S°. But we
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already saw that B(P)(1) =2 S° (in the based space case) so our counit is this
isomorphism. Note that this means B(P) turns out to be a reduced cooperad.

Example 4.19 The map
B(P)({1,2,3}) — B(P)({a,3}) A B(P)({1,2})

is pictured in Figure 9. The left-hand side (with vertices labelled by elements
of P(2)) represents a point p of B(P)({1,2,3}). The two trees on the right-
hand side (with vertices labelled by those same elements in the obvious way)
represent the image of p in B(P)({a,3}) A B(P)({1,2}). In this example, all
points that are based on trees of shapes other than that shown are mapped to
the basepoint.

We will save for later the task of checking that these maps do indeed give
us a cooperad structure. First we translate Definition 4.16 into the category-
theoretic language needed to define the cocomposition maps for a general C. To
do this, we notice that the ‘ungrafting’ process more-or-less makes our categories
T(A) into a cooperad of categories. To make this precise, we describe an ‘add
a disjoint basepoint’ functor for categories.

Definition 4.20 (Categories with initial objects) Write Cat, for the category
in which an object is a (small) category C, together with an initial object =
such that Homc_ (X, *) is empty for all X # *. The morphisms in Caty are
functors that preserve the initial objects.

There is a functor from the category Cat of all (small) categories to Caty given
by adding an initial object with the correct morphisms to a category C to obtain
C.. Note that every object in Caty can be obtained in this way, but not every
morphism in Cat; is given by adding an initial object to a morphism in Cat.

Define a symmetric monoidal product A on Caty by
CJr VAN DJr = CJr X D+/C+ vV DJr,

where the wedge product is the disjoint union with the initial objects identified
and the quotient identifies this wedge product to the initial object of the smash
product. Notice that if C,D € Cat then

C+/\D+:(CX D)+

The unit for this product is the category 14 with two objects and a single
morphism between them.
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In particular we write T(A)y for the category formed by adding an initial object
to our poset of A-labelled trees T(A). The reason for making all these new
definitions is then the following result.

Proposition 4.21 The categories T(A)y form a reduced cooperad in Cat, .

Proof The cocomposition maps have the form
T(AU, B)y — T(A)y AT(B); = (T(A) x T(B))+

and are given by ‘ungrafting’ trees. Take V € T(AU, B). If V is a tree of
type (A, B) we map it to the pair (7,U) where T, U are the unique trees that
graft together to give V' (see Lemma 4.15). If V is not of type (A, B) (or is
the initial object) we map it to the initial object of the right-hand side.

First we must check that we have indeed given a functor here. Suppose that
V <V’'in T(AU4 B). The only interesting case is when V is of type (A, B), so
maps to a pair (7, U) on the right-hand side. We have to show two things: that
V' is also of type (A, B) with decomposition (7”,U’) and then that 7" < T’
and U < U’. Well, let e, be the edge in V' at which the grafting took place.
Since V is obtained from V'’ by a sequence of edge collapses, e, must come
from an edge e, in V' that is not collapsed in this sequence. This edge breaks
V' into two parts and we can write V' = T U, U’ for some trees T’,U’ with
some labellings (a priori, not necessarily by A and B). But it is now clear
that U’ must yield U after undergoing some edge collapses. So U’ € T(B) and
U <U'. Similarly, 7" € T(A) and T < T’ (after relabelling a’ by a).

Notice that T(1); is isomorphic to the unit 1, for the symmetric monoidal
structure on Caty. We take as unit map the (unique) isomorphism 14 — T(1)4.

It still remains to check that the cooperad axioms do indeed hold for our co-
composition maps. This is simple and we leave it to the reader. O

Remark 4.22 The original categories T(A) in fact already form an operad
in Cat with composition maps given by grafting rather than ungrafting. This
operad structure is effectively what is used by Boardman and Vogt to define
their W —construction.

The next step is to show that the bar construction can be defined as a coend
in T(A); instead of T(A).
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Lemma 4.23 Let P be a reduced operad in C. The functors w(—) and Pa(—)
on T(A) naturally extend to functors

T(-): T(A)y — T

and
Pa(=): (T(A)4)* —C

and we have

TeT(A)+
B(P)(A) = / W(T) ® Pa(T).

Proof We set w(x) = *7 and Pa(*) = *¢ with the necessary definition on
morphisms (given by the fact that #7 is an initial object in 7 and *¢ is a
terminal object in C). It is then clear that * € T(A)y does not contribute
anything to the coend which therefore reduces to the previous definition of
B(P)(A). O

The maps (4.18) of Definition 4.16 are still the key ingredients in constructing
the cooperad maps for B(P).

Lemma 4.24 The maps
w(T U, U) —w(T) Nw(U)
previously defined form part of a natural transformation
T(AU, B)+

e=:

T(A)+ AT(B)+

Proof The bottom functor here is defined in the obvious way on T(A) x T(B)
and sends * to *. For V € T(AU, B) not of type (A, B), the corresponding
part of the natural transformation is

The only really interesting naturality square comes from V < V’ with V' of
type (A, B) and V not. The square that must commute in this case is

w(V) —— w(V')

|

« —— w(T") Aw(U").
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This is the content of part (4) of the checking we did towards the end of De-
finition 4.16: from any weighting on V', the weighting we get on V’ will have
length zero for the edge connecting the T"—part to the U’'-part. Hence the root
edge of the corresponding weighting on U’ will have length zero. So we map
into the basepoint of wW(T") Aw(U’). O

We have a corresponding result for the functors Ps(—) of Definition 4.4.

Lemma 4.25 Let P be a reduced operad in C. Then there is a natural
transformation
T(AU, B)Y

Pav,s(-)
| =
/P YAPg(—)

(=
(T(A)+ AT(B)1)P
Proof In other words, given V € T(AU, B) we have maps
Pau,(V) — Pa(T) A Pp(U)

when V = T U, U. There are obvious isomorphisms that we take for these
maps. The naturality squares are easily seen to commute. Again the only one
that seems like it might be interesting is for V' < V' with V' of type (A, B)
and V not. But in fact this square just turns out to be

Puyu,5(V') —— Pay, (V)

PA(T/) A PB(U,) —_— Xk

which is not so interesting after all. ]

Finally, we can give the formal construction of the cocomposition maps for the
cooperad B(P).

Definition 4.26 Let P be a reduced operad in C and let B(P) be the sym-
metric sequence of Definition 4.4. The cocomposition map

B(P)(AU, B) — B(P)(A) A B(P)(B)
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is given by the following sequence of maps:

— 3 YT /
B(P)(AU, B) = VgV/(é(%Jg,%aB)+ w(V) ® Pau, (V')

I T(T) ANTW(U)) @ (Pa(T) A P (U’
T e Sy ey, (T AN @ (PaT) A P(U7)

— li W(T) ® Pa(T") A (@W(U) @ P(U’

@) S(T’,(f’())el'{'l(lA)JrAT(Bp(w( )@ PA(T)) A (@(U) © P(U"))  (4.27)

— li w(T) @ Ps(T") ) A li w(U) ®@ Pg(U’
<T§%9€¥?A)+w( ) ® Pa ))/\<US(CJ(’)€¥?B)+QU( ) ® P )>

= B(P)(A) A B(P)(B).

The first map here comes from combining the natural transformations of Lem-
mas 4.24 and 4.25. The second is given by the transformation d of Definition
1.10. It is for precisely this reason that the axiom giving us d is necessary.
The third map is given by universal properties of colimits. This completes the
construction of the cooperad structure maps for B(P).

The next task is to check that the maps we have described actually do make
B(P) into a cooperad. That is, we must check the duals of axioms (1)—(4) from
Definition 2.2. The key step is to see that the maps (4.18) satisfy corresponding
conditions.

Lemma 4.28 Let T,U,V be A—, B— and C—labelled trees respectively and
let a,a’ € A and b € B. Let I denote the unique x—labelled tree. Recall that
w(I) = S°. Then the following diagrams commute:

BT U, U V) ——— w(T U, U) A (V)

o |

T ATU Uy V) —— T(T) ATU) AT(V)

W(T Uy UUy V) ——— W(T U, U) Aw(V)

. |

W(T Uy V)ANW(U) —— w(T) A ANw(U) Aw(V)
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T(T Uy I) —— w(T)

w(IU,T) —— w(l) Nw(T)

w(T)

Proof The argument for diagram (1) is contained in Figure 10. A point in
w(T Uy, U U V') comes from a weighting of the grafted tree T'U, U U, V. The
top-left corner of Figure 10 shows a generic version of such a tree with some
lengths labelled:

e v is the length of the root edge.

e v is the distance from the root vertex to the lower vertex of the edge that
joins U to T (there may be intermediate vertices along this route, we let
v denote the total distance).

e w is the length of the edge that joins U to T'.

e 1 is the distance from the upper vertex of that edge to the lower vertex
of the edge that joins V to U.

e y is the length of the edge that joins V to U.

e 2 is the remaining distance to any of the leaves of V.

Figure 10 shows that whichever way we map our weighted tree around diagram
(1) we get the same result. (Note that if y + 2z or w 4+ = + y + z equals to
zero, then z = 0 and we are the basepoint in every corner of diagram (1).) We
therefore conclude that diagram (1) commutes.

Diagram (2) is similar to (1) but easier. For diagram (3), notice that the image
in wW(T) of a weighting of T'U, I will be effectively the same weighting. The
image in w(I) = SY will be the non-basepoint unless the leaf edge for a has
length zero. But if this is the case our starting point was the basepoint in
w(T Ug I). This shows that the diagram commutes.

For diagram (4), the image in w(T") of a weighting of I U, T" will again be the
very same weighting (no scaling up is necessary). The image in w(I) = S° will
always be the non-basepoint. Therefore this diagram also commutes. O
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We are now in a position to state the main result of this paper.

Theorem 4.29 Let P be a reduced operad in the symmetric monoidal 7—
category C. The maps of Definition 4.16 make B(P) into a reduced cooperad
in C.

Proof We give the formal argument for the maps of Definition 4.26. To fit the
relevant diagrams onto a page we need some new notation. Let’s write

w(T,U) :=w(T) Nw(U)

and
Py p(T',U") = Pa(T") A Pg(U").

Figure 11 then shows the diagram that has to commute for the dual of axiom
(1) of Definition 2.2 to hold for B(P). The key to showing that this commutes
is putting
colim  w(T,U,V)® Papc(T U V')

T<T'e€T(A)4

U<U'€T(B)+

V<V/EeT(C)4
into the center of the square. We’ve connected this to the top and left sides
of the square using maps similar to the first map in Definition 4.26. We’ve
connected it to the right and bottom sides using maps of the form d from
Definition 1.10. It’s then enough to show that the four smaller squares commute.

The top-left square commutes because of diagram (1) in Lemma 4.28. The
bottom-left and top-right squares commute because of the naturality of the
transformations d. The bottom-right square commutes because it is an example
of the associativity axiom we required of our d transformations in 1.10.

This completes the verification of the dual of axiom (1) of Definition 2.2. For
axiom (2) the argument is similar, but using diagram (2) of Lemma 4.28. For
the duals of axioms (3) and (4) we use the unit axiom for the transformations
d together with diagrams (3) and (4) of Lemma 4.28. We leave the reader to
fill in the details of these proofs. m]

5 Cobar constructions for reduced cooperads

We now dualize to cooperads. The cobar construction for a cooperad is strictly
dual to the bar construction for an operad. More precisely, recall that a co-
operad () in a category C is the same thing as an operad Q°P in the opposite
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category C°P. The cobar construction on @ is then defined to be the bar con-
struction on @Q°P. This bar construction is a cooperad in C°® and hence an
operad in C. In symbols, the cobar construction on @ is

Q) == B(Q*)*P.

It can be useful to have a more explicit description of this.

Definition 5.1 (Cobar construction on a cooperad) The cobar construction,
being dual to the bar construction, is defined as an end rather than a coend.
Let @ be a cooperad in C. Then for each finite set A, () determines a functor

Qa(—): T(4) =C
by
Qa(T) = Q(i(v)) A+ AQ(i(vn))
where v1,...,v, are the vertices of T'. This is a functor because the cocompo-
sition maps for @) give us maps

Qa(T/e) — Qa(T).
(Recall that the corresponding functor for an operad was defined on T(A)°P.)
The cobar construction Q(Q) is then the symmetric sequence with

Q)(A) = Mapra(@(-),Qa(-) = [ Mape(w(T),Qa(T))
TET(A)

This is the end of the bifunctor

T(A)P xT(A) —=C
given by

(T, U) = Mapc(w(T), Qa(U))

where Map, denotes the cotensoring structure for C over 7 (and hence the
tensoring structure for C°P).

Remark 5.2 The cobar construction Q(Q) on a reduced cooperad @ in based
spaces is isomorphic to the totalization of a cosimplicial cobar construction
that is dual to the simplicial bar construction. The terms in this cosimplicial
construction are iterated versions of the dual composition product of Remark
2.20. The fact that (Q) is the totalization of this is dual to the result that
B(P) is the realization of the simplicial bar construction.

The operad structure maps for (@) are dual to the cooperad maps for B(P).
The following result is the dual of Proposition 4.29.

Corollary 5.3 Let Q be a reduced cooperad in a symmetric monoidal T—
category C. Then the cobar construction Q(Q) is a reduced operad in C. O
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6 Duality for operads and cooperads

In this section we examine how the bar and cobar constructions relate to the
‘duality’ functor
D: T°° — C; X — Map.(X,S)

where S is the unit of the symmetric monoidal structure on C. The case to
keep in mind is C = Sp in which case S is the sphere spectrum and this duality
functor is Spanier—Whitehead duality.

Lemma 6.1 Let Q be a cooperad of based spaces. Then D@ is an operad in
the category C.

Proof The composition maps for DQ are given by

Mape(Q(A), S) A Mape(Q(B), §) — Mape (Q(A) A Q(B), S)
— Mape(Q(A U, B), S).

The first map is the natural transformation constructed in Proposition 1.12
(it’s the distributive map d for C°P). The second comes from the corresponding
cocomposition map for Q. O

Remark 6.2 The dual of an operad need not in general be a cooperad because
the map d need not in general have an inverse. However when it does we have
a nice duality result connecting the bar and cobar constructions. For this to
work we need to put the following condition on the spaces that make up our
operad.

Definition 6.3 Two based spaces X,Y are compatibly dualizable in C if the
map
d: Mapq(X,S) A Mape(Y,S) — Maps(X AY,S)

is an isomorphism.

Proposition 6.4 Let P be an operad in based spaces whose terms (that is,
the P(A) for finite sets A) are pairwise compatibly dualizable. Then DP has
a natural cooperad structure. Moreover, we have an isomorphism

DB(P) = Q(DP)

of operads in C.
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Proof The cooperad structure maps for DP are constructed in the same way
as the operad structure maps for D@ in 6.1 but using the inverse of the relevant
map d provided by the ‘compatibly dualizable’ hypothesis.

The second part relies on the descriptions of the bar and cobar constructions
as coends and ends respectively. The coend B(P) is a colimit:

B(P)(4) = colim@(T) A Pa(T)

where the colimit is taken over all inequalities of trees in T(A). Therefore

DB(P)(A) = Mapg(colimw(T) A P4(T"), S)
= lim Map (w(T")

= lim Mape (w(T), Mape (P4(T"), 5))
)

> lim Map, (w(T), (DP) A (T")).
The last identity again uses the ‘compatibly dualizable’ hypothesis in the form
Mape (P(i(v1))A. . AP(i(va)), S) = Mape(P(i(v1)), $)A. . AMape (P(i(va)), ).

The final line of this calculation is precisely the limit that defines Q(DP). We
leave the reader to check that this is an isomorphism of operads. O

Remark 6.5 The only case of this result we will use in this paper is when all
the terms of the operad P are S°. These are pairwise compatibly dualizable
in any C because

MapC(SO, C) =C

for any C' € C.

Remark 6.6 Replacing C with C°P? we obtain dual results. These concern the
functor S: X — X ® 9, the ‘suspension spectrum’ functor. We find that if @
is a cooperad in based spaces then S(Q is a cooperad in C. If P is an operad

whose terms are pairwise compatibly dualizable then SP is an operad in C and
SB(P) = B(SP).

We have now reached the stage where we can apply our constructions to Good-
willie’s calculus of functors (see Section 8). Before doing so, we extend our bar
and cobar constructions to modules and comodules. This will then allow us to
construct modules over the derivatives of the identity.
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7 Bar constructions for modules and comodules

In this section we extend the bar and cobar constructions to modules and co-
modules. We show that there is a bar construction on left (respectively right)
modules over a reduced operad P that yields left (respectively right) comodules
over the cooperad B(P). Dually, there is a cobar construction on left (respec-
tively right) comodules over a reduced cooperad @ that yields left (respectively
right) modules over the operad Q(Q). These are special cases of two-sided bar
and cobar constructions. Given a reduced operad P with right module R and
left module L, we will define a two-sided bar construction B(R, P,L). Taking
either R or L to be the unit symmetric sequence I will yield the promised
one-sided constructions for individual modules. The two-sided construction is
isomorphic to the standard simplicial two-sided bar construction (see Definition
7.9) but, in order to get the comodule structure, we have reinterpreted this in
terms of trees.

Most of the material in this section is a straightforward generalization of that
of Sections 3-5. First, in Section 7.1 we describe the more general species of
tree necessary for the definitions of the two-sided constructions. In Section 7.2
we give these definitions and show that the bar construction of Section 4.1
is a special case. In Section 7.3 we construct the maps that make the bar
construction on a module into a comodule, and dually, the cobar construction
on a comodule into a module.

As previously, C denotes a symmetric monoidal 7—category with null object
and which has all necessary limits and colimits.

7.1 Generalized trees

To accommodate the presence of the P-modules R and L in the two-sided bar
construction, we need to make two changes to our notion of tree, one at the
root level and one at the leaf level:

(1) We allow the root element of a tree to have more than one incoming edge.

(2) We allow the leaves of a tree to have repeated labels, that is, an A-
labelling is a surjection from A to the set of leaves, rather than a bijection.

We will refer to this notion as a ‘generalized tree’, or sometimes just a ‘tree’ if
the context makes it clear that we mean the generalized version. The following
definition makes things precise.
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Definition 7.1 Let A be a finite set. A generalized A -labelled tree consists of

e a poset 7" with a unique minimal element r (the root) satisfying condi-
tions (2) and (3) of Definition 3.1, and

e a surjection ¢ from the finite set A to the set of maximal elements (the
leaves) of T.

We use letters T, U, ... to denote generalized trees, usually taking the labelling
map ¢ for granted. We write Tree(A) for the set of isomorphism classes of gen-
eralized A-labelled trees. All the terminology of Definition 3.1 applies equally
well to generalized trees.

Edge collapse for generalized trees is defined in exactly the same way as for the
trees of Section 3 except that now we allow ourselves to collapse root edges as
well as internal edges. To get the right category structure on Tree(A) we need
a way to collapse leaf edges as well. The following definition provides this.

Definition 7.2 (Bud collapse) A bud in a generalized tree T is a vertex all of
whose incoming edges are leaf edges. Equivalently, a bud is a maximal vertex.
If b is a bud in T, a b-leaf is a leaf of T' that is attached to b.

Given a generalized A-labelled tree T" and a bud b € T', we define a generalized
A-labelled tree T which is obtained from 7' by bud collapse. The underlying
poset of Tj, is obtained from T by removing the b—leaves. This makes b into a
leaf in Tj. The A-labelling on T} is that of T' for the leaves that still remain,
with b inheriting the labels of its old leaves. Formally, we are composing the
A-labelling on T" with the surjection from the leaves of T' to the leaves of Ty
that sends the b—leaves in T to b. Visually, we can think of this process as
collapsing all the leaf edges attached to b (see Figure 12).

{1,3} 2 4 4

{1,2,3}

T T,

Figure 12: An example of bud collapse for generalized {1,2,3,4}-labelled trees
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Definition 7.3 (The categories Tree(A)) If T and T’ are generalized A-—
labelled trees, we say that T' < T" if T can be obtained from 7" by a sequence
of edge collapses (of either internal or root edges) or bud collapses. This makes
the set Tree(A) of isomorphism classes of generalized A-labelled trees into a
poset and hence a category. Standard A-labelled trees (as defined in Section 3)
are also generalized A-labelled trees and T(A) is a full subcategory of Tree(A).
See Figure 13 for pictures of Tree(1) and Tree(2).

1 {1,2} 1

2 1 2
Tree(1) Tree(2)

Figure 13: Tree(1) and Tree(2) (the arrows represent the direction of the morphisms
in Tree(2))

Definition 7.4 We don’t need to change the definition of a weighting for
generalized trees: it is an assignment of lengths to the edges of a tree such that
the root-leaf distances all equal 1. As before, we write w(7T) for the space of
weightings on the generalized tree 1. The following result generalizes Lemma
3.9.

Lemma 7.5 Let T be a generalized A-labelled tree with n (internal) vertices.
Then w(T) is homeomorphic to D™ and the boundary dw(T) = S"~! consists
of those points in which some edge of T has length zero.

Proof The labelling plays no role in the space of weightings so we can ignore
it. Picture T as a collection of (non-generalized) trees T, ..., T attached at
their roots. Suppose T has n; vertices so that n =) n;. Then we have

w(T)gw(Tl)X"'Xw(Tk)%Dnl X oo x DM 2 DN

Under this decomposition, a point is in the boundary of w(7T') if and only if any
of it is in the boundary of any of the w(7}). That is, if and only if any of the
edges of T has length zero. O
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Definition 7.6 The ‘space of weightings’ functor w(—): T(A) — U of De-
finition 3.10 can be extended to all of Tree(A). To do this, we have to say
what happens when we apply w(—) to a morphism 7, — T' coming from a bud
collapse (for b a bud in a tree 7). Given a weighting of T}, we get a weighting
of T' by giving length zero to all the leaf edges attached to b. This defines a
map

and it is not hard to see that this does indeed give us a functor
w(—): Tree(A) = U
as claimed. Adding a disjoint basepoint we get a functor

w(—)y: Tree(A) — T.

7.2 The two-sided bar construction

We now update Definition 4.4 to the two-sided case. Along with the spaces of
weightings the key parts of this definition were functors

Pa(—): T(A)YP —C.

The appropriate generalizations of these to functors on Tree(A)°P are as follows.

Definition 7.7 Let P be a reduced operad in C with right module R and left
module L. We define functors (R, P, L)4: Tree(A)°P — C by !

(R,P,L)A(T) :=RG(r) A N P~ N L)

vertices vET leaves (€T

Recall that i(v) denotes the set of incoming edges to a vertex v € T'. Here ¢
denotes the labelling surjection from A to the set of leaves of T, so that ¢~'l
is the set of labels attached to the leaf [.

To complete the definition, we have to give the effect of (R, P, L)(—) on mor-
phisms in Tree(A). Notice that Tree(A) is generated by the morphisms corre-
sponding to

(1) collapse of root edges,

(2) collapse of internal edges, and

(3) bud collapse.

1Tt is a serendipitous fact of our terminology for trees that the right module R
relates to the roots of our trees and the left module L relates to the leaves.
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We will describe the effect of (R, P, L)4(—) on each of these types of generating
morphism and then check that they are compatible.

(1) Suppose first that e is a root edge of the generalized A-labelled tree T'.
Then we have a morphism T/e — T that collapses e. The corresponding
morphism

(Ra P, L)A(T) - (R7 P, L)A(T/e)
is given by the map

R(i(r)) A P(i(v)) — R(i(r owv))
that comes from the right P-module structure on R. Here v is the upper
endpoint of the edge e in T'. Notice that r o v is the root element in 7'/e.

(2) Now suppose that e is an internal edge of T'. The morphism
(R, P,L)a(T) — (R, P,L)a(T/e)

is then given (as in Definition 4.4) by the partial composition map
P(i(u)) A P(i(v)) — P(i(uov))

for the operad P where u,v are the endpoints of e.

(3) Finally, suppose that b is a bud in the generalized A-labelled tree T'. The
required map
(R7 P, L)A(T) - (R7 P, L)A(Tb)

comes from the map
PGE(D) AL M) A AL, — L('h)

that is part of the left P—-module structure on L. Here lq,...,[, are the b—leaves

in T and we have
I8

L = H L,

i=1
from the definition of bud collapse, where ¢ is the A-labelling of Tj.

The associativity conditions for P to be an operad and for R and L to be P-—
modules ensure that these choices indeed determine a functor Tree(A)°P — C.

Definition 7.8 (Two-sided bar construction) Let P be a reduced operad in
C with right module R and left module L as above. The bar construction on
P with coefficients in R and L is the symmetric sequence B(R, P, L) defined
by the coends

TeTree(A)
B(R, P, L)(A) := / w(T)4 ® (R, P, L) 4(T)
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for finite sets A. A bijection A — A’ determines an isomorphism of categories
Tree(A) — Tree(A’) under which the pairs of functors ws(—), wa/(—) and
(R,P,L)a, (R,P,L)s correspond. It therefore induces an isomorphism

B(R,P,L)(A) — B(R, P, L)(4).
So we obtain a symmetric sequence B(R, P, L).

There is a more informal description of this bar construction that generalizes
that of B(P) from Definition 4.1. For a finite set A, a point in B(R, P, L)(A)
consists of

e a weighted generalized A-labelled tree T,
e a point in R(i(r)) where r is the root of T,
e a point in P(i(v)) for each vertex v € T', and

e apoint in L(:7!1) for each leaf [ € T'.

These are subject to identifications that tell us what happens when the lengths
of some of the edges tend to zero. When a root edge tends to zero we use the
right P-module structure map for R. When an internal edge tends to zero we
use the composition map for P. When a collection of leaf edges attached to a
bud tend to zero (note that the leaf edges attached to a particular bud must
all have the same length in a weighting) we use the left P-module structure
for L. Finally, of course, we identify to the basepoint in B(R, P, L)(A) if any
of the chosen points in R(i(r)), P(i(v)), L(:~!1) are the basepoint there.

We now recall the simplicial version of the two-sided bar construction for an
operads and modules over them.

Definition 7.9 (Simplicial two-sided bar construction) Let P be an operad
in C with right module R and left module L. The simplicial bar construction
on P with coefficients in L and R is the simplicial object Bo(R, P, L) in the
category of symmetric sequences in C with

B.(R,P,L):=RoPo---0PolL.
—_—
The face maps
di: B,(R,P,L) — B,_1(R,P, L)

for i =1,...,n—1 are given by the operad composition map PoP — P applied
to the i*" and i + 1*" factors. The face map dy is given by the right module
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structure Ro P — R and d, is given by the left module structure Po L — L.
The degeneracy map

Sjt Bn(R, P, L) - Bn+1(R7 Pu L)

is given by using the unit map I — P to insert an extra copy of P between
the j*™ and j + 1% factors.

Proposition 7.10 Let P be a reduced operad in C with right module R and
left module L. The bar construction of Definition 7.8 is isomorphic to the
geometric realization of the simplicial bar construction:

B(R,P,L) = |Bs(R, P, L)|.

Proof This is a straightforward extension of the argument used to prove
Proposition 4.13. D

Our first example of the two-sided bar construction is that the reduced bar
construction a lone operad is a special case.

Example 7.11 Let P be a reduced operad in C and take R = L = [ the
unit symmetric sequence. Recall that [ is a left and right module over any
augmented operad. It is easy to see from the definitions that for the simplicial
bar constructions we have

B.(I,P,I) = B.(P).

This tells us that

but we can see this directly as well. First notice that
Py(T) T eT(A);
* otherwise.

(I,P,I)A(T)%{

The reason for this is as follows. Because I(n) = * for n > 1, we have
(I,P,I)4(T) = * whenever T' has more than one root edge, or when any leaf
has more than one label. These are precisely the generalized A-labelled trees
not in T(A). For T' € T(A) we have

(I, P, 1) A(T) = I(1) A PA(T) A I(1) A -~ A I(1) = Pa(T).

This calculation means that only the objects T' € T(A) contribute to the cal-
culation of the coend in Definition 7.8. However, we still have to take into
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account morphisms U — T with U ¢ T(A). This amounts to collapsing to
the basepoint those weighted trees in which either the root edge or a leaf edge
has length zero (since these are the images of the maps w(U) — w(T')). All
together this tells us that B(I, P,I)(A) is equal to the coend

TeT(A)
/ W(T) © Pa(T)

where wW(T) is the quotient of w(T') by the weightings which have either root
or leaf edge of length zero. This is precisely B(P)(A). Therefore we have
B(I,P,I) = B(P) as claimed.

Example 7.12 It is easy to see that B(R,P,L)(1) = R(1) A L(1). We have
already seen (Figure 13) that there are three objects in Tree(2). From this we
see that B(R, P, L)(2) is the homotopy pushout of the following diagram

R(1)AP©2)AL(1) AL(l) —— R(1)AL(2)

J

R(2) AL(1) A L(1)
If R = L = I, the bottom-left and top-right objects are * and the top-left
object is P(2). So we recover
B(P)(2) = B, P,1)(2) = SP(2).
Definition 7.13 (Bar constructions for modules) Let P be a reduced operad
in C and let R be a right P-module. We define the bar construction on R by
B(R) := B(R, P,I)

where I, as previously, is the unit for the composition product of symmetric
sequences. If L is a left P—module, its bar construction is

B(L) :==B(I,P,L).
We trust that it will not be confusing to use the same notation for the bar
construction of right and left modules.
Example 7.14 Applying Example 7.12 to the one-sided case we see that
B(R)(1) 2 R(1); B(R)(2) = hocofib(R(1) A P(2) — R(2))
and

B(L)(1) 2 L(1); B(L)(2) = hocofib(P(2) & L(1) & L(1) — L(2)).
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Definition 7.15 (Cobar constructions for comodules) All the constructions
of this section can be applied to operads and modules in C°P, that is, to coop-
erads and comodules in C. We summarize the results.

If @ is a reduced cooperad in C with left comodule L and right comodule R,
the formula of Definition 7.7 defines functors

(R,Q,L)a(—): Tree(A) —C

for each finite set A and we define the cobar construction on @@ with coefficients
in R and L to be the symmetric sequence Q(R, @, L) with

O(R.Q.L)(A) = / Mape (w(T). (R, Q. L)a(T)).

TcTree(A)

This is isomorphic to the totalization of the two-sided cosimplicial cobar con-
struction on @ with coefficients in R and L. The cobar construction on R
is

Q(R) == QR,Q,I)
and the cobar construction on L is

QL) == Q(I,Q, L).

Example 7.16 Taking R = L = [ we recover the cobar construction of
Section 5:

QL Q, I) = Q).
Example 7.17 Taking the duals of the results of Example 7.12 we see that
QR,Q,L)(1) = R(1) A L(1)
and that Q(R,Q, L)(2) is the homotopy pullback of

In particular,
Q(R)(1) = R(1); Q(R)(2) = hofib(R(2) — R(1) A Q(2))
and

Q(L)(1) 2 L(1); Q(L)(2) = hofib(L(2) — Q(2) A L(1) A L(1)).
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7.3 Structure maps for bar constructions on modules

In this section we use similar methods to Section 4.3 to show that the bar
construction on a P-module (that is, a single left or right module) is a comodule
over the cooperad B(P). In fact, we will construct maps of the form

B(R,P,L) — B(R,P,1)3 B(I, P, L) (7.18)

where © is the composition of symmetric sequences defined using the product
in C rather than the coproduct (see Remark 2.20). Taking R = I and recalling
that B(I, P,I) = B(P) we obtain a left B(P)—comodule structure on B(L) =
B(I,P,L). Similarly, taking L = I we get a right B(P)-comodule structure
on B(R). Notice that taking R = L = I we recover the cooperad structure on
B(P).

The definition of the map (7.18) is a relatively straightforward generalization
of the cooperad structure on B(P). We start by describing the grafting and
ungrafting processes for generalized trees.

Definition 7.19 (Grafting for generalized trees) Let T be a generalized A—
labelled tree and U a generalized B—labelled tree and let a be an element of A.
We will define the grafting of U onto T only if T and U satisfy the following
conditions:

e The root of U has only one incoming edge.

e The leaf of T labelled by a is labelled only by a and no other elements
of A.

In this case, the grafted tree T'U, U is defined exactly as in Definition 4.14
by identifying the root edge of U to the a—leaf edge of T'. Figure 14 gives an
example.

a 4 {1,2} 3 {1,2} 3 4

T U TU, U

Figure 14: Grafting generalized labelled trees
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To define the maps (7.18) we will need to graft trees onto all of the leaf edges of
the base tree T'. To do this, we must assume that all the leaves of 1" only have
one label, so that T satisfies the stronger condition for a labelling we required
in Definition 3.3. Notice also that the trees U we are to graft onto T satisfy
the stronger root condition of Definition 3.1. The following definitions will help
us talk about trees of these types.

Definition 7.20 For a finite set A, we define the following full subcategories
of Tree(A):

Troot(A) := {T" € Tree(A)| the root of T" has only one incoming edge}
Tieat(A) := {1 € Tree(A)| the leaves of T are labelled bijectively by A}.
Notice that T(A) = Troot(A) N Tiear(A4).
Definition 7.21 Let A = HjeJ A;j be a partition of A into nonempty subsets.

Given trees U; € Troot(A;j) and T € Tiear(J), we denote the tree obtained by
grafting all the U; onto 1" at the appropriate places by

TUJU]'.

We say that a generalized A-labelled tree is of type {A;} if it is of the form
T Uy Uj for some such T" and Uj. The correct generalization of the functor of
Proposition 4.21 is then a functor

Tree(A)_,_ — Tleaf(J)+ A Troot(Ajl)—I— VANPIAN Tleaf(AjT)+

that breaks the tree (T'U;Uj) into its components 7" and the U; and sends a tree
not of type {4;} to the initial object on the right-hand side. This ‘ungrafting’
functor is the basis of the map (7.18).

Our new categories of trees can be used as the base categories for defining
the one-sided bar constructions. For this we need the appropriate spaces of
weightings.
Definition 7.22 For each finite set A we define a functor

wleaf(_): Tleaf(A) -7

where wieas(T") is the quotient of w(7") by the space of weightings in which
some leaf edge has length zero, and a functor

wroot(_): Troot(A) - T

where wyo0t (1) is the quotient of w(T") by the space of weightings in which the
root edge has length zero.

Geometry € Topology, Volume 9 (2005)



Bar constructions for topological operads 895

Lemma 7.23 Let P be a reduced operad in C with right module R and left
module L. Then the one-sided bar constructions are given by

TET]eaf(A)
B(R)(A) = B(R,P,I)(A) = / Wieat(T) @ (R, P, 1) o(T)
and

TET oot (A)
B(L)(A) = B(I, P, L)(A) = / Wroot(T) ® (I, P, L) A(T).

Proof These calculations are similar to that in Example 7.11 where we showed
that B(P) = B(I, P,I). They use the facts that

(R,P,I)4(T) = * for T ¢ Ticar(A)
and

(I, P,L)A(T) = for T ¢ Tio0t(A). O

The final piece of the puzzle is the construction of a map analogous to (4.18)
that tells us how to weight the trees obtained from ungrafting.

Definition 7.24 Let A = [[;.; A; be a partition of the finite set A into
nonempty subsets. Given trees T' € Tiear(J) and Uj € Troot(A;) we define a
map

w(T Uy Uj)+ — wleaf(T) AN wroot(Uj ) VANPIRWA wroot(Uj )

by the obvious generalization of the construction of the maps wW(T U, U) —
w(T) ANw(U) in Definition 4.16.
Definition 7.25 Putting together all these ingredients we construct maps

In an analogous way to Definition 4.26, these come from the maps of Definition
7.24 together with the isomorphisms

(R,P,L)A(TU;U;) — (R,P,I);(T) K(I,P,L)Aj1 (Uj ) A=A, P, L) 4, (Uj,).
Together these maps make up the map of symmetric sequences
B(R,P,L) — B(R,P,I)o B(I,P, L)
as promised.
Proposition 7.26 Let P be a reduced operad in C with right module R and

left module L. The maps of Definition 7.25 determine a right B(P)-comodule
structure on B(R) and a left B(P)-comodule structure on B(L).
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Proof Taking L = I in 7.25 we get the right comodule structure on B(R).
Taking R = I we get the left comodule structure on B(L). We have to check
the appropriate associativity and unit axioms. This is a generalization of the
work of Section 4.3. We leave the reader to write out all the details, including
the diagrams corresponding to Figure 11. ]

Corollary 7.27 Dually, suppose that @) is a reduced cooperad in C with right
comodule R and left comodule L. Then there is a map

QR,Q,1)oQ1,Q,L) — QR,Q, L)

that makes Q(R) into a right Q(Q)-module (by taking L = I) and Q(L) into
a left Q(Q))-module (by taking R=1).

Proof Apply Proposition 7.26 to () considered as an operad in C°P. O

This completes our descriptions of the bar and cobar constructions for operads,
cooperads, modules and comodules. We turn now to our main application of
this theory — the Goodwillie derivatives of the identity functor.

8 Application to the calculus of functors

In this section we describe our application of bar and cobar constructions to
Goodwillie’s calculus of homotopy functors. The main result is that the deriv-
atives of the identity form an operad in spectra. We now assume that C is a
suitable category Sp of spectra, for example, the S—modules of EKMM [6] (see
Example 1.14(2)).

Let I: 7 — T be the identity functor on based spaces. The Goodwillie deriv-
atives of I can be described in terms of the partition poset complexes [1]. We
recall one of the ways to define these.

Definition 8.1 A partition of a finite set A is an equivalence relation on A.
Let K(A) be the poset formed by the partitions of A with A < p if X is finer
than p, that is, if the set of relations for A is contained in the set of relations
for p. The category K(A) has an initial object 0 and a terminal object 1. Let
Ko(A) = K(A) — 0, the category of proper partitions, and K1(A) = K(A) —1,
the category of non-trivial partitions. Note that the group ¥4 of permutations
of A acts on all of these categories in an obvious way.
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Definition 8.2 (Partition poset complexes) For a finite set A, the partition
poset complex A(A) is the geometric realization of the following simplicial set
T(A)e formed from the nerves of these categories of partitions:

. NE(@A)
"~ N.Ko(A) UN,K(A)

T(A)e

So the n—simplices in T'(A)e are sequences of n + 1 partitions
A S A <<y

with a sequence identified to the basepoint if it does not have both A\g = 0
and A, = 1. The face and degeneracy maps are given by respectively removing
partitions from the sequence and repeating terms in the usual way for the
nerve of a category. The simplicial set T'(A), is pointed and so its geometric
realization A(A) is a based space. A bijection A — A’ induces an isomorphism
A(A) — A(A") that makes A into a symmetric sequence in 7.

Remark 8.3 What we are calling the partition poset complex is the suspension
of the complex K, of [1]. The simplicial set T'(n), is isomorphic to that called
T, in Definition 1.1 of [1].

Proposition 8.4 (Arone-Mahowald, [1]) The derivatives of the identity are

modelled by the dual spectra of the finite complexes A(n) = A({1,...,n}):
Onl ~ Mapg,(A(n),S)

The action of the symmetric group ¥,, on A(n) induces an action on the dual

spectrum and this agrees with the action that comes with the spectrum 0,1 .

The key observation (apparently due to Greg Arone) is that the partition poset
complexes can be described as spaces of trees. We can interpret these as the
spaces of a bar construction.
Definition 8.5 Let S° be the operad in based spaces with

50(4) = §°
for all finite sets A and with all composition maps equal to the identity on S°.

This is the operad for commutative monoids of based spaces.

Lemma 8.6 The partition poset complex A(A) is homeomorphic to the bar
construction B(S%)(A).
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Proof We have already seen that B(S®) is homeomorphic to the realization
of the simplicial bar construction on S°. It is therefore enough to show that
the simplicial set T'(A), used to define A(A) is also given by this simplicial bar
construction.

A non-basepoint n—simplex in T(A) is an increasing sequence of partitions of
A of length n — 1. On the other hand the based set of n—simplices in the
simplicial bar construction is

S%0...08%A).

—_

n

But this is equal to the wedge over increasing sequences of partitions of length
n —1 of S°. Hence we see that the two sets of n-simplices are the same.
The face and degeneracy maps in each case correspond to removing a partition
and repeating a partition respectively. We therefore have isomorphic simplicial
sets. D

Remark 8.7 In [18], Bruno Vallette describes the notion of a P —partition for
an operad P in Set. The P-partitions form a poset whose nerve (or order
complex in [18]) is isomorphic to the bar construction B(P;) (where we are
considering P as a discrete operad in unbased spaces and adding a disjoint
basepoint). Lemma 8.6 is the special case of this fact when P is the ‘commu-
tative operad’ in Set, that is, with P(n) = * for all n.

Corollary 8.8 Let 0,1 denote the model of the n'!" derivative of the identity
given by
OuT = Mapg,(A(n), S).

Then we have
Ol = Q(]D)S_O)(n)
In particular, the derivatives of the identity form an operad in spectra. We

denote this operad by 0.1 .

Proof We have
O = Map(A(n),S) = DB(S%)(n) = Q(DSY)(n)
by Lemma 8.6 and Proposition 6.4 (which applies since all the spaces in S° are

S9). 0

Geometry € Topology, Volume 9 (2005)



Bar constructions for topological operads 899

Remark 8.9 The derivatives of the identity are the cobar construction on the
cooperad S in spectra with

5(A) =DS8%(4) =S

where S is the sphere spectrum, for all finite sets A and with all cocomposi-
tion maps the canonical isomorphisms. This is the analogue for spectra of the
cooperad for cocommutative coalgebras.

Remark 8.10 We can use the constructions of Section 7 to get modules over
the operad 0,I. If C is a comodule over S then its cobar construction Q(C)
is a 0,/—module. We give two examples:

(1) Let X be a based space. Then the suspension spectrum X*°X is a S—
coalgebra (that is, just a commutative coalgebra) with comultiplication given
by the (reduced) diagonal map on X:

YPX 5 EF(XAX)ZEPX AXTX.
As remarked in Definition 2.22, a coalgebra over a cooperad () determines a

left @Q—comodule. Thus we obtain a left S—comodule ¥*°X. We now take the
cobar construction to get a left 9./—module

My = Q(X®X) =Q(,8,5°X)

(where I in this formula denotes the unit symmetric sequence of Definition 2.5).
From the calculations of 7.17 we find that

Mx(1) = 5°X
and
My (2) 2 hofib(E®X — %X A X))
~ %" hocofib(B®X — °X A XXX)
~ %7 1¥* hocofib(X — X A X)
So Mx(2) is (up to homotopy and a desuspension) the mapping cone of the
reduced diagonal on X . Further work is needed to analyze the spectra Mx (n)

for larger n. In Section 9.7 we will look at ways to calculate the homology of
these spectra.

(2) A moment’s thought will reveal that a right S—comodule is precisely the
same thing as a functor
(FinSets, —») — Sp

where the left-hand side is the category of finite sets with morphisms given by
the surjections. Work in progress by Greg Arone has demonstrated a relation-
ship between such functors and the Goodwillie calculus of homotopy functors
F from based spaces to spectra.
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Remark 8.11 (Derivatives of general homotopy functors) The derivatives of
any homotopy functor F' form a symmetric sequence in spectra and it is natural
to ask how these symmetric sequences might be related for different functors.
We conjecture that there is in general a map of symmetric sequences

0,F 0 0,G — 0,(FG)

for any two homotopy functors F,G: 7 — 7 such that F(x) = %, where FG
denotes the composite of F' and G. These maps should have suitable associa-
tivity properties that taking F' = G = I would recover an operad structure on
0«1 equivalent to the one we have constructed in this section. Similarly, tak-
ing F' = I would yield the structure of a left 0,/-module on 0,G and taking
G = I aright d,1-module structure on 0,F. The main obstacle at present for
constructing these maps is finding good models for the derivatives of a general
functor in a symmetric monoidal category Sp of spectra. In the case of the
identity functor we were fortunate that such models naturally arose from the
partition poset complexes.

9 Homology of the bar and cobar constructions and
Koszul duality

In this section we look at spectral sequences for calculating the homology of
the bar and cobar constructions on operads and cooperads in based spaces or
spectra. It turns out that we can relate the E'—term of these spectral sequences
to the algebraic bar and cobar constructions described in, for example, [8] and
[7]. This leads to a link with Koszul duality which says, briefly, that if the
homology of the reduced operad P is Koszul, then the homology of B(P) is
its Koszul dual cooperad, and dually, if the homology of the cooperad @ is
Koszul then the homology of Q(Q) is its Koszul dual operad. This supports
the point-of-view that the bar construction for an operad in based spaces or
spectra is the analogue of the Koszul dual for an algebraic operad.

Here is a summary of this section. We start in Section 9.1 by recalling how the
homology (with coefficients in the commutative ring k) of an operad in based
spaces or spectra has the structure of an operad in graded k—modules. Then in
Section 9.2, the main work of the chapter begins and we describe the filtration
of the bar construction that gives rise to our spectral sequence and identify
the ‘filtration quotients’. This filtration is based on the number of vertices in
the trees that underlie the bar construction. We deal immediately with the
two-sided construction of Section 7.2, recalling that the construction for a lone
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operad is a special case of this. As usual, for the cobar construction, we just
dualize everything. That is, we get a cofiltration, or tower, whose inverse limit
is the cobar construction and we identify the fibres of the stages in this tower. In
Section 9.3 we give conditions under which the inclusion maps of the filtrations
are cofibrations, thus ensuring that our ‘filtration quotients’ are actually the
homotopy cofibres of filtration. This will allow us later to use our identification
of these quotients to calculate the E' term in the spectral sequence. This E*
term turns out to be given by the algebraic bar construction which we describe
in Section 9.4. We give a definition of this that emphasizes its similarity to the
topological version and show that this definition is equivalent to that given by
Getzler and Jones [8] and Fresse [7]. Then in Section 9.5 we finally set up the
spectral sequence and identify its E' term with the algebraic bar construction
as claimed. In Section 9.6 we look at Koszul operads and prove the result
identifying the homology of the bar construction on P with the Koszul dual
of the homology of P. Finally, in Section 9.7 we use our spectral sequences
to investigate the homology of the 0,I-modules Mx constructed in Remark
8.10(1).

9.1 Homology of topological operads

Throughout the chapter we fix a commutative ring k& and consider the categories
Mod; of graded k—modules and Chy of chain complexes over k. First we
describe the symmetric monoidal structure on these categories.

Definition 9.1 The tensor product determines a symmetric monoidal struc-
ture on graded k-modules with

(M &N), = GB M, ® Ny
ptg=r
where the graded symmetry isomorphism
M@N—-NM
is given by
men +— (_1)‘m“”|n Xm
and the unit object is the graded module k concentrated in degree 0. If M and

N are chain complexes with differentials dj; and dy respectively, we define a
differential on M ® N by

dyren(m @ n) == dy(m) @n+ (=1)™m @ dy(n).

This makes ® into a symmetric monoidal structure on Chy with the same unit
k endowed with the trivial differential.
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Throughout this section we will use H.(—) to denote the homology with coef-
ficients in the commutative ring k of an object in C when C is either 7 or Sp.
If C is the category 7 of based spaces, this is the reduced homology.'? If C is
a category Sp of spectra, it is the spectrum homology H.(F) = m.(Hk A E).
We recall the Kiinneth maps for these homology theories.

Proposition 9.2 Let C =7 or Sp and take C, D € C. Then there is a natural
map
H.(C)® H.(D) — H.(CAD)

that is an isomorphism if either H,.(C') or H.(D) consists of flat k—modules.
These maps are symmetric monoidal in the sense that they commute with the
associativity and commutativity isomorphisms in the categories C and Modj.

Definition 9.3 Let M be a symmetric sequence in 7 or Sp. Then we denote
by H.M the symmetric sequence of graded k—modules given by

H.M(A) == H,(M(A)).

The main result of this section is that the homology of a topological operad or
cooperad is, under suitable conditions, an operad or cooperad in Mody.

Lemma 9.4 Let P be an operad in 7 or Sp. Then H,P is an operad of
graded k—modules. If P is reduced then so is H,P. If M is a left (respectively,
right) P—module, then H,M is a left (respectively, right) H,P-module.

Let @ be a cooperad in T or Sp such that the homology groups H,(Q(A)) are
flat k—modules. Then H,.(Q) is a cooperad of graded k—modules that is reduced
if Q is. If C is a right Q—comodule then H,(C) is a right H,(Q)-comodule.
If C is a left (Q—comodule such that the H,(C(A)) are flat k-modules then
H,.(C) is a left H.(Q)-comodule.

Proof The operad structure maps are given by the composites
H.(P(A)) & H.(P(B)) — H.(P(A) A P(B)) — H.(P(AU, B))
and the unit by the map
k= H.(S) — H.(P)(1)

where S denotes either S°, the unit of 7, or the unit of Sp. To check the
operad axioms we use the associativity and commutativity of the Kiinneth

12We stress that any homology group of a based space in this paper is meant to be
the reduced homology.
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formula as stated in Proposition 9.2. Clearly, if P is reduced (so that the unit
map S — P(1) is an isomorphism) then so is H,P. The structure maps for
H,M are defined similarly.

In the cooperad case we need the flatness condition. It allows us to define
cocomposition maps by

H.(Q(AU, B)) — H.(Q(A) N Q(B)) = H.(Q(A)) ® Hi(Q(B))

using the inverse of the Kiinneth map. The counit map is the composite
H.Q(1) - H.(S) =k

and again, if @ is reduced, so is H.Q. In the case of a right comodule C' we
similarly get comodule structure maps

H.(C(AUa B)) = H.(C(A) NQ(B)) = H.(C(A)) @ Hi(Q(B))

where the Kiinneth map is an isomorphism without any condition on H,(C(A))
(we are still assuming that the H,(Q(B)) are flat). For a left comodule, we do
still need the flatness assumption. m]

Remark 9.5 We can consider cohomology instead of homology in which case
the Kiinneth isomorphism also requires a finiteness hypothesis. We get the
following results. If @ is a cooperad in based spaces or spectra then H*(Q) is
an operad of graded k—modules. If P is an operad with the cohomology groups
H*(P) finitely-generated flat k—modules then H*(P) is a cooperad of graded
k-modules. Similar results hold for comodules and modules.

9.2 Filtering the bar construction

The spectral sequence we want to construct comes from a filtration on the bar
construction by the number of vertices in the underlying trees. In this section
we construct this filtration and calculate the filtration quotients.

Definition 9.6 (Filtration on the category of trees) Write Trees(A) for the
subcategory of Tree(A) whose objects are the (isomorphism classes of) trees
with less than or equal to s (internal) vertices. We then have

Treeg(A) C Tree;(A) C -+ C Tree4—1(A) = Tree(A).

Each Trees(A) is an initial subcategory of Tree(A). That is, if U < T and
T € Trees(A) then U € Trees(A). The filtration ‘quotients’ are the discrete

categories
Qs(A) := Trees(A) — Trees_1(A)
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whose objects are the trees with precisely s vertices. For each tree T € Tree(A)
we write |T'| for the number of vertices of T'.

Definition 9.7 (Filtration on the two-sided bar construction) For a reduced
operad P in C with right module R and left module L, define

T€Trees(A)
B(R, P,L),(A) = / w(T); ® (R, P, L) A(T).

For varying finite sets A these form a symmetric sequence in C. From the
inclusion of categories Trees_1(A) C Trees(A) we get natural maps

B(R,P,L),_1(A) — B(R, P,L)s(A).

In the case C = 7, it is easy to see that the resulting sequence of maps is a
filtration of B(R, P, L)(A) by subspaces. The subspace B(R, P, L)s(A) consists
of those points in B(R, P, L)(A) that can be represented by trees with less than
or equal to s vertices.

Example 9.8 The generalized A-labelled trees with no vertices (i.e. only a
root and some leaves) correspond one-to-one with (unordered) partitions of A.
We therefore see that

B(R,P,L)y=RoL
where o is the composition product of symmetric sequences.
Example 9.9 Take R = L = [ so that B(R,P,L) = B(P). We then have

B(P)y = I by the previous example. If |A| > 1 there is precisely one (non-
generalized) A-labelled tree with only one vertex and we therefore get

Ste P(A)  if |A] > 1;

B(P)1(A) = {B(P)(l) ~ S if |Al = 1;

where S is the unit of the symmetric monoidal category C.

We can think of the sequence
B(R,P,L)y(A) — B(R,P,L)1(A) — --- — B(R,P,L)(A)

as a kind of ‘cellular’ filtration. That is, we obtain B(R, P, L)s(A) by attaching
‘cells’ to B(R,P,L)s—1(A), one for each generalized A-labelled tree T with
exactly s vertices. The following proposition makes this precise.
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Proposition 9.10 There is a pushout square in C of the form

Te¥<A) Q)+ & (RPLAT) B(R,P,L),_1(A)

Teé{(A)w(T)Jr ® (B, B L)a(T) — B(R,P,L)s(A)

where Ow(T') denotes the boundary of the space w(T').

To identify the top horizontal map in this diagram we use the following simple
but important lemma.

Lemma 9.11 Let T be a generalized A-labelled tree. Then

ow(T); = c[(])l<ijrp w(U) 4.

The indexing category of the colimit is the full subcategory of U € Tree(A)
with U < T'.

Proof of Lemma This is a categorical reflection of that fact (Lemma 7.5)
that the boundary dw(T') consists precisely of those weightings of T' in which
some edge has length zero. O

Proof of Proposition 9.10 The top horizontal map in the diagram is given

by
\  ow(l)y @ (R,P,L)A(T) = \ colim [w(U) 4 ® (R, P, L) a(T)]
TeQs(A) TeQs(A)
— \ colim[w(U)y ® (R, P,L)a(U)]
TeQs(A)

— B(R,P,L),_1(A).

Here we've used the fact that —® C' is a left adjoint so commutes with colimits.
If T € Qs(A) and U < T then U € Trees_1(A) so there are compatible maps
from w(U)y+ ® (R, P,L)a(U) to the coend defining B(R, P, L)s_1(A).
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With this definition, it is a simple exercise in naturality and colimits to see that
the square commutes. To see that it is a pushout, take a commutative diagram

TEC\Q{(A) Q)+ & (RPLAT) B(R,P,L)s_1(A)

\/ w(T):®(R,P,L)(T)
TeQs(A)

—>X

We have to show that this factors via a unique map
B(R,P,L)s(A) — X.

Since B(R, P, L)s(A) is a coend and hence a colimit, it is enough to get a unique
set of compatible maps

w(U)+ & (R, P,L)A(T) — X

for U < T in Trees(A). If T' ¢ Qs(A) the required map comes from the
right-hand edge of diagram (x). So suppose that T' € Qs(A). Then we have

wU)4 @ (R, P,L)A(T) = w(T)+ @ (R, P,L)A(T) — X

where the second map comes from the bottom edge of diagram (x). We leave
the reader to check that these maps are compatible in the appropriate way and
suitably unique. We conclude that B(R, P, L)s(A) is the claimed pushout. DO

We use this result to identify the quotients of our filtration of the bar construc-
tion.

Corollary 9.12 Let P be a reduced operad in C with right module R and
left module L. The following is a pushout square in C:

B(R7 P, L)sfl(A) E— B(Ra P, L)S(A)

sV w(@)y/ow(T)y ® (R, P,L)a(T)
TeQ,(A)
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Proof Since —® C' preserves colimits, the following is a pushout square in C:

ow(T)+ @ (R,P,L)A(T) —— w(T)4+ ® (R, P,L)s(T)

| |

¥ —————— w(T)y /ow(T)y @ (R, P, L) 4(T)

The corollary now follows from Proposition 9.10 and the universal properties
of colimits. O

Remark 9.13 Recall from Lemma 7.5 that for any generalized A-labelled
tree T' with s vertices, w(T) = D?®. Therefore, w(T)4/0w(T);+ = S*. We will
be talking a lot about these spaces in the coming sections, so we will give them
some more compact notation:

w(T) = w(T)4 /dw(T); = w(T)/dw(T) = §°

The results for the cobar construction are, as usual, just the duals of those for
the bar construction. We summarize these briefly.

Definition 9.14 (Cofiltration of the cobar construction) Let @ be a reduced
cooperad in a symmetric monoidal 7—category C with right comodule R and
left comodule L. Then the two-sided cobar construction Q(R,Q,L) has a
‘cofiltration’, that is, there is a sequence

Q(R7 Q7 L)(A) o Q(R7 Q7 L)S(A) - Q(R7 Q7 L)Sil(A) o

where

O(R.Q,L)*(A) = / Mape(w(T)+, (R, Q. L) a(T)),

TETrees(A)

and the ‘projection’ map
QR,Q,L)*(A) — Q(R,Q,L)*"}(A)

comes from the inclusion of categories Trees_1(A) — Trees(A) for s > 1.
Corollary 9.15 With Q, R, L as in Definition 9.14, the following is a pullback
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square:

OR.Q.L7(4) — 1 Mape(w(T)y, (R,Q,L)a(T))

TeQs(A)

OR.Q. 1)y () — L] Mape(9u(T)+, (R.Q, L)a(T))
TeQs(A)

We can identify the fibres of the projections by the pullback squares

Telc;[(A) Mape (w(T), (R, Q, L)a(T)) ___, Q(R,Q,L)*(A)

* Q(R,Q, L)*"1(A),

where w(T) = w(T)/0w(T). O

9.3 Conditions for the inclusion maps of the filtration to be
cofibrations

In the case that C is either 7 or Sp, the filtration of Section 9.2 allows us to
construct a spectral sequence converging to the homology of B(R, P,L). The
E' term of this spectral sequence is given by the homologies of the homotopy
cofibres of the inclusion maps of the filtration. In this section we give conditions
under which these inclusions are cofibrations (in the standard model category
structures on 7 and Sp) and which therefore ensure that the homotopy cofibres
are given by the strict cofibres, or filtration quotients, that we have already
calculated.

We state the main result of this section (Proposition 9.19 below) for a general
symmetric monoidal 7—category C with a compatible model structure. Defini-
tion 9.16 says what we mean by ‘compatible’ here. We use Mark Hovey’s book
[13] as our basic reference for model categories.

Definition 9.16 A symmetric monoidal T-model category is a symmetric
monoidal 7—category C (as in Section 1) together with a model structure (in
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the sense of [13, Definition 1.1.3]) such that the tensoring makes C into a 7—
model category (in the sense of [13, Definition 4.2.18]). That is, if X — Y isa
cofibration in 7 and C' — D is a cofibration in C then the induced map

(X®D)lxge Y®C)—-Y®D

is a cofibration in C that is trivial if either of our original cofibrations is. (The
domain of this map is the pushout of X ® D and Y ® C over X @ C'.)

Remark 9.17 We should say a few words about this definition. Firstly, we
are not requiring that C be a monoidal model category in its own right (in the
sense of [13, Section 4.2.6]). That is, we are not insisting that the symmetric
monoidal structure A on C in any way respect the model structure. Our reason
for doing this is to preserve the self-duality of Definition 9.16 (see Lemma 9.21
below). In general, the opposite category of a monoidal model category is not
another monoidal model category and we wish to dualize our theory to obtain
results on the cobar construction.

On the other hand, the hypotheses we need to prove Proposition 9.19 are nat-
ural consequences of the assumption that C is a monoidal model category, and
the categories we are most interested in, 7 and Sp, satisfy this assumption.
This suggests that a breaking of the symmetry between bar and cobar is nec-
essary when we come to study the homotopy theory of these constructions. In
this paper, we do not pretend to give the beginnings of such a theory and, in
particular, we do not claim that Definition 9.16 is the philosophically correct
way to mix model category theory into this paper. For us, it serves the purposes
of allowing us to make calculations with our spectral sequence in cases that are
of interest.

Lemma 9.18 Let C be a symmetric monoidal T—model category. If C € C is
cofibrant and X — Y is a cofibration in 7 then X @ C' — Y ®C is a cofibration
in C.

Proof Apply the definition of 7—model category to the cofibrations X — Y
and x — C'. m|

Proposition 9.19 Let C be a symmetric monoidal T-model category such
that if C, D are cofibrant then C' A D is also cofibrant. Let P be a reduced
operad in C with right module R and left module L such that, for all A, the
objects P(A), R(A), L(A) are cofibrant. Then, for all s > 1 and all finite sets
A, the map

B(Rv P, L)sfl(A) - B(R7 P, L)S(A)

of Definition 9.7 is a cofibration in C.
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Proof The cofibrancy conditions on the P(A), L(A), R(A) together with the
extra condition on C ensure that the objects (R, P, L)4(T") are all cofibrant.
For any generalized tree T', the map

ow(T)+ — w(T)4

is a cofibration in 7 (it is the inclusion of the boundary of a ball). Therefore,
by Lemma 9.18,

Ow(T)y @ (R, P,L)A(T) = w(T)4 @ (R, P, L) a(T)
is a cofibration. Proposition 9.10 tells us that the filtration map
B(R,P,L)s—1(A) — B(R,P,L)s(A)
is a pushout of a coproduct of such maps so it too is a cofibration. O
Remark 9.20 As we commented in Remark 9.17 above, if C is a symmetric
monoidal model category in its own right, we get for free that C' and D cofibrant

imply C'A D cofibrant. In particular this is the case for 7 and Sp (that is, the
S-modules of EKMM [6]).

As promised, our definition of symmetric monoidal 7—model category is self-
dual.

Lemma 9.21 Let C be a symmetric monoidal T—model category. Then C°P is
also a symmetric monoidal T-model category with the standard dual symmetric
monoidal and model structures.

Proof We already know from Proposition 1.12 that C°P is a symmetric mon-
oidal 7—category. Recall that the tensoring for C°P is given by the cotensoring
for C, the cofibrations in C°P are the fibrations in C and a pushout in C° is a
pullback in C. The weak equivalences in C°P are the same as those in C.

To see that C°P is a 7-model category we have to show that if X — Y is a
cofibration in 7 and D — (' a fibration in C then

Map¢ (Y, D) — Mapc (Y, C) Xntap, (x,0) Mape (X, D)

is a fibration in C°P that is trivial if either of our original maps is a weak
equivalence. This result is given by Lemma 4.2.2 of [13]. O

The result dual to Proposition 9.19 is then the following.
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Corollary 9.22 Let C be a symmetric monoidal T—model category such that
if C, D are fibrant then C' A D is also fibrant. Let ) be a reduced cooperad
in C with right comodule R and left comodule L such that all the objects
Q(A),R(A),L(A) are fibrant. Then the map

QR,Q,L)*(A) — QR,Q,L)* '(A)
of Definition 9.14 is a fibration in C. D

In these circumstances, then, the fibres of the maps in the tower for Q(R, Q, L)
are also the homotopy fibres and so can be used to calculate the E! term of
the associated spectral sequence.

Remark 9.23 In our categories of interest, 7 and Sp, all objects are fibrant
and so the conditions of Corollary 9.22 hold for any cooperad and any comodules
over it.

9.4 The algebraic bar and cobar constructions

So far we have constructed (under suitable conditions) a filtration of the two-
sided bar construction B(R, P, L) by a sequence of cofibrations. This filtration
yields a homology spectral sequence whose E! term turns out to be given by an
algebraic version of our bar construction. In fact, it was this algebraic version,
previously studied by Ginzburg-Kapranov [9], Getzler-Jones [8] and Fresse [7]
among others, that inspired our definition of the bar construction for operads in
topological settings. This section is devoted to the description of this algebraic
bar construction. As in the topological case, we will only deal with reduced
operads, that is, those for the unit map k& — P(1) is an isomorphism.

Our definition of the algebraic bar construction emphasizes its similarity to
the topological versions of Section 4 and Section 7 and it will follow the same
pattern.

Definition 9.24 Let P be a reduced operad in the category Chy of chain
complexes over the commutative ring k (with the symmetric monoidal structure
of Definition 9.1). Let R be a right P-module and L a left P-module. More
or less repeating Definition 7.7, we define a functor

(R,P,L)s: Tree(A)°® — Chy,
for each nonempty finite set A by the formula

(R,P,L)A(T):=R(i(r)® &K Plw)e & L")

vertices v € T' leaves [ € T'
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The composition maps for R, P and L make (R,P,L)4 into a functor as
claimed. In making explicit calculations we have to be careful with the signs
involved in the symmetry isomorphism for ® but for theoretical purposes we
can treat (R, P, L)4(T") as an unordered tensor product (see Remark 1.2).

We now wish to define the bar construction B(R, P,L) by the same coend
formula as in Definition 7.8. For this we need chain complex versions of the
spaces w(T) of weightings on trees 7" € Tree(A). As in the topological case,
the structures of these ‘spaces’, and how they fit together for different trees, are
the key parts of the definition of the bar construction.

Definition 9.25 Let T be a generalized A-labelled tree. The chain complex
Cyw(T') representing the space of weightings on 7" will be the cellular chain
complex for a certain cellular decomposition of the space w(7T'). The cells in
this decomposition correspond one-to-one with the trees U € Tree(A) with
U < T. The r-skeleton of w(T) is given by

sk, w(T) := colim w(U).
U<T:U€Tree,(A)

The attaching map for the cell corresponding to the tree U with r 4+ 1 vertices
is the map

S" = 0w(U) = colimw(V) — colim w(V) = sk, w(T).
V<U V<T: VeTree,(A)

The cellular chain complex for this cell structure then has

CuwT = P HwU),owU)= H  Hwl).

ULT:UeQ,(A) ULT:UeQ,(A)

Recall from Remark 9.13 that w(U) denotes the quotient w(U)/0w(U). The
differential
Crw(T) — Cr_yw(T)

is given by summing the maps'3

Hy(w(U)) = Hy(w(U), 0w(U)) = H—1(0w(U)+) = Hy—1(w(V))

13The last part of this composite comes from the map

Ow(U)+ = colimw(V)y — w(V)4/0w(V)4 = w(V)

given by collapsing to the basepoint everything except the interior of the ‘face’ w(V)
of dw(U).
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for pairs (U,V) with V < U, |U| = r and |V| = r — 1. An example of this
chain complex for a particular tree is shown in Figure 15.

The inclusion w(U) — w(T) is cellular and so we have inclusions
Ciw(U) — Cyow(T)
for U < T. These make C,w(—) into a functor
Cyw(—): Tree(A) — Chy.

This is the chain complex analogue of the functor w(—) of Definition 7.6.

Figure 15: Example of the chain complex C,w(T) showing the cellular decomposition
of w(T)

Definition 9.26 With our ‘chain complexes of weighted trees’ C,w(T), we
now define the two-sided algebraic bar construction on the reduced operad P
with coefficients in R and L to be the symmetric sequence B(R, P, L) with

TE€Tree(A)
B(R, P,L)(A) == / Cow(T) @ (R, P, L) a(T).

This coend is calculated in the category of chain complexes on k£ and results in a
chain complex B(R, P, L)(A). However, it will be useful to consider a bicomplex
structure on B(R, P, L)(A) for which this chain complex is the total complex.
The bicomplex structure comes about by considering the tensor product of the
chain complexes Cyw(T") and (R, P,L)a(T) as a bicomplex with gradings and
differentials coming from these separate terms. We will write

B(R,P,L),.,(A)

to emphasize this bigrading with the first index denoting the grading that comes
from C,w(T) (we’ll call this the tree grading) and the second the grading that
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comes from (R, P, L) a(T) (which we’ll call the internal grading). We then have
two separate differentials on B(R, P, L) s:

d: B(R,P,L),.— B(R,P,L),_1.

coming from the differentials on the chain complexes C,w(T") which will refer
to as the tree differential on the bar construction, and

d: B(R,P,L),. — B(R,P,L),, 1

coming from the differentials on the (R, P, L) o(T") which we will call the internal
differential.

In later sections, we will be applying the algebraic bar construction to operads
of graded k—modules, that is, chain complexes with zero differential. In this
case, the internal differential of B(R, P, L)(A) will be zero.

We can give a more explicit description of B(R, P, L) as follows.
Lemma 9.27 Let P be a reduced operad in Chy with right module R and

left module L. Then we have'*

B(R,P,L),.(A) = P H ® (R, P,L)A(T)
TeQs(A)

as chain complexes of k—modules with respect to the internal grading and dif-
ferential.

Under these isomorphisms, the tree differential
0: B(R,P,L)s«(A) — B(R,P,L)s_14+(A)

is given by summing, over all pairs (I',U) with U < T, |T| = s and |U| =s—1,
the maps

ﬁs(w(T)) ® (R7 P, L)A(T) - stl(w(U)) ® (R7 P, L)A(U)
obtained by combining the maps
(R,P,L)A(T) — (R,P,L)4(U)

with the terms B _
HS(Q(T)) - sfl(w(U))
from the top differential of the chain complex Cyw(T).

"“Here, as elsewhere, the reduced homology of the quotient w(T') = w(T")/Ow(T) can
be replaced with the homology of the pair (w(7T),0w(T')). Both of these are isomorphic
to the graded module k concentrated in degree |T|.
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Proof We consider a filtration of the algebraic bar construction analogous to
that of Section 9.2 for the topological version. Virtually the same analysis
applies and we get short exact sequences of chain complexes!'®
B(R,P,L)s-1(A) = B(R,P,L)s(A) = € Ciw/C.ow(T) @ (R, P, L)r(A).
TeQs(A)
where C,0w(T) is the cellular chain complex for the subcomplex dw(T") C w(T')
(that is, everything except the top-dimension cell). Notice that
Cw(T)/C.dw(T) = Hy(w(T))

for T € Qs(A). We construct a splitting of the above short exact sequence
(with respect to the internal differential but not the tree differential) using the
obvious splittings (as k—modules) of the sequences

CL.ow(T) — Cow(T) — H,(w(T)).
We get by induction on s that
B(R,P,L)(A) = @ Hrw))® (R, P L))
TeTree(A)

which splits, by tree degree, into the isomorphisms of the lemma. We leave the
reader to check that the tree differential has the promised formula. O

Remark 9.28 Choosing generators of the groups Hp(w(T'),0w(T)) = k de-
termines an isomorphism
B(R.P.L)(A)= P (R PLaT)
TeTree(A)
which is the definition of the algebraic bar construction given by Fresse in [7,

Section 4.4]. Such choices determine choices of the coefficients (in fact, signs)
for the maps that make up the differential 0 on B(R, P,L)(A).

Fresse shows that this bar construction is a representative of the derived com-
position product of R and L as P-modules, that is,

B(R,P,L)~ Rop L

'5The notation here is probably rather confusing. We are using B(R, P, L)s(A) to
denote the part of the filtration of B(R, P, L)(A) obtained via the chain complex version
of Definition 9.7. This is not to be confused with B(R, P, L), . which is the graded
summand of tree degree s. In fact, it’s a consequence of the proof of this lemma that

B(R,P,L)s(A) = €D B(R, P, L),.(A).

r<s
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and so the homology groups of B(R, P, L), with respect to the tree differential,
are Tor groups of P—modules.

The relationship between this algebraic bar construction and the simplicial bar
construction was analyzed by Fresse. His proof of the following proposition uses
a ‘levelization’ process analogous to that we used in the proof of Proposition
4.13.

Proposition 9.29 ([7, Theorem 4.1.8]) The algebraic two-sided bar construc-
tion B(R, P, L) is quasi-isomorphic to the normalized chain complex of the
simplicial bar construction on P with coefficients in R and L (the algebraic
version of Definition 7.9).

As usual, we have the dual constructions and results.

Definition 9.30 Let Q) be a reduced cooperad of chain complexes of k-
modules with right comodule R and left comodule L. Then there are func-
tors (R,Q,L)s from Tree(A) to Chy and we can define the algebraic cobar
construction on @ with coefficients in R and L by the same formula

O(R, Q. L)(4) = /T oy Hom(Can(T), (R, Q. 1)4(T)

as in Definition 5.1, where, for chain complexes M, N, Hom(M, N) denotes
the chain complex of maps of graded modules M — N. The cobar construc-
tion is a bicomplex with an internal grading and differential coming from the
(R,Q,L)4(T) and a tree grading and differential 0* coming from the C,w(T).
We follow the convention that Hom(M, N),: = Hom(M_,, N;) so that the tree
grading on the cobar construction is concentrated in negative degrees.

There is an explicit description of the cobar construction analogous to that of
Lemma 9.27 for the bar construction.

Lemma 9.31 With @, R, L as above:
AR, Q,L)sx(A):= € Hom(H(w(T)),(R,Q,L)a(T))

T€Qs(A)
which again is just isomorphic to

@ (RvaL)A(T)

TeTree(A)
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after choosing generators of the groups H s(w(T)). The internal grading and
differential correspond in the obvious way under this isomorphism. The explicit
form of the tree differential 0* is given by the maps

(R’ Qa L)A(U) - (R7 Qa L)A(T)
with coefficients again given by the components
Hy(w(T)) — Hy 1 (w(U))

of the top differential on the chain complex C,w(T). O

Definition 9.32 When P is a reduced operad in the category of graded k—
modules, the unit symmetric sequence I defined by

14) = {k: if |A| = 1;

0 otherwise.

is both a left and right P—module. The reduced bar construction on P is then
given by the two-sided bar construction with coefficients in I on both sides:

B(P):= B(I,P,I)

The definition of the algebraic bar construction reduces in this case to
TET(A)
B(P)(A) = / Cw(T) @ Pa(T).

Recall that the space w(T") is the quotient of w(7T') by the subspace wo(T) of
weightings that give length 0 to either the root edge or a leaf edge of T'. This
subspace is in fact a subcomplex with respect to our chosen cellular structure on
w(T) .16 Therefore we obtain a cell structure on w(7) and in the above formula,
Cw(T) denotes the relative cellular chain complex for the pair (w(7T),*), or
equivalently, for the pair (w(T),wo(T)).'" It is clear that C,w(T) is a quotient
of Cow(T).

It’s also easy to check that by Lemma 9.27 we have

B(P)(A) = P Hpyw(T))® Pa(T)
TET(A)

6Tt is the union of the cells corresponding to U < T that are not in the original
category T(A), that is, that are generalized trees, but not trees in the sense of Section 3.
"The tensor product of chain complexes is here playing the role of the smash prod-
uct of based spaces so we need the reduced version of the cellular chain complex.
Strictly speaking, the chain complex C,w(T) is the relative chain complex of the pair

(w(T)4,%).
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which (after choosing isomorphisms H ir|(w(T)) = k) is the original definition
of the algebraic bar construction given in Getzler-Jones [8, Section 2.1].

Similarly, if @) is a reduced cooperad then [ is both a left and right Q—comodule
and the reduced cobar construction on @ is

Q) :=Q(,Q,1)

and is given by a formula analogous to that of Definition 5.1.

As in the topological case, the reduced algebraic bar construction on a reduced
operad P of chain complexes has a cooperad structure. We now describe this.

Definition 9.33 The required maps
B(P)(AU, B) — B(P)(A) ® B(P)(B)

are defined in exactly the same way as the corresponding maps in the topological
case (Definition 4.3). To do this we must construct the algebraic versions of
the key maps (4.18):

(T U, U) — Cyw(T) @ Cw(U)

for A-labelled trees T" and B-labelled trees U. We get this by taking the map
of cellular chain complexes induced by the topological map

wW(TU,U) —w(T) Nw(U)

of Definition 4.16. For this to work, we need the following lemma.

Lemma 9.34 Let T be an A-labelled tree, U a B-labelled tree and let a € A.
The map
w(T U, U) —w(T) Nw(U)

is cellular, that is, it preserves skeleta.

Proof A point p in w(T U, U) is in the s—skeleton if and only if it is in
the subspace w(V) for some tree V with s vertices. If this tree V is not of
type (A, B) then p is mapped to the basepoint which is certainly in the s—
skeleton of the right-hand side. If V' is of type (A, B) (that is, obtained by
grafting an A-labelled tree T’ and a B-labelled tree U’) then the point p
maps to a pair consisting of a point in some wW(7") C wW(T) and a point in some
w(U') € w(U). The first point is in the s'-skeleton of wW(T) where T has
s’ vertices. The second point is in the s”-skeleton of wW(U) where U’ has s”
vertices. Therefore the pair is in the s'+ s”—skeleton of wW(T') Aw(U). However,
since V only had s vertices, we must have s’ + s” < s. So the image of p is in
the s—skeleton of wW(T") Aw(U) as required. O
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It is easy to describe explicitly the resulting map of chain complexes
Cw(TU,U) — C.w(T) @ Cow(U).

Recall that the left-hand side is given by the direct sum over V' € Tree(AU, B)
with V < T U, U of the homology groups ﬁ*(w(V)) The above map sends
the term corresponding to a tree V' that is not of type (A, B), to zero. If
V =T'U, U, then T" < T and U’ < U and the corresponding term maps to
the right-hand side via the isomorphism

H(w(T" U U")) — Ho(w(T")) ® Ho(w(U")),

which is induced by the homeomorphism!®

w(T"Ua U') — w(T") A w(U),
which in turn is a quotient of the map

w(T' U, U') — w(T") Aw(U).

With this key map in place, the rest of the formal definition of the cooperad
structure maps for the topological bar construction (Definition 4.26) carries
over to the algebraic case.

Lemma 9.35 Let P be a reduced operad in Chy. Under the isomorphism
of Lemma 9.27, the cooperad structure on B(P) corresponds to the cooperad
structure on the chain complexes

P Hpr(w(T)) ® Pa(T)
TET(A)

whose cocomposition maps are given by summing over the maps obtained by
combining the isomorphisms

H.(w(T U U)) = Hi(w(T)) ® He(w(U))
with the isomorphisms
PAUGB(T Ua U) — PA(T) & PB(U).

Proof This is asimple check using the definition of the isomorphism in Lemma
9.27 by splittings of short exact sequences. O

18Tt is easy to check that this map is a bijection. The spaces involved are all spheres
which are compact Hausdorff, so it is a homeomorphism.
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Remark 9.36 Choosing generators for the groups H,(w(T)), we see that this
is equivalent to the cooperad structure defined by Getzler—Jones [8] and by
Fresse [7].

Definition 9.37 Dually, if ) is a reduced cooperad of chain complexes, there
is an operad structure on the reduced algebraic cobar construction 2(Q). The
corresponding operad structure under the isomorphism of Lemma 9.31 is built
from the isomorphisms

Qa(T)®Qp(U) — Qau, (T U, U)

and the same maps

H (w(T U, U)) — Ho(w(T)) ® Ho(w(U)).

Remark 9.38 It does not take much more effort to extend the cooperad and
operad structure above to maps

B(R,P,L) — B(R,P,I)3 B(I, P, L)

and
QUR,Q,1)oQUI,Q,L) — QR,Q, L)

following the same sort of generalization that we did in Section 7.3.

9.5 A spectral sequence for the homology of the bar construc-
tion

We now turn our attention directly to the homology spectral sequences born
from the filtration of the bar construction and cofiltration of the cobar construc-
tion.!” The work we have done in the last few sections allows us to identify
the E' terms of these spectral sequences, under suitable conditions, with the
algebraic bar and cobar constructions.

A quick word on notation: from now on, the only topological categories C we
are interested in are 7 and Sp. We will therefore drop the notation A for
the monoidal product and ® for the tensoring over 7, replacing both with
the standard notation A. We will reserve ® for the tensor product of graded
k—modules.

YTf C is the category of based spaces, we only get a spectral sequence for the bar
construction and not for the cobar construction. This is because a fibre sequence in 7°
does not immediately yield a long exact sequence in homology.
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Proposition 9.39 Let P be a reduced operad in T or Sp with right module R
and left module L such that all the objects P(A), R(A), L(A) are cofibrant and
all homology groups H.P, H,R, H,L flat k—modules. Then for each finite set
A there is a spectral sequence converging to H,B(R, P,L)(A) with E'-term
and first differential given by the algebraic bar construction:

(E',d") = (B(H.R,H,P,H,L)(A),d) = H,B(R,P,L)(A).

Let Q be a reduced cooperad in Sp with right comodule R and left comodule L
such that all the objects Q(A), R(A), L(A) are fibrant® and all the homology
groups H,Q, H.R, H,L are flat k—modules. Then for each finite set A there is
a spectral sequence converging to H,(Q(R,Q,L)(A)) with E'—term and first
differential given by the algebraic cobar construction:

(E',d") = (QH.R, H.Q, H.L)(A),0") = H.Q(R,Q,L)(A).

Remark 9.40 By the comments of Remark 9.28, the work of Fresse allows
us to identify the E? terms of these spectral sequences as suitable Tor groups.
That is, our spectral sequence take the form

E? = Tor™P(H,R,H.L) — H.B(R,P,L)

and

E? = Tor™Q(H,R,H,L) = H.Q(R,Q,L).

This suggests that the topological bar and cobar constructions should have
an interpretation as topological Tor objects. We have not yet studied the
homotopy theory of these constructions sufficiently to make this precise.

Proof of Proposition 9.39 By Proposition 9.19, we have cofibre sequences

B(R,P,L)s1(A) — B(R,P,L)s(A) — \/ w(T)A(R,P,L)A(T) ()
TeQs(A)

Summing these over s we obtain an exact couple and hence a spectral sequence.

20T his is really automatic since we have chosen Sp to be the category of S—modules
of EKMM [6] in which all objects are fibrant. If we want to work with other categories
of spectra, however, we need this condition.
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The E' term of this spectral sequence is

Bl = Hool \/ (D) A(RP.L)AT))

TeQs(A)
@ Hgit(w(T) A (R, P, L) a(T))
TeQs(A)
~ P HwT)e (R P.L)aT))
TeQs(A)
~ (P H(w())® (H.R,H.P,H,L)A(T),
TeQs(A)

~ B(H.R,H.P,H.L),,(A).

where we have made plentiful use of the Kiinneth formula. In particular, we
need the flatness assumptions to get

H.((R,P,L)A(T)) = (H.R, H.P, H.L) A(T).

The final isomorphism is that of Lemma 9.27. Since the filtration of each
individual B(R, P, L)(A) is finite, this spectral sequence certainly converges to
H.B(R, P,L)(A). It remains to be shown that d' is given by the differential 9
of the algebraic bar construction.

The differential d' is the composite

H. | \/ w®) AR PLAT)|— H 1B(R,P,L)_1(A)
TeQs(A)

—>H*71 \/ M(U) A (Ra P7 L)A(U)
Uerfl(A)

of the boundary map in the long exact sequence associated to one of the cofibre
sequences (*), with the projection map from another one. To analyze this, fix
for the moment a generalized A-labelled tree T" with s vertices and consider
the following map of cofibre sequences:

ow(T)4 A (R, P,L)A(T) = w(T)4 A (R, P,L)A(T) — w(T) A (R, P,L)(T)

l l o

B(R.P.L):1(4) —— B(R.P,L):(4) — y

A (R, P,L)A(T)
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This induces a map of long exact sequences in homology, and in particular we
have a commutative diagram

Ho(w(T) N (R, P, L)A(T)) —— Huea(Qw(T)y A (R, P, L)A(T))

|

H.( \/ w(T) A (R, P,L)a(T)) — H,_ 1B(R,P,L),_1(A).
TeQs(A)

On the other hand, using the identity

Ow(T)+ = colimw(U)+

we also have a commutative diagram

Ow(T)s A (R, P,L)A(T) —— V w(U) A (R, P, L) a(U)
UeQs—1(A): U<T

B(R,P,L)s_1(A) —— \/  w@)A (R, P, L)),
UeQs-1(A)

where the top horizontal map is constructed from the quotient maps

(T s — w(v),
for U € Trees_1(A) such that U < T, together with the operad composition
maps

(R,P,L)A(T) — (R, P,L)o(U).

Taking the homology of this diagram, combining it with our other diagram of
homology groups, throwing in the Kiinneth formula, summing the top lines over
all T € Qs(A) and using Lemma 9.27, we get the big commutative diagram
of Figure 16 in which the top row is the differential 0 on the algebraic bar
construction B(H.R, H,P, H,L)(A) (under the isomorphism of Lemma 9.27)
and the bottom row is the differential d' of our spectral sequence. The left and
right sides of the diagram are the isomorphisms described at the beginning of
this proof that identify E! with the algebraic bar construction.
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TeQs(A) TeQs(A) UeQq—1(A)
=2 l =
Heol ) wARPDAD) g pp ooy ) — B\ wl(0) AR PL)AO))
T€eQs(A) UeQs—1(A)
Esl,* o E;—l,*

Figure 16: Another big commutative diagram. This shows that the tree differential on B(H.R, H,P, H.L) is the same as
the d' differential in the spectral sequence of Proposition 9.39. Here P is a reduced operad in 7 or Sp with right module R
and left module L. In the second row, (H.,...) stands for (H.R, H.P, H,L) and in the middle row (...) stands for (R, P, L).
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The argument for the cobar construction is dual but only applies when we are
working in a category of spectra. The sequence of isomorphisms that identifies
the E' term then takes the form

El&t = Hfert( H Ma‘pSp(w(T)v (R7 Q, L)A(T)))

TeQs(A)
o @ H_s 1y Mapg,(w(T), (R, Q, L)a(T)))
TeQs(A)
~ P Hom(H,(w(T)), Hi(R,Q,L)(T))
TeQs(A)
~ P Hom(H,(w(T)),(H.R, H.Q, H.L)A(T);)
TeQs(A)

>~ O(H.R, H.Q, H.L)s ;(A).

In particular we use the fact that we are working with spectra and not based
spaces to get the isomorphism

H_y e Map(w(T), X) = H_, (S *X) = H,X = Hom(H,(w(T)), H; X)

that replaces an application of the Kiinneth formula in the bar construction
case. O

Remark 9.41 Notice that the spectral sequence for the bar construction lies
in the right half-plane (and the first quadrant if the objects R(A), P(A), L(A)
only have non-negative homology). That for the cobar construction lies in the
left half-plane (and the second quadrant if the objects R(A), Q(A), L(A) only
have non-negative homology).

9.6 The link to Koszul duality

We now use our spectral sequence to look at the relationship between the bar
construction on an operad in based spaces or spectra and Koszul duality. Koszul
duality for operads initially appeared in Ginzburg—Kapranov [9]. Further ref-
erences include Getzler—Jones [8] and Fresse [7].

The main result of this section is that if P is a reduced operad in based spaces
or spectra such that H,P is a Koszul operad in graded k—modules, then the
spectral sequence for calculating H,B(P) collapses at the E?-term and we
conclude that H,B(P) is the Koszul dual cooperad of H,P. This result is a
simple consequence of the definitions of a Koszul operad and its Koszul dual
cooperad. The dual result holds for cooperads in spectra.
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Definition 9.42 (Koszul operads) Let P be a reduced operad in the category
Mod;, of graded k—modules. We say P is Koszul if the homology of the reduced
bar construction on P is concentrated in the top tree degree. We explain exactly
what we mean by this. The reduced bar construction B(P) is given by

B(P)s,*(A) = @ ﬁs(w(T)) ® Pa(T).

T€Q,(A)
where Q4(A) = Qs(A) N T4(A) is the set of A-labelled trees (in the sense of
Section 3, that is, not generalized trees) with exactly s vertices. If |A| = 1,

this is concentrated in the column s = 0. If |A| > 1, it is concentrated in
1 <s<|A]—1. We say that P is Koszul if, for all A,

H, .(B(P)(A),0) =0 for s # |A| — 1
where 0 denotes the tree differential on B(P).
Definition 9.43 (Koszul duals) Let P be a Koszul operad in graded k-
modules. The Koszul dual of P is the symmetric sequence K (P) given by the

P)
homology of the reduced bar construction on P. We grade K (P) according to
the total degree (that is, internal degree plus tree degree) of B(P):

K(P)r(A) = Ha-1,11-14/(B(P)(A),9).
Notice that K (P)(A) is the kernel of the differential
B(P)ja|-14+(A) = B(P)|a]-2,+(A),
so there is a natural inclusion

K(P) — B(P).

Proposition 9.44 Let P be a Koszul operad in graded k—modules such that
each K(P)(A) is a flat k—module. Then the Koszul dual K(P) has a natural
cooperad structure.

Proof We already know from Definition 9.33 that the bar construction B(P)
has a cooperad structure. We get the structure for K (P) by taking homology.
So cocomposition maps for K (P) are given by

H(B(P)(AUa B)) — H(B(P)(A) ® B(P)(B)) = H(B(P)(A)) ® H(B(P)(B))

where we use the flatness assumption to get the isomorphism. m]

We dually define the Koszul property and Koszul dual for cooperads of graded
k-modules.
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Definition 9.45 (Koszul cooperads and Koszul duals) Let @ be a reduced
cooperad of graded k—modules. Then @ is Koszul if the homology of the
reduced cobar construction is concentrated in the lowest?! tree degree. In this
case, the Koszul dual of @) is the symmetric sequence K(Q) of graded k—
modules with

K(Q)r(A) == Hi_| A r414-1(2(Q)(A),0%),

where 0 is the tree differential on ©(Q). Since K(Q) is the bottom homology
group of 2(Q) there is a natural surjection

Q) — K(Q).

Proposition 9.46 Let (Q be a Koszul cooperad of graded k—modules. Then
the Koszul dual K(Q) has a natural operad structure.

Proof The composition maps for K(Q) are given by

H(QQ)(A)) @ H(Q(Q)(B)) — H(Q(Q)(A) © AQ)(B)) — H(Q(Q)(A Ua B).

Notice that we don’t need a flatness assumption here. O

Fresse [7] gives various fundamental results for Koszul duality of operads and
cooperads, in particular, the following.

Lemma 9.47 (Fresse,|[7], Lemma 5.2.10) Let P be a Koszul operad of graded
k-modules such that the k-modules P(A) and K(P)(A) are flat. Then K(P)
is a Koszul cooperad and

K(K(P)=P

as operads. Dually, let QQ be a Koszul cooperad of graded k—modules such that
the modules Q(A) and K(Q)(A) are flat. If Q) is Koszul then its Koszul dual
operad K (Q) is also Koszul and

as cooperads. O

We now give the main result of this section.

2'Recall that the tree grading for the cobar construction is concentrated in negative
degrees. ‘Lowest’ here means ‘most negative’.
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Proposition 9.48 Let P be a reduced operad in T or Sp such that each
object P(A) is cofibrant and all homology groups H,P(A) and H.B(P)(A)
are flat k—modules. If H,P is a Koszul operad then

H.B(P) = K(H.P)
as cooperads.

Dually, let @ be a reduced cooperad in Sp such that each object Q(A) is
fibrant and the homology groups H.Q(A) are flat k—modules. If H.Q is a
Koszul cooperad then

H.Q(Q) = K(H.Q)

as operads.

Proof The cofibrancy and flatness conditions ensure that the spectral sequence
of Proposition 9.39 exists for each finite set A and that H,B(P) is a cooperad
in Mody. We have already seen that the spectral sequence has the form

(E,.d") = (B(H.P)..(A),0) — H.B(P).

Because H,P is Koszul, the homology of the bar construction is concentrated
in the s = |A| — 1 column. Therefore, the E?~term is concentrated in this
column and so the spectral sequence collapses. We then see that

HoB(P)(A) 2 By iy = Hial 1 a1 (BUHLP)(A), 0) = K (H.P), (A)

and so
H.B(P) = K(H,.P)

as claimed. It follows that the modules K(H,P)(A) are flat so, by Proposition
9.44, K(H,P) has a cooperad structure. It remains to show that this cooperad
structure agrees with that on H,B(P).

The first thing to notice is that the above identification of H,B(P)(A) with
the submodule K(H,.P)(A) on B(H.P)(A) is realized by an edge homomor-
phism of our spectral sequence. This edge homomorphism comes from applying
homology to the quotient map

B(P)(A)— \/ w(T)APAT)
TeQs(A)
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where s = |A| — 1. The key property of these maps is that they fit into
commutative diagrams

B(P)(AU, B) . YAUGB) w(V) A Pau,s(V)

BPYM)ABP)B) — NV w@)AwlU)APAT) A Py(U)
TeQs(A) UeQ,/(B)

where the map on the right-hand side is built from the familiar maps
w(T' U, U) — w(T) Aw(U)
and the isomorphisms
Py,,B(TU,U) — Ps(T) ® Pg(U)

with terms for trees V' not of type (A, B) mapping to the basepoint.

Taking homology of this diagram, the right-hand side map gives the cooperad
structure on B(H,P) as described in Lemma 9.35. This shows that the edge
homomorphisms of the spectral sequence identify the cooperad structure on
H,B(P) with the restriction of that on B(H,P). Since the cooperad structure
on K(H,P) is also the restriction of that on B(H,P), it follows that

H.B(P) = K(H.P)

is an isomorphism of cooperads. The dual result is proved similarly. O

Remark 9.49 Proposition 9.48 extends a result of Vallette [18] for discrete
operads. Recall from Remark 8.7 that he constructs the ‘order complex’ for
an operad P in Set. His main result then is that H,P is Koszul if and only
if the homology of the order complex is concentrated in top degree. This fol-
lows immediately from our spectral sequence argument by identifying the order
complex with the bar construction.

Example 9.50 We finally return to the Goodwillie derivatives of the identity
functor. Recall that
0.1 = Q(S)

where S is the cooperad of spectra with S(A) =S for all A. The homology of

this cooperad is given by
k if x = 0;
0 otherwise;

H.(8)(A) = {
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for all finite sets A. This is the cooperad of commutative coalgebras in the
category of graded k—modules. Fresse shows in [7, Section 6] (by updating
a result of Ginzburg and Kapranov [9]) that this cooperad is Koszul (for k =
Q,F,, Z) with Koszul dual given by a suspension of the Lie operad. Proposition
9.48 therefore applies and we recover the homology of the derivatives of the
identity:

otherwise.

Li L ifx=1—n:
Ho(0,1) = {Ole(n)®sgn if % n

Moreover, we now know that the induced operad structure on this homology
of the derivatives is equal to the operad structure on the Koszul dual of the
commutative cooperad, that is, the desuspended Lie structure. This completes
the main goal set out in the introduction to this paper.

9.7 Homology of modules over the derivatives of the identity

In this final section, we use our spectral sequence to investigate the homology of
the left 0,1-module Mx associated to a based space X as described in Remark
8.10(1). Recall that this module is given by a cobar construction:

My = Q(I,8,5%°X).

We can describe explicitly the spectral sequence for calculating H,Mx (2). The
cobar construction is one-sided and we only have to consider trees for which the
root has a single incoming edge. There are two 2—labelled trees of this type with
zero and one vertices respectively and a morphism between them. The E' term
in the spectral sequence therefore only has nonzero entries in the columns s = 0
and s = —1. These entries are respectively H, X and H.(XAX) = H. X®H, X
with the differential given by the reduced diagonal X — X A X . The spectral
sequence therefore takes the following form.

This reduces to the long exact sequence of homology determined by the cofibre

sequence
X — X AN X — hocofib(X — X A X)
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which is consistent with the calculation of Mx(2) made in Remark 8.10.

Things become more interesting (and much more complicated) for Mx (n) when
n > 2. For n = 3 there are eight trees of interest:

YYYI

(3 labellings) (3 labellings)

and the E' term of the spectral sequence takes the form

3H,X®3 H,X®3
3H,X®2

H.X

-2 -1 0

The differential d' is built from the reduced diagonal (between pairs of terms
corresponding to bud collapse) and isomorphisms (between pairs of terms cor-
responding to collapse of an internal edge).

We will close the paper by looking at X = S”, the r—sphere (for » > 2). In this
situation the reduced diagonal is zero on homology and there can be no higher
differentials or extensions in the spectral sequence. This allows us to calculate
H,Mgr with Z coeflicients in its entirety.
Proposition 9.51 Let S” denote the r—sphere for r > 2. Then we have
H,(Mgr) = H,(0:1) o Hi(S")
where H,(S") is the symmetric sequence with
7 ifx=r;
H.(87)(n) = )
0 otherwise.

The left action of H,(0«I) on H.(Mgr) is given by the operad structure on
H.(0.1).

Geometry € Topology, Volume 9 (2005)



932 Michael Ching

Proof The E' term of the spectral sequence for the homology of My is in
this case the algebraic cobar construction

QI, Hi(S), Ha(S1))-

The coaction of H,(S) on H,(S") is trivial in the sense that the only nonzero
cocomposition maps are

H(87)(n) — Hy(S)(1) @ Ho(S)(n).
This is equivalent to saying that
H.(S") = 1ToH,S")

as left H,(S)—comodules, where the coaction of H,(S) on the right-hand side is
via the coaugmentation action on I. It follows that the E' term of our spectral
sequence can be written

O(1, Ho(S), T 0 Hy(S")) = Q(I, Ho(S), I) o Hu(S")

where the differential on the right-hand side comes solely from the cobar con-
struction and not from H,(S"). This isomorphism can be seen by working
through the definition of the algebraic bar construction in this case.

It now follows that the E? term of our spectral sequence is given by
H,(0.I)o H,(S").

In the E? term for calculating H,Msr(n), we only have nonzero entries in
bidegrees (—k,r(k+1)) for integers k > 0. Since r > 2 there can be no further
differentials or extensions and so we see that

H.(Mgr) = H,(8.1) o H.(S").

The proof of Proposition 9.48 extends to show that the left action of H.(0.[1)
is as claimed. O

Remark 9.52 The functor Po— from symmetric sequences to left P—modules
is left adjoint to the forgetful functor and so can rightfully be called the free
left P—module functor. Hence the homology of Mg is the free left P—module
on H.(S").

Explicitly, there is a generator x 4 in H,(Mgr)(A) for each finite set A. The en-
tire homology group H,(Mgr)(A) then has a basis given by all possible iterated
brackets of the form

L. (A, za,], 245 ..., 24,]

where Aj,..., Ay is a partition of A into nonempty finite subsets, and [—, —]

is a Lie bracket of degree —1. This Lie bracket also represents the action of
H,(0.I) on H,(Mgr).
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