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Introduction

This paper describes two novel phenomena in the study of infinite group actions
on compact manifolds. We exhibit a finitely generated group Γ and a manifold
M such that:

• Γ has exactly countably infinitely many effective real-analytic actions on
M , up to conjugacy in Diffω(M);

• every effective, real analytic action of Γ on M is Cr locally rigid, for
some r ≥ 3, and for every such r , there are infinitely many nonconjugate,
effective real-analytic actions of Γ on M that are Cr locally rigid, but
not Cr−1 locally rigid.

In the cases we know of where an infinite group Γ has exactly countably many
smooth effective actions on a manifold M , that countable number is finite, and
indeed usually 0. While many actions have been shown to to be Cr locally
rigid, in the cases where a precise cutoff in rigidity has been established, it
occurs between r = 1 and r = 2. For a survey of some of the recent results on
smooth group actions, see the paper of Labourie [9].

Our manifold M is the circle S1 and our group Γ is the solvable Baumslag–
Solitar group:

BS(1, n) = 〈a, b, | aba−1 = bn〉,
where n ≥ 2.

As a natural by-product of our techniques, we obtain a classification of all
solvable subgroups of Diffω(S1). We show that every such subgroup G is either
conjugate in Diffω(S1) to a subgroup of a ramified affine group Affs(R), or, for
some m ∈ Z, the group Gm := {gm : g ∈ G} is abelian. The ramified affine
groups are defined and their properties discussed in Section 2.2. Each ramified
affine group is abstractly isomorphic to a direct product Aff+(R) ×H , where
Aff+(R) is the group of orientation-preserving affine transformations of R, and
H is a subgroup of a finite dihedral group.

1 Statement of results

1.1 Notation and preliminary definitions

In places, we shall use two different analytic coordinatizations of the circle S1 .
To denote an element of the additive group, R/Z, we will use u, and for an
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element of the real projective line RP 1 , we will use x. These coordinate systems
are identified by: u ∈ R/Z 7→ x = tan(πu) ∈ RP 1 . When we are not specifying
a coordinate system, we will use p or q to denote an element of S1 . We fix an
orientation on S1 and use “<” to denote the counterclockwise cyclic ordering
on S1 .

If G is a group, then we denote by Rr(G) the set of all representations ρ0 : G→
Diffr(S1), and we denote by Rr+(G) the set of all orientation-preserving rep-
resentations in Rr(G). Two representations ρ1, ρ2 ∈ Rr(G) are conjugate
(in Diffr(S1)) if there exists h ∈ Diffr(S1) such that, for every γ ∈ G,
hρ1(γ)h−1 = ρ2(γ).

We use the standard Ck topology on representations of a finitely-generated
group into Diffr(S1), r ∈ {1, . . . ,∞, ω} and k ≤ r . If Γ is a finitely-generated
group, then the Ck–open sets in Rr(Γ) take generators in a fixed generating
set for Γ into Ck–open sets. A representation ρ0 ∈ Rr(Γ) is (Cr ) locally rigid
if there exists a C1 neighborhood U of ρ0 in Rr(Γ) such that every ρ ∈ U is
conjugate in Diffr(S1) to ρ0 . Finally, we say that Γ is globally rigid in Diffr(S1)
if there exists a countable set of locally rigid representations in Rr(Γ) such that
every faithful representation in Rr(Γ) is conjugate to an element of this set.

To construct the subgroups and representations in this paper, we use a proce-
dure we call real ramified lifting.

Definition A real analytic surjection π : S1 → S1 is called a ramified covering
map over p ∈ S1 if the restriction of π to π−1(S1 \ {p}) is a regular analytic
covering map onto S1 \ {p} of degree d ≥ 1. The degree of of π is defined to
be this integer d.

Examples and properties of ramified covering maps and ramified lifts are de-
scribed in Section 2.

Let π : S1 → S1 be a ramified covering map over p ∈ S1 , and let f : S1 → S1

be a real analytic diffeomorphism that fixes p. We say that f̂ ∈ Diffω(S1) is a
π–ramified lift of f if the following diagram commutes:

S1 S1

S1 S1

-f̂

-f
?π ?π

More generally, let ρ : Γ → Diffω(S1) be a representation with global fixed
point p. A representation ρ̂ : Γ→ Diffω(S1) is a π–ramified lift of ρ if ρ̂(γ) is

Geometry & Topology, Volume 8 (2004)



880 Lizzie Burslem and Amie Wilkinson

a π–ramified lift ρ(γ), for every γ ∈ Γ. We will show in Proposition 2.3 that a
representation can have more than one π–ramified lift.

For G a subgroup of Diffω(S1) with a global fixed point p, we define Ĝπ , the
π–ramified lift of G to be the collection of all π–ramified lifts of elements of
G. By Proposition 2.3 and Propostion 2.8, Ĝπ is a subgroup of Diffω(S1),
abstractly isomorphic to an H –extension of G+ , where G+ = Diffω+(S1) ∩G,
and H is a subgroup of a dihedral group determined by π .

1.2 Rigidity of solvable Baumslag–Solitar groups

In real projective coordinates on RP 1 , the standard representation ρn of BS(1, n)
into Diffω+(S1) takes the generators a and b to the affine maps

x 7→ nx, and x 7→ x+ 1.

This representation has a global fixed point ∞ ∈ RP 1 . Our first result states
that BS(1, n) is globally rigid in Diffω(S1):

Theorem 1.1 For each n ≥ 2, there are exactly countably infinitely many
faithful representations of BS(1, n) into Diffω(S1), up to conjugacy in Diffω(S1).
Each conjugacy class contains a π–ramified lift of ρn , where π : RP 1 → RP 1

is a rational map that is ramified over ∞. Furthermore, if ρ : BS(1, n) →
Diffω(S1) is not faithful, then there exists a k ≥ 1 such that ρ(b)k = id.

We give an explicit description of these conjugacy classes in Section 2.1.

The conclusion of Theorem 1.1 does not hold when Cω is replaced by a lower
differentiability class such as C∞ , even when analytic conjugacy is replaced by
topological conjugacy in the statement. Nonetheless, as r increases, there is
a sort of “quantum rigidity” phenomenon. Let ρ : BS(1, n) → Diff2(S1) be a
representation, and let f = ρ(a). We make a preliminary observation:

Lemma 1.2 If the rotation number of f is irrational, then gk = id, for some
k ≤ n+ 1, where g = ρ(b).

(See the beginning of Section 5 for a proof). Hence, if ρ ∈ R2(BS(1, n)) is
faithful, then f must have periodic points. For ρ ∈ R2(BS(1, n)) a faithful
representation, we define the inner spectral radius σ(ρ) by:

σ(ρ) = sup{|(fk)′(p)| 1k | p ∈ Fix(fk) and |(fk)′(p)| ≤ 1}.
For the standard representation, σ(ρn) = 1

n , and if ρ̂n is a ramified lift of ρn ,

then σ(ρ̂n) =
(

1
n

) 1
s , for some s ∈ N≥1 .
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Theorem 1.3 Let ρ : BS(1, n)→ Diffr(S1) be a faithful representation, where

r ∈ [2,∞]. If either r <∞ and σ(ρ) ≤
(

1
n

) 1
r−1 , or r =∞ and σ(ρ) < 1, then

ρ is conjugated by an element of Diffr(S1) into a unique conjugacy class in
Rω(BS(1, n)).

If ρ takes values in Diffr+(S1), then ρ is conjugated by an element of Diffr+(S1)
into a unique conjugacy class in Rω+(BS(1, n)).

Theorem 1.3 has the following corollary:

Corollary 1.4 Every representation ρ : BS(1, n) → Diffω(S1) is C∞ locally

rigid. Further, if σ(ρ) <
(

1
n

) 1
r−1 , then ρ is Cr locally rigid.

This corollary implies that the standard representation is Cr locally rigid, for
all r ≥ 3, and every representation in Rω(BS(1, n)) is locally rigid in some
finite differentiability classes. This local rigidity breaks down, however, if the
differentiability class is lowered.

Proposition 1.5 For every representation ρ : BS(1, n)→ Diffω(S1), if σ(ρ) =(
1
n

) 1
r−1 , for some r ≥ 2 then there exists a family of representations ρt ∈

Rr(BS(1, n)), t ∈ (−1, 1), with the following properties:

(1) ρ0 = ρ,

(2) t 7→ ρt is continuous in the Cr−1 topology on Rr(BS(1, n)),

(3) for every t1, t2 ∈ (−1, 1), if ρt1 is conjugate to ρt2 in Diff1(S1) then
t1 = t2 .

It follows from our characterization of the conjugacy classes in Rω(BS(1, n))
in the next section that, for each value of r ∈ [1,∞), there are infinitely many

nonconjugate representations ρ ∈ Rω(BS(1, n)) satisfying σ(ρ) =
(

1
n

) 1
r . Hence,

for each r ≥ 3 there are infinitely many distinct (nonconjugate) representations
in Rω(BS(1, n)) that are Cr locally rigid, but not Cr−1 locally rigid.

A. Navas has given a complete classification of C2 solvable group actions, up
to finite index subgroups and topological semiconjugacy. One corollary of his
result is that every faithful C2 representation ρ of BS(1, n) into Diff2(S1) is
is virtually topologically semiconjugate to the standard representation:

Theorem 1.6 [11] Let ρ : BS(1, n) → Diffr(S1) be a representation, where
r ≥ 2. Then either ρ is unfaithful, in which case ρ(b)m = id, for some m,
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or there exists an integer m ≥ 1, a finite collection of closed, connected sets
I1, . . . , Ik , and a surjective continuous map ϕ : S1 → RP 1 with the following
properties:

(1) ρ(b)m is the identity on each set Ik ;

(2) ϕ sends each set Ik to ∞;

(3) the restriction of ϕ to S1 \
⋃k
i=1 Ii is a Cr covering map of R;

(4) For every γ ∈ BS(1, n), the following diagram commutes:

S1 S1

S1 S1

-ρ(γm)

-ρn(γm)
?

ϕ
?

ϕ

where ρn : BS(1, n)→ Diffω(S1) is the standard representation.

The map ϕ in Theorem 1.6 is a sort of “broken Cr ramified cover.” The
regularity of ϕ at the preimages of the point ∞ can be poor, and the map can
be infinite-to-one on the sets I1, . . . , Ik , but a map with these features is nothing
more than a deformation of a ramified covering map. Combining Theorem 1.6
with Theorem 1.3 and the proof Proposition 1.5, we obtain:

Corollary 1.7 Let ρ : BS(1, n)→ Diffr(S1), be any representation, with r ≥
2. Then either:

(1) ρ is not faithful, and there exists an m ≥ 1 such that ρ(b)m = id;

(2) ρ admits Cr−1 deformations as in Proposition 1.5; or

(3) ρ is Cr conjugated into a unique conjugacy class in Rω(BS(1, n)).

Since the statement of Theorem 1.6 does not appear explicitly in Navas’s paper,
and we don’t use this result elsewhere in the paper, we sketch the proof at the
end of Section 5.

Finally, note that the trivial representation ρ0(a) = ρ0(b) = id is not rigid in
any topology; it can be approximated by the representation ρ(b) = id, ρ(a) = f ,
where f is an any diffeomorphism close to the identity. Another nice conse-
quence of Navas’s theorem is that this is the only way to C2 deform the trivial
representation.

Corollary 1.8 There is a C2 neighborhood U ⊂ R2(BS(1, n)) of the trivial
representation such that, for all ρ ∈ U , ρ(b) = id.
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Proof Let ρ be a C2 representation. Since ρ(b) is conjugate by ρ(a) to ρ(b)n ,
it will have rotation number of the form k

n−1 if ρ(a) is orientation-preserving,
and of the form k

n+1 if ρ(a) is orientation-reversing. Therefore, if ρ is sufficiently
C0–close to ρ0 and if ρ(b)m = id, for some m ≥ 1, then m = 1. So we may
assume that there exists a map ϕ as in Theorem 1.6 and that m = 1. On a
component of S1\

⋃
Ii , ϕ is a diffeomorphism conjugating the action of ρ to the

restriction of the standard representation ρn to R (in general ϕ fails to extend
to a diffeomorphism at either endpoint of R). But in the standard action, the
element ρn(a) has a fixed point in R of derivative n. If ρ is sufficiently C1

close to ρ0 , this can’t happen.

We remark that, in contrast to the results in this paper, there are uncountably
many topologically distinct faithful representations of BS(1, n) into Diffω(R)
(see [3], Proposition 5.1). The proof of our results uses the existence of a
global fixed point on S1 for a finite index subgroup of BS(1, n); such a point
need not exist when BS(1, n) acts on R. Farb and Franks [3] studied actions
of Baumslag–Solitar groups on the line and circle. Among their results, they
prove that if m > 1, the (nonsolvable) Baumslag–Solitar group:

BS(m,n) = 〈a, b | abma−1 = bn〉,

has no faithful C2 actions on S1 if m does not divide n. They ask whether
the actions of B(1, n) on the circle can be classified. This question inspired the
present paper.

1.3 Classification of solvable subgroups of Diffω(S1)

Several works address the properties of solvable subgroups of Diffr(S1); we
mention a few here. Building on work of Kopell [8], Plante and Thurston
[12] showed that any nilpotent subgroup of Diff2(S1) is in fact abelian. Ghys
[6] proved that any solvable subgroup of Diffω(S1) is metabelian, ie, two-step
solvable. In the same work, he remarks that there are solvable subgroups of
Diff∞(S1) that are not metabelian. The subgroups he constructs contain in-
finitely flat elements — nontrivial diffeomorphisms g ∈ Diff∞(S1) with the
property that for some p ∈ S1 , g(p) = p, g′(p) = 1, and g(k)(p) = 0 for all
k ≥ 2.

Navas [11] constructed further examples of solvable subgroups of Diff∞(S1)
with arbitrary degree of solvability, again using infinitely flat elements. As men-
tioned above, Navas’s work also contains a topological classification of solvable
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subgroups of Diff2(S1). As part of a study of ergodicity of actions of dis-
crete groups on S1 , Rebelo and Silva [13] also study the solvable subgroups of
Diffω(S1).

Our main result in this part of the paper, Theorem 1.9, implies that any solvable
subgroup of Diff∞(S1) that does not contain infinitely flat elements is either
virtually abelian or conjugate to a subgroup of a ramified lift of the affine group:

Aff(R) = {x 7→ cx+ d : RP 1 → RP 1 | c, d ∈ R, c 6= 0}.

Theorem 1.9 Let G < Diffr(S1) be a solvable group, where r ∈ {∞, ω}.
Then either:

(1) for some m ∈ Z, the group Gm := {gm : g ∈ G} is abelian,

(2) G contains infinitely flat elements (which can’t happen if r = ω), or

(3) G is conjugate in Diffr(S1) to a subgroup of a π–ramified lift of Aff(R),
where π : RP 1 → RP 1 is a ramified cover over ∞.

Further, if G < Diffr+(S1) and (3) holds, then the conjugacy can be taken in
Diffr+(S1).

In Section 2, we characterize the ramified lifts of Aff(R). To summarize the
results there, we have:

Theorem 1.10 There exists a collection

RAFF := {Âff
s
(R) < Diffω(S1) | s ∈ S},

where S is a countably infinite index set, with the following properties:

(1) if s1, s2 ∈ S and Âff
s1

(R) is conjugate to Âff
s2

(R) in Diff1(S1), then
s1 = s2 ;

(2) for each s ∈ S , there exists a subgroup H of a dihedral group such that

Âff
s
(R) ' Aff+(R)×H ,

(3) for each finite dihedral or cyclic group H , there exist infinitely many

s ∈ S so that Âff
s
(R) ' Aff+(R)×H ,

(4) each element of RAFF is the π–ramified lift of Aff(R), for some rational
ramified cover π : RP 1 → RP 1 over ∞, and every π–ramified lift of
Aff(R) is conjugate in Diffω(S1) to an element of RAFF .

There also exists a collection

RAFF+ := {Âff
s

+(R) < Diffω+(S1) | s ∈ S+},
with the same properties, except that in (1) and (4), the conjugacy is orientation-
preserving, and in (2) and (3), H is cyclic.
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Hence we have found all solvable groups that act effectively on the circle as
real-analytic diffeomorphisms.

2 Introduction to ramified lifts

Let G be a group and let ρ : G→ Diffω(S1) be a representation with a global
fixed point p. Restricting each element of this representation to a suitably small
neighborhood of p, we obtain a representation ρ̃ : G → Gω , where Gω is the
group of analytic germs of diffeomorphisms. It is known [1, 10, 2] that if if G is
solvable, then for some k ≥ 1, ρ̃ is conjugate in Gω to a representation taking
values in the ramified affine group Affk(R):

Affk(R) = { x

(axk + b)
1
k

| a, b ∈ R, b > 0}

(see [6] for a proof in the context of circle diffeomorphisms). The name “ramified
affine group” is explained by the fact that the elements of Affk(R) are lifts
of the elements of the affine group under the branched (or ramified) cover
z 7→ zk . These lifts are well-defined as holomophic germs, but do not extend to
diffeomorphisms of CP 1 .

The key observation of this paper is that the elements of Aff(R) do admit
global ramified lifts as diffeomorphisms of RP 1 . The reason is that, in contrast
to a ramified cover π : CP 1 → CP 1 , which must be ramified over 2 points, a
ramified cover π : RP 1 → RP 1 is ramified over one point, which can be chosen
to coincide with the global fixed point of Aff(R).

Examples of real ramified covers The map π1 : R/Z → R/Z given by
π1(u) = sin2(πu) is a ramified covering map over 0, with critical points of
order 2 at π−1

1 (0) = {0, 1
2}.

The rational map π2 : RP 1 → RP 1 given by:

π2(x) =
(x+ 1)2(x− 1)2

x(x2 + 1)

is also a ramified covering map over 0, with critical points of order 2 at ±1.
It is clear that ±1 are critical points of π2 , and one verifies directly that the
other critical points of π2 in CP 1 occur off of RP 1 , at ±i

√
3±
√

8.

We will define an equivalence relation on ramified covering maps in which π1

and π2 are equivalent, and show that, under this notion of equivalence, all
possible ramified covering maps occur as rational maps.
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If π : S1 → S1 is a ramified covering map over p then for each q ∈ π−1(p),
there exists an integer s(q) ≥ 1 such that the leading (nonconstant) term in
the Taylor expansion of π at q is of order s(q). A regular covering map is
a ramified covering map; in this case, d is the topological degree of the map,
and s(q) = 1, for each q ∈ π−1(p). As the examples show, a ramified covering
map need not be a regular covering map (even topologically), as it is possible
to have s(q) > 1.

Let π be a ramified covering map over p, and let q1, . . . , qd be the elements of
π−1(p), ordered so that p ≤ q1 < q2 < · · · < qd < p. For each i ∈ {1, . . . , d} we
define oi ∈ {±1} by:

oi =

{
1 if π|(qi,qi+1) is orientation-preserving,
−1 if π|(qi,qi+1) is orientation-reversing.

We call the vector s(π) = (s(q1), s(q2), . . . , s(qd), o1, . . . od) ∈ Nd × {±1}d the
signature of π . Geometrically, we think of a signature as a regular d–gon in
R2 with vertices labelled by s1, . . . , sd and edges labelled by o1, . . . , od . Every
signature vector s = (s1, . . . , sd, o1, . . . , od) has the following two properties:

(1) The number of vertices with an even label is even: #{1 ≤ i ≤ d | si ∈
2N} ∈ 2N.

(2) If a vertex has an odd label, then both edges connected to that vertex
have the same label, and if a vertex has an even label, then the edges
have opposite labels: (−1)si+1 = oi−1 oi, where addition is mod d.

We will call any vector s ∈ Nd×{±1}d with these properties a signature vector.
Note that a signature vector of length 2d is determined by its first d+1 entries.
Let Sd be the set of all signature vectors with length 2d, and let S be the set
of all signature vectors.

Proposition 2.1 Given any s ∈ S and p ∈ S1 , there is a ramified covering
map π : S1 → S1 over p with signature s.

Proof Let s = (s1, . . . , sd, o1, . . . , od) be a signature, and let p ∈ R/Z. Choose
points u1 < · · · < ud evenly spaced in R/Z, and let F : R/Z → R/Z be the
piecewise affine map that sends the ui to p, and which sends each component
of R/Z \ {u1, . . . , ud} onto R/Z \ {p}, with orientation determined by oi .

Put a new analytic structure on R/Z as follows. In the intervals Ij = (uj , uj+1)
use the standard analytic charts, but in each interval Jj = (uj − ε, uj + ε) com-
pose the standard chart (that identifies uj with 0) with the homeomorphism
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σj : R→ R defined by:

σj(x) =

{
x1/sj if x > 0
−|x|1/sj if x ≤ 0.

Since the overlaps are analytic, this defines a real anaytic atlas on R/Z.

Note that the map F : (R/Z,new structure) → (R/Z, standard structure) is
analytic: in charts around uj and p = F (uj), the map F takes the form
x 7→ xsj . Since there is a unique real analytic structure on the circle, there
is an analytic homeomorphism of the circle h : (R/Z, standard structure) →
(R/Z,new structure). Let π = F ◦h. Then π is a a ramified covering map over
0 with signature s.

In fact, ramified covers exist in the purely algebraic category; every signature
can be realized by a rational map. We have:

Proposition 2.2 Given any s ∈ S and p ∈ RP 1 , there is a rational map
π : RP 1 → RP 1 that is a ramified cover over p with signature s.

Proof Since the proof of Proposition 2.2 is somewhat lengthy, we omit the
details. The construction proceeds as follows. Let s = (s1, . . . , sd, o1, . . . , od)
be a signature, and assume that p = 0 ∈ RP 1 and o1 = 1. Choose a sequence
of real numbers a0 < a1 < . . . < a2d−2 , let P (x) = (x− a0)s1(x− a2)s2 . . . (x−
a2d−2)sd and let Q(x) = (x − a1)(x − a3) . . . (x − a2d−3). The desired rational
function π will be a modification of P/Q.

Let h(x) be a polynomial of even degree with no zeros, with critical points of
even degree at ai , 0 ≤ i ≤ 2d − 2, and with no other critical points. One first
shows that, for N sufficiently large, the rational function:

π0 =
PhN

Q

has zeroes of order s1, . . . , sd at a0, a2, . . . , a2d−2 , simple poles at a1, a3, . . . ,
a2d−3 , a pole of odd order at ∞, and no other zeroes, poles or critical points.
Hence π0 is a ramified covering map over 0 with signature s, except at ∞,
where it may fail to be a diffeomorphism.

Choose such an N , and let 2m + 1 be the order of the pole ∞ for π0 . One
then shows that for ε sufficiently small, the rational function:

π(x) =
π0(x)

1 + εx2m

has the same properties as π0 , except that ∞ is now a simple pole; it is the
desired ramified cover.
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If π is a ramified covering map, then the cyclic and dihedral groups:

Cd = 〈b : bd = id〉, and Dd = 〈a, b : bd = id, a2 = id, aba−1 = b−1〉,

respectively, act on π−1(p) and on the set E(π) of oriented components of
S1 \ π−1(p) in a natural way. By an orientation-preserving homeomorphism,
we identify the circle with a regular oriented d–gon, sending the elements of
π−1(p) to the vertices and the elements of E(π) to the edges. The groups
Cd�Dd act by symmetries of the d–gon, inducing actions on π−1(p) and E(π)
that are clearly independent of choice of homeomorphism. For q ∈ π−1(p),
e ∈ E(π), and ζ ∈ Dd , we write ζ(q) and ζ(e) for their images under this
action.

These symmetry groups also act on the signature vectors in Sd in the natural
way, permuting both vertex labels and edge labels. For ζ ∈ Dd , we will write
ζ(s) for the image of s ∈ Sd under this action. In this notation, the action is
generated by:

b(s1, . . . , sd, o1, . . . , od) = (s2, s3, . . . , sd, s1, o2, o3, . . . , od, o1),

and

a(s1, . . . , sd, o1, . . . , od) = (s1, sd, sd−1 . . . , s3, s2,−od,−od−1, . . . ,−o2,−o1).

Denote by StabCd(s) and StabDd(s) the stabilizer of s in Cd and Dd , respec-
tively, under this action:

StabH(s) = {ζ ∈ H | ζ(s) = s},

for H = Cd or Dd .

Examples The signature vector of π1(u) = sin2(πu) is s1 = (2, 2, 1,−1).
The stabilizer of s1 in Dd is StabDd(s1) = 〈a〉, and the stabilizer of s1 in Cd
is trivial. The signature vector of π2(x) = ((x − 1)2(x + 1)2)/(x(x2 + 1)) is
s2 = (2, 2,−1, 1). Note that s2 lies in the Cd–orbit of s1 , and so StabCd(s2)
and StabDd(s2) must be conjugate to StabCd(s1) and StabDd(s1), respectively,
by an element of Cd . In this simple case, the stabilizers are equal.

For another example, consider the signature vector

(2, 3, 1, 2, 3, 1,−1,−1,−1, 1, 1, 1),

which geometrically is represented by the following labelled graph:
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This labelling has no symmetries, despite the fact that the edge labels have a flip
symmetry and the vertex labels have a rotational symmetry. By contrast, the
signature (2, 1, 4, 2, 1, 4,−1,−1, 1,−1,−1, 1) has a 180 degree rotational sym-
metry corresponding to the element b3 ∈ C6 , and so both stabilizer subgroups
are 〈b3〉.

2.1 Characterization of ramified lifts of the standard represen-
tation ρn of BS(1, n)

The next proposition gives the key tool for lifting representations under ramified
covering maps.

Proposition 2.3 Let G be a group, and let ρ : G→ Diffω+(S1) be a represen-
tation with global fixed point p. Let π : S1 → S1 be a ramified covering map
over p with signature s ∈ Sd , for some d ≥ 1.

Then for every homomorphism h : G→ StabDd(s), there is a unique represen-
tation

ρ̂ = ρ̂(π, h) : G→ Diffω(S1)

such that, for all γ ∈ G,

(1) ρ̂ is a π–ramified lift of ρ;

(2) ρ̂(γ)(q) = h(γ)(q), for each q ∈ π−1(p);

(3) ρ̂(γ)(e) = h(γ)(e), for each oriented component e ∈ E(π);

Furthermore, if h takes values in StabCd(s), then ρ̂ takes values in Diffω+(S1).

Proposition 2.3 is a special case of Proposition 4.4, which is proved in Section 4.
Note that the representation ρ in Proposition 2.3 must be orientation preserv-
ing, although the lift ρ̂ might not be, depending on where the image of h lies.
There is also a criterion for lifting representations into Diffω(S1) that are not
necessarily orientation-preserving. We discuss this issue in the next subsection.
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Lemma 2.4 Suppose that π1 and π2 are two ramified covering maps over
p such that s(π2) lies in the Dd–orbit of s(π1); that is, suppose there exists
ζ ∈ Dd such that s(π2) = ζ(s(π1)). Then given any representation ρ : G →
Diffω+(S1) with global fixed point p and homomorphism h : G → StabDd(s1),
the representations ρ̂(π1, h) and ρ̂(π2, ζhζ

−1) are conjugate in Diffω(S1), where

(ζhζ−1)(γ) := ζh(γ)ζ−1.

Furthermore, if ζ ∈ Cd and h takes values in StabCd(s), then ρ̂(π1, h) and
ρ̂(π2, ζhζ

−1) are conjugate in Diffω+(S1).

Lemma 2.4 follows from Lemma 4.5, which is proved in Section 4. We now
characterize the countably many conjugacy classes in Rω(BS(1, n)). Note that
the elements of Sd are totally ordered by the lexicographical order on Rn .
Hence we can write Sd as a disjoint union of Cd–orbits:

Sd =
⊔

α∈A+

Cd(sα),

where for each α ∈ A+ , sα is the smallest element in its Cd–orbit. Similarly,
there is an index set A ⊃ A+ such that:

Sd =
⊔
α∈A

Dd(sα).

Let Sd = {sα | α ∈ A}, and let S+
d = {sα | α ∈ A+}. Finally, let S =

⋃
d Sd

and let S+ =
⋃
d S

+
d .

Definition Let ρn : BS(1, n) → Diffω+(S1) denote the standard projective
action, with global fixed point at ∞ ∈ RP 1 . Then we define:

V = {ρ̂n(πs, h) | s ∈ Sd, h ∈ Hom(BS(1, n), StabDd(s))/ ≡, d ∈ N, d ≥ 1},
and let

V+ = {ρ̂n(πs, h) | s ∈ S+
d , h ∈ Hom(BS(1, n), StabCd(s)), d ∈ N, d ≥ 1},

where, for s ∈ Sd , πs : S1 → S1 is the rational ramified cover over ∞ with
signature s given by Proposition 2.2, and ≡ denotes conjugacy in StabDd(s).

Proposition 2.5 Each element of V and V+ represents a distinct conjugacy
class of faithful representations.

That is, if ρ̂n(πs1 , h1), ρ̂n(πs2 , h2) ∈ V (resp. ∈ V+ ) are conjugate in Diff1(S1)
(resp. in Diff1

+(S1)), then s1 = s2 and h1 = h2 .

Proposition 2.5 is proved at the end of Section 4. Our main result, Theorem 1.1,
states that the elements of V and V+ are the only faithful representations of
BS(1, n), up to conjugacy in Diffω(S1) and Diffω+(S1), respectively.
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2.2 Proof of Theorem 1.10

To characterize the ramified lifts of Aff(R), we need to define ramified lifts of
orientation-reversing diffeomorphisms. In the end, our description is compli-
cated by the following fact: in contrast to lifts by regular covering maps, rami-
fied lifts of orientation-preserving diffeomorphisms can be orientation-reversing,
and vice versa.

To deal with this issue, we introduce another action of the dihedral group
Dd = 〈a, b, | a2 = 1, bd = 1, aba−1 = b−1〉 on Sd that ignores the edge labels
completely. To distinguish from the action of Dd on Sd already defined, we
will write ζ# : Sd → Sd for the action of an element ζ ∈ Dd . In this notation,
the action is generated by:

b#(s1, . . . , sd, o1, . . . , od) = (s2, s3, . . . , sd, s1, o1, o2, . . . , od),

and

a#(s1, . . . , sd, o1, . . . , od) = (s1, sd, sd−1 . . . , s3, s2, o1, o2, . . . , od).

For s ∈ Sd , we denote by Stab#
Dd

(s) and Stab#
Cd

(s) the stabilizers of s in Dd

and Cd , respectively under this action.

Lemma 2.6 For each s ∈ Sd , there exists a homomorphism

∆s : Stab#
Dd

(s)→ Z/2Z,

such that StabDd(s) = ker(∆s).

Proof Let s ∈ Sd be given. Clearly StabDd(s) is a subgroup of Stab#
Dd

(s).
Let I : Sd → Sd be the involution:

I(s1, . . . , sd, o1, . . . , od) = (s1, . . . , sd,−o1, . . . ,−od).

We show that for every ζ ∈ Stab#
Dd

(s), either ζ(s) = s (so that ζ ∈ StabDd(s))
or ζ(s) = I(s). This follows from the property (2) in the definition of signature
vector, which implies that every element of Sd is determined by its first d + 1
entries. Hence we may define ∆s(ζ) to be 0 if ζ(s) = s and 1 otherwise. Since
I is an involution, ∆s is a homomorphism.

Example Consider the signature

s = (2, 1, 2, 1, 2, 1, 2, 1, 1, 1,−1,−1, 1, 1,−1,−1).
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For this example we have StabC8(s) = 〈b4〉, StabD8(s) = 〈a, b4〉, Stab#
C8

(s) =
〈b2〉, and Stab#

D8
(s) = 〈a, b2〉. In this example the homomorphism ∆s is surjec-

tive, with nontrivial kernel. For s = (2, 1, 4, 1, 2, 1, 4, 1, 1, 1,−1,−1, 1, 1,−1,−1),
on the other hand, the image of ∆s is trivial, and StabD8(s) = Stab#

D8
(s) =

〈a, b4〉, StabC8(s) = Stab#
C8

(s) = 〈b4〉.

For a third example, recall that the stabilizer StabD6(s) of the signature vector
s = (2, 3, 1, 2, 3, 1,−1,−1,−1, 1, 1, 1) is trivial. Because of the rotational sym-
metry of the vertex labels, however, Stab#

C6
(s) = Stab#

D6
(s) = 〈b3〉 ' Z/2Z. In

this example, ∆s is an isomorphism.

Let G < Diffω(S1) be a subgroup with global fixed point p ∈ S1 : f(p) = p,
for all f ∈ G. We now show how to assign, to each s ∈ S , a subgroup Ĝs

consisting of ramified lifts of elements of G. We first write G = G+ t G− ,
where G+ = G ∩Diffω+(S1) is the kernel of the homomorphism O : G→ Z/2Z
given by:

O(f) =

{
0 if f is orientation-preserving,
1 otherwise.

Suppose that π : S1 → S1 is a ramified covering map over p. Then, for every
f ∈ G+ , Proposition 2.3 implies that for every ζ ∈ StabDd(s(π)), there is a
unique lift f̂(π, ζ) ∈ Diffω(S1) satisfying:

(1) f̂(π, ζ) is a π–ramified lift of f ,

(2) f̂(π, ζ)(q) = ζ(q), for all q ∈ π−1(p), and

(3) f̂(π, ζ)(e) = ζ(e), for all e ∈ E(p)

(Further, this lift is orientation-preserving if ζ ∈ StabCd(s).) Suppose, on the
other hand, that f ∈ G− . In Section 4, we prove Lemma 4.2, which implies
that if ζ ∈ Stab#

Dd
(s) satisfies:

ζ(s) = I(s), (1)

then there exists a unique lift f̂(π, ζ) ∈ Diffω(S1) satisfying (1)–(3) (and, fur-
ther, f̂(π, ζ) ∈ Diffω+(S1) if ζ ∈ Stab#

Cd
(s).) We can rephrase condition (1)

as:

∆s(ζ) = 1.

To summarize this discussion, we have proved the following:
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Lemma 2.7 If f ∈ G, and ζ ∈ Stab#
Dd

(s), then there exists a lift f̂(π, ζ)
satisfying (1)–(3) if and only if:

O(f) = ∆s(ζ).

For s ∈ S , let πs be the ramified covering map over p with signature s given
by Proposition 2.1. If G < Diffω(S1) has global fixed point p, we define
Ĝs ⊂ Diffω(S1) to be the fibered product of G and Stab#

Dd
(s) with respect

to O and ∆s :

Ĝs := {f̂(πs, ζ) | (f, ζ) ∈ G× Stab#
Dd

(s), O(f) = ∆s(ζ)}.

Similarly, we define:

Ĝs
+ := {f̂(πs, ζ) | (f, ζ) ∈ G× Stab#

Cd
(s), O(f) = ∆s(ζ)}.

Lemma 2.7 tells us that Ĝs coincides with Ĝπs , the set of all πs–ramified lifts
of G, and, similarly, that Ĝs

+ = Ĝπs ∩ Diff+(S1). It follows from Lemma 4.3
that Ĝs and Ĝs

+ are subgroups of Diffω(S1) and Diffω+(S1), respectively, with:

f̂1(πs, ζ1) ◦ f̂2(πs, ζ2) = f̂1 ◦ f2(πs, ζ1ζ2).

Further, we have:

Proposition 2.8 Assume that G− is nonempty. Then Ĝs and Ĝs
+ are both

finite extensions of G+ ; there exist exact sequences:

1→ G+ → Ĝs → Stab#
Dd

(s)→ 1, (2)

and

1→ G+ → Ĝs
+ → Stab#

Cd
(s)→ 1. (3)

Furthermore, if the sequence

1→ G+ → G
O→ O(G)→ 1

splits, where O : G → Z/2Z is the orientation homomorphism, then the se-
quences (2) and (3) are split, and so is the sequence

1→ Ĝs
+ → Ĝs → O(Ĝs)→ 1. (4)

Proof The maps in the first sequence (2) are given by:

ι : G+ → Ĝs f 7→ f̂(πs, id)

σ : Ĝs → Stab#
Dd

(s) f̂(πs, ζ) 7→ ζ.

Geometry & Topology, Volume 8 (2004)



894 Lizzie Burslem and Amie Wilkinson

It is easy to see that ι is injective and σ is surjective. Moreover, f̂(πs, ζ) is in
the kernel of σ if and only if ζ = id, if and only if f is orientation-preserving,
if and only if f̂(πs, id) is in the image of ι. Hence the first sequence is exact.
Similarly, the second sequence (3) is exact.

Now suppose that 1→ G+ → G→ O(G)→ 1 is split exact. If O(G) is trivial
then G+ = G, and there is nothing to prove. If O(G) = Z/2Z, then G contains
an involution g ∈ G− with g2 = id, namely the image of 1 under the homomor-
phism O(G) → G. We use g to define a homomorphism j : Stab#

Dd
(s) → Ĝs

as follows:

j(ζ) =

{
îd(πs, ζ) if ∆s(ζ) = 0
ĝ(πs, ζ) if ∆s(ζ) = 1.

Hence the sequence (2) is split. The restriction of j to Stab#
Cd

(s) splits the
sequence (3).

If O(Ĝs) is trivial, then the last sequence (4) is trivially split. If O(Ĝs) =
Z/2Z, then there exists a ζ ∈ Stab#

Dd
(s) such that ∆s(ζ) = 1. We then define

k : O(Ĝs) → Gs by k(0) = id, k(1) = ĝ(πs, ζ), which implies that (4) is
split.

Setting G = Aff(R), which has the global fixed point ∞ ∈ RP 1 , we thereby
define Âff

s
(R) and Âff

s

+(R), for s ∈ S . Let S and S+ be the sets of signatures
defined at the end of the previous subsection. The elements of S and S+ are
representatives of distinct orbits in S under the dihedral and cyclic actions,
respectively. We now define:

RAFF := {Âff
s
(R) | s ∈ S}, and RAFF+ := {Âff

s

+(R) | s ∈ S+}.

Since Aff(R) contains the involution x 7→ −x, the sequence

1→ Aff+(R)→ Aff(R) O→ Z/2Z→ 1

splits. Proposition 2.8 implies that

Âff
s
(R) ' Aff+(R)× Stab#

Dd
(s), Âff

s

+(R) ' Aff+(R)× Stab#
Cd

(s),

and either Âff
s
(R) = Âff

s

+(R) or Âff
s
(R) ' Âff

s

+(R) × Z/2Z, depending on
whether ∆s is surjective. This proves (2) of Theorem 1.10.

Corollary 4.7 implies that Âff
s1

(R) and Âff
s2

(R) are conjugate subgroups in
Diff1(S1), only if s1 ∈ Dds2 . Similarly, Âff

s1

+ (R) and Âff
s2

+ (R) are conjugate
subgroups in Diff1

+(S1), if and only if s1 ∈ Cds2 . This proves (1) of the theorem.
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Finally, every finite dihedral or cyclic group H is the stabilizer of infinitely
many s ∈ S , and hence there are infinitely many s ∈ S so that Âff

s
(R) '

Aff+(R)×H . This proves part (3). Property (4) follows from the definition of
RAFF . This completes the proof of Theorem 1.10.

3 The relation fgf−1 = gλ : the central technical re-
sult

In this section we analyze the relation fgf−1 = gλ near a common fixed point of
f and g . If f and g are real-analytic, then they can be locally conjugated into
one of the ramified affine groups described at the beginning of Section 2 [1, 10,
2]. This gives a local characterization of diffeomorphisms of S1 satisfying this
relation about each common fixed point, and to obtain a global characterization,
it is a matter of gluing together these local ones. This was the way Ghys
[6] proved that every solvable subgroup of Diffω(S1) is metabelian. To prove
Theorems 1.1 and 1.3, we adapt the arguments in [10] to the Cr setting, where
additional hypotheses on f and g are required.

The initial draft of this paper contained a completely different proof of the local
characterization of [1, 10, 2] that does not rely on vector fields and works for
Cr diffeomorphisms as well, under the right assumptions. In the Cω and C∞

case, this original proof gives identical results as the vector fields proof, but in
the general Cr setting, the proof using vector fields gives sharper results. At
the end of this section, we outline the alternate proof method. The main idea
behind this method is to study the implications of the relation fgf−1 = gλ for
the Schwarzian derivative of g near a common fixed point at 0.

We now state the main technical result of this section. Let [q, q1) be a half open
interval, let r ∈ [2,∞] ∪ {ω}, and let f, g ∈ Diffr([q, q1)) be diffeomorphisms.
Assume that g has no fixed points in (q, q1).

Standing Assumptions We assume that either (A), (B), (C) or (D) holds:

(A) r = ω , and there exists an integer λ > 1 such that fgf−1 = gλ.

(B) r ∈ [2,∞), and there is an integer λ > 1 such that fgf−1 = gλ, and

f ′(q) ≤
(

1
λ

) 1
r−1 .

(C) r =∞, f ′(q) < 1, and for some integer λ > 1, fgf−1 = gλ.

(D) r ∈ {∞, ω}, g is not infinitely flat, and there is a C∞ flow gt : [q, q1) →
[q, q1) such that:
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(1) g1 = g , and
(2) fgf−1 = gλ for some positive real number λ 6= 1.

Assumptions (A), (B) and (C) will arise in the proof of Theorems 1.1 and 1.3,
and assumption (D) will arise in the proof of Theorem 1.9. The main technical
result that we will use in these proofs is the following.

Proposition 3.1 Assume that either (A), (B), (C) or (D) holds. Then there
is a Cr diffeomorphism α : (q, q1) → (−∞,∞) ⊂ RP 1 such that for all p ∈
(q, α−1(0)):

(1) α(p) = εh(p)s, where h : [q, α−1(0)) → [−∞, 0) is a Cr diffeomorphism,
s is an integer satisfying 1 ≤ s < r , and ε ∈ {±1},

(2) αg(p) = α(p) + 1 and αf(p) = λα(p).

We start with a lemma describing which values of f ′(q) and g′(q) can occur.

Lemma 3.2 Assume that one of assumptions (A)–(D) holds. Then g′(q) = 1,
and either

(1) g(i)(q) = 0 for 2 ≤ i ≤ r (in particular, neither assumption (A) nor (D)
can hold in this case), or

(2) f ′(q) = ( 1
λ )

1
s for some integer 1 ≤ s < r , and

g(i)(q) = 0 for 2 ≤ i ≤ s, and g(s+1)(q) 6= 0.

Proof Since fg = gλf ,

f ′(g(p)) g′(p) = (gλ)′(f(p)) f ′(p).

When p = q , we thus have g′(q) = (gλ)′(q). But (gλ)′(q) = (g′(q))λ , and so
g′(q) = 1.

Suppose that f ′(q) = κ 6= 1. Then there is an interval [q, p) on which f is Cr

conjugate to the linear map x 7→ κx ([14], Theorem 2). So in local coordinates,
identifying q with 0,

f(x) = κx, and
g(x) = x+ axs+1 + o(xs+1) for some s ≥ 1.

Then

fgf−1(x) = x+ (
a

κs
)xs+1 + o(xs+1), and

gλ(x) = x+ λaxs+1 + o(xs+1).

So either
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(1) a = 0, and therefore g(i)(q) = 0 for 2 ≤ i ≤ r , or

(2) a 6= 0, in which case κ = ( 1
λ)

1
s , and

g(i)(q) = 0 for 2 ≤ i ≤ s
6= 0 for i = s+ 1.

Now suppose that f ′(q) = 1. Then in a neighborhood of q , we can write

f(x) = x+ bxk+1 + o(xk+1) and g(x) = x+ axs+1 + o(xs+1)

for some k , s ≥ 1. If k = s, then

[f, g](x) := fgf−1g−1(x) = x+ o(xs+1)
= gλ−1(x) = x+ (λ− 1)axs+1 + o(xs+1).

So a = 0, and hence g(i)(0) = 0 for 2 ≤ i ≤ r .

If k 6= s, then we use the following well known result (see, eg, [13]):

Lemma 3.3 If f(x) = x+ bxk+1 + o(xk+1) and g(x) = x+ axs+1 + o(xs+1),
and if s > k ≥ 1, then

[f, g](x) = x+ (s− k)abxs+k + o(xs+k).

Assume that s > k . (If s < k , then the proof is similar). It follows from
Lemma 3.3 that

x+ (s− k)abxs+k + o(xs+k) = [f, g](x)
= gλ−1(x) = x+ (λ− 1)axs+1 + o(xs+1).

So either

(1) k ≥ 2, and therefore a = 0 and g(i)(q) = 0, for 2 ≤ i ≤ r , or

(2) k = 1, and therefore b = λ−1
s−1 .

But if k = 1, then

x+ (s− 1)2abxs+1 + o(xs+1) = [f2, g](x)

= f2gf−2g−1(x) = gλ
2−1(x)

= x+ (λ2 − 1)axs+1 + o(xs+1).

So b = λ2−1
2(s−1) = λ−1

s−1 , which is impossible, since λ 6= 1. Therefore g(i)(q) = 0,
for 2 ≤ i ≤ r .

Lemma 3.4 Assume that (A), (B), (C) or (D) holds. Then there is a neighbor-
hood [q, p1) ⊂ [q, q1) and a Cr map A : [q, p1)→ R such that for all p ∈ [q, p1),
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(1) A(p) = oH(p)s , where H : [q, p1) → [0,∞) is a Cr diffeomorphism,
1 ≤ s < r is an integer, and o ∈ {±1};

(2)

Af(p) =
1
λ
A(p);

(3)

Ag(p) =
A(p)

1−A(p)
.

Consequently, f ′(q) = ( 1
λ )

1
s for some integer 1 ≤ s < r , and g(s+1)(q) 6= 0.

Before giving a proof of Lemma 3.4, we will show how this lemma implies
Proposition 3.1.

Lemma 3.5 Assume that (A), (B), (C) or (D) holds. Let A,H, s, and o be
given by Lemma 3.4. For p ∈ [q, p1), let

h(p) =
−1
H(p)

; α0(p) =
−1
A(p)

.

Then α0 extends to a Cr map α : (q, q1)→ (−∞,∞) satisfying the conclusions
of Proposition 3.1.

Proof Lemma 3.4 implies that for all p ∈ (q, p1), α0g(p) = α0(p) + 1 and
α0f(p) = λα0(p). Since α0 has been defined in a fundamental domain for g ,
we can now extend this map to a Cr diffeomorphism α from (q, q1) to (−∞,∞)
as follows. Since g has no fixed points in (q, q1), given any p ∈ (q, q1), there is
some j ∈ Z such that gj(p) ∈ (q, p1). Let α(p) = α0(gj(p))− j (which is easily
seen to be independent of choice of j ). By construction, αg(p) = α(p) + 1 for
all p ∈ (q, q1). Since f(p) = (g−j)λfgj(p), we also have:

αf(p) = (α(g−j)λα−1
0 )(α0fα

−1
0 )(α0g

j(p)) = λ(α(p) + j)− jλ = λα(p).

Hence the conclusions of Proposition 3.1 hold.

Proof of Lemma 3.4 We say that a C2 function c : [a, b) → [a, b) is a C2

contraction if c′ is positive on [a, b) and c(x) < x, for all x ∈ (a, b). Since g has
no fixed points in (q, q1), either g or g−1 is a C2 contraction. We will assume
until the end of the proof that g is a C2 contraction. Replacing g by g−1 does
not change the relation fgf−1 = gλ .

Since g has no fixed points in (q, q1), there is a a unique C1 vector field X0 on
[q, q1) that generates a C1 flow gt such that g|[q,q1) = g1 (Szekeres, see [11] for
a discussion).
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Lemma 3.6 For all j ∈ N and x ∈ [q, q1), f−jgf j(x) = g
1

λj (x).

Proof We will use the following result of Kopell:

Lemma 3.7 ([8] Lemma 1) Let g ∈ Diff2[q, q1) be a C2 contraction that
embeds in a C1 flow gt , so that g = g1 . If h ∈ Diff1[q, q1) satisfies hg = gh,
then h = gt for some t ∈ R.

It follows from the relation f jgf−j = gλ
j

that f−jgf j commutes with g , and
therefore Lemma 3.7 implies that f−jgf j = gt for some t ∈ R. This relation
also implies that (f−jgf j)λ

j
= g . So f−jgf j = g

1

λj .

Let κ = f ′(q). We may assume, by Lemma 3.2, that κ 6= 1, and therefore there
is an interval (q, p1) on which f has no fixed points, and a Cr diffeomorphism
H : [q, p1) → [0,∞) such that H f H−1(x) = κx ([14], Theorem 2). The
diffeomorphism H is unique up to multiplication by a constant. Let F =
HfH−1 and let G = HgH−1 . Since we have assumed that g is a contraction,
we have g([q, p1)) ⊆ [q, p1).

Let X be the push-forward of the vector field X0 to [0,∞) under H , and let
Gt be the semiflow generated by X0 , so that G = G1 .

Lemma 3.8 If F ′(0) ≤ ( 1
λ )

1
r−1 and G is r–flat at 0, then X(x) = 0 on [0,∞).

Proof We will show that for all x ∈ [0,∞),

lim
t→0

Gt(x)− x
t

= 0.

Since the limit exists, it is enough to show that it converges to 0 for a subse-
quence ti → 0. We will use the subsequence ti = 1

λi
. Writing κ = F ′(0) as

before, we have
F (x) = κx and G(x) = x+R(x),

where R(x)/xr → 0 as x→ 0, and therefore:

Gti(x) = F−iGF i(x) = x+
1
κi
R((κix)).

So

0 ≤ lim
i→∞

|Gti(x)− x|
ti

= lim
i→∞

λi
(

1
κi
|R(κix)|

)
= lim

i→∞
(λκr−1)ixr

|R((κix))|
(κix)r

≤ lim
i→∞

xr
|R((κix))|

(κix)r
= 0,
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since κr−1 ≤ 1
λ .

Corollary 3.9 Under any assumption (A)–(D), g is not r–flat at q , and

therefore f ′(q) = ( 1
λ)

1
s , for some integer 1 ≤ s < r .

Proof Clearly g cannot be infinitely flat if (A) or (D) holds. Under assumption
(C), f ′(q) < ( 1

λ)
1
k , for some k > 0 and f, g are Ck , so (C) reduces to (B). By

Lemma 3.8, under assumption (B), if g is r–flat at q , then the semiflow Gt is
tangent to the trivial vector field, X(x) = 0. But then G = id, and therefore
g = id on [q, p1), contradicting the assumption that g has no fixed points in
(q, q1).

Lemma 3.10 If F ′(0) = ( 1
λ )

1
s for some integer 1 ≤ s < r , then for some

a < 0, X(x) = axs+1 on [0,∞).

Proof As in the proof of Lemma 3.8, it is enough to show that for all x ∈
[0,∞), and for ti = 1

λi
,

lim
i→∞

Gti(x)− x
ti

= axs+1

for some a ∈ R. If F ′(0) = ( 1
λ)

1
s for some integer 1 ≤ s < r , then by

Lemma 3.2,

F (x) = (
1
λ

)
1
sx and G(x) = x+ axs+1 +R(x)

for some a ∈ R, where R(x)/xs+1 → 0 as x → 0. The value of a depends on
the choice of linearizing map h for f |[q,p1) . For all i ∈ N,

Gti(x) = F−iGF i(x) = λ
i
s G

(
x

λ
i
s

)
= x+ axs+1 1

λi
+ λ

i
s R

(
x

λ
i
s

)
.

So

lim
i→∞

Gti(x)− x
ti

= lim
i→∞

λi
(
axs+1 1

λi
+ λ

i
s R

(
x

λ
i
s

))
= lim

i→∞
axs+1 +R

(
x

λ
i
s

)
λ
i(s+1)
s

xs+1
xs+1 = axs+1

Since G is a contraction on [0,∞), it follows that a ≤ 0, and since G 6= id, we
must have a < 0.
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Corollary 3.11 If one of (A)–(D) holds, then f ′(q) = ( 1
λ)

1
s for some integer

1 ≤ s < r , and, after a suitable rescaling of the linearizing map H ,

G(x) =
x

(1 + xs)
1
s

.

Proof Choose H so that a = −1/s. Solving the differential equation δ
δtG

t(x)
= aGt(x)s+1 with initial condition G0(x) = x, we obtain Gt(x) = x/(1+ txs)

1
s .

Since G(x) = G1(x), the conclusion follows.

To complete the proof of Lemma 3.4 assuming that g is a contraction, let s,H
be given by Corollary 3.11, and let o = −1. Then Corollary 3.11 implies that
A(p) = o(H(p)s) satisfies the desired conditions. If g is not a contraction, we
replace g by g−1 in the proof. Setting o = 1, we obtain the desired conclusions.

3.1 Idea behind an alternate proof of Proposition 3.1

Suppose that f and g 6= id are Cr diffeomorphisms, defined in a neighborhood
of 0 in R, both fixing the origin, and satisfying the relation:

fgf−1 = gλ,

for some λ > 1. In this context, the conclusion of Proposition 3.1 can be
reformulated as follows: f and g are conjugate, via −1/h, to the maps

x 7→ (
1
λ

)
1
sx and x 7→ x

(1− oxs) 1
s

for some integer 1 ≤ s ≤ r and some o ∈ {±1}. The proof of Proposition 3.1
uses vector fields; here we sketch an alternative proof of this reformulation, using
the Schwarzian derivative. This sketch can be made into a complete proof of
Proposition 3.1 under assumptions (A), (C) and (D), but gives a weaker result
in case (B): for this proof we will need both r ≥ 2s+ 1 and f ′(q) ≤ ( 1

λ)1/(s−1) ,
for some s ≥ 1.

For simplicity, assume that r = ω and that λ = 2. First note that, since g

is not infinitely flat, Lemma 3.2 implies that f ′(0) ∈ {
(

1
2

) 1
s | s ≥ 1}. After

conjugating f and g by an analytic diffeomorphism, we may assume, then,
that:

f(x) =
x

2
1
s

,
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for some s ≥ 1.

Let F (x) = f(x
1
s )s = x/2 and let G(x) = g(x

1
s )s . Rewriting the relation

FGF−1 = G2 , we obtain:
1
2
G(2x) = G2(x);

rearranging and iterating this relation, we obtain:

G(x) = 2kG2k
( x

2k
)
, (5)

for all k ≥ 1.

Recall that the Schwarzian derivative of a C3 function H is defined by:

S(H)(x) =
H ′′′(x)
H ′(x)

− 3
2

(
H ′′(x)
H ′(x)

)2

,

and has the following properties:

(1) S(H)(x) = 0 for all x iff G is Möbius, and
(2) for any C3 function K , S(H ◦K)(x) = K ′(x)2S(H)(K(x)) + S(K)(x).

Combining these properties with (5), we will show that S(G) = 0, which implies
that G is Möbius. Lemma 3.2 implies that G′(0) = 1 and G′′(0) 6= 0, so we
have G(x) = x

1−ox for o ∈ {±1}. Writing g(x) = G(xs)1/s , we obtain the
desired result.

The first thing to check is that G is C3 . To obtain this, we use a slightly
stronger version of Lemma 3.2 (whose proof is left as an exercise), which states
that, if g is not infinitely flat, then

g(x) = x+ axs+1 + bx2s+1 + · · ·
Performing the substitution G = g(x1/s)s in this series, one finds that G is C3 .
(This requires that g be at least C2s+1 , in contrast to the proof of Proposi-
tion 3.1, which requires only Cs+1).

Equation (5) implies that

S(G)(x) =
1

22k
S(G2k )(

x

2k
),

for all k ≥ 1. Thus, by the cocycle condition (2) of the Schwarzian, we have:

S(G)(x) =
1

22k

2k∑
i=1

S(G)(Gi−1(
x

2k
))
(

(Gi−1)′(
x

2k
)
)2

(6)

=
1

22k

2k∑
i=1

S(G)(xi)
(

Πi−1
j=1G

′(xj)
)2

(7)

Geometry & Topology, Volume 8 (2004)



Global rigidity of solvable group actions on S1 903

where xi := Gi−1( x
2k

).

Fix x, and assume without loss of generality that Gj(x)→ 0 as j →∞. Since
G is C3 and G′(0) = 1, there is a constant C > 0 such that |G′(xi)| ≤ 1 + C

2k
,

and |S(G)(xi)| ≤ C , for all i between 1 and 2k and all k ≥ 1. Combined with
(6), this gives us a bound on the Schwarzian of G at x:

|S(G)(x)| ≤ C

22k

2k∑
i=1

(
1 +

C

2k

)2(i−1)

≤ C

22k

(
1− (1 + C

2k
)2k+1

1− (1 + C
2k

)2

)

≤ 1
2k

(
e2C − 1
2 + C

2k

)
,

for all k ≥ 1. Hence S(G)(x) = 0, for all x, which implies that G is Möbius.

4 Further properties of ramified covers: proofs of

Proposition 2.3, Lemma 2.4 and Proposition 2.5

The next lemma describes a useful normal form for ramified covering maps.

Lemma 4.1 Let π : RP 1 → RP 1 be a ramified covering map over 0, where
π−1(0) = {x1, . . . , xd}. Let s = (s(x1), . . . , s(xd), o1, . . . , od) be the signature
of π . Then given any xi ∈ π−1(0), there is a neighborhood U of xi and an
analytic diffeomorphism h : U → R such that for all x ∈ U ,

π(x) = h(x)s(xi).

Proof In local coordinates at xi , identifying xi with 0, we can write

π(x) = axs(1 +O(x))
= axsg(x)

where a > 0, s = s(xi) and g(x) = (1 + O(x)). Let h(x) = a
1
sxg(x)

1
s . Then

h(x) is analytic in a neighborhood of 0, and π(x) = h(x)s .

This lemma motivates the following definition.

Definition A Cr ramified cover over p ∈ S1 is a map π : S1 → S1 satisfying:
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(1) π−1(p) = {q1, q2, . . . , qd}, where q1 < q2 < . . . < qd ;

(2) the restriction of π to π−1(S1 \ {p}) is a regular Cr covering map onto
S1 \ {p} of degree d ≥ 1;

(3) for all 1 ≤ i ≤ d, there are neighborhoods Ui of qi and V of p, and Cr

charts hi : Ui → R and ki : V → R with hi(qi) = 0 and ki(p) = 0, such
that

ki π h
−1
i (x) = xsi

for some integer si > 0.

Remark By Lemma 4.1, a ramified cover is a Cω ramified cover.

We define the signature of a Cr ramified cover in the obvious way.

Definition Let π1 and π2 be Cr ramified covering maps of degree d over
p1 and p2 , respectively. Fix an orientation preserving identification between
π−1

1 (p) and π−1
2 (p) and between E(π1) and E(π2). Suppose that f ∈ Diffr(S1)

satisfies f(p1) = p2 , and let ζ ∈ Dd . We say that f̂ ∈ Diffr(S1) is a (π1, π2, ζ)–
ramified lift of f if:

(1) f̂(q) = ζ(q), for all q ∈ π−1
1 (p1),

(2) f̂(e) = ζ(e), for all e ∈ E(π1), and

(3) the following diagram commutes:

S1 S1

S1 S1

-f̂

-f
?

π1 ?
π2

Lemma 4.2 Let π1 , π2 and f be as above. Suppose that ζ ∈ Dd satisfies

• ζ(s(π1)) = s(π2), if f ∈ Diffr+(S1), or

• ζ(s(π1)) = I(s(π2)), if f ∈ Diffr−(S1),

where I : Sd → Sd is the involution that reverses the sign of the last d coordi-
nates.

Then there exists a unique (π1, π2, ζ)–ramified lift of f . We denote this lift by
f̂(π1, π2, ζ), or by f̂(π, ζ), if π1 = π2 = π .

Furthermore, we have that if ζ ∈ Cd , then f̂(π1, π2, ζ) ∈ Diffr+(S1).
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Proof Suppose first that f preserves orientation. Since the restriction of π1 to
π−1

1 (S1 \ {p1}) and the restriction of π2 to π−1
2 (S1 \ {p2}) are both regular Cr

covering maps of degree d, for any ζ ∈ Dd there is a unique Cr diffeomorphism
f̂0 : S1 \ π−1

1 {p1} → S1 \ π−1
2 {p2} such that f̂0(e) = ζ(e) for all e ∈ E(π1), and

the diagram (3) commutes on the restricted domains. The condition s(π2) =
ζ(s(π1)) implies that f̂0 extends to a unique homeomorphism f̂ such that
f̂(q) = ζ(q), for all q ∈ π−1

1 (p1) and such that the diagram in (3) commutes.
It remains to show that f̂ is a Cr diffeomorphism.

It suffices to show that f̂ is a Cr diffeomorphism at each q ∈ π−1
1 (p1). By

Lemma 5.6, there are local coordinates near q and f̂(q), identifying both of
these points with 0, such that

(f̂(x))s(f̂(q)) = f(xs(q))

for some integers s(f̂(q)) and s(q). Since s(π2) = ζ(s(π1)), we have s(ζ(q)) =
s(q). Let j = s(q) = s(f̂(q)). Since f is Cr and has a fixed point at 0,

f(x) = a1x+ a2x
2 + . . .+ xr + o(xr)

and we can assume that the coordinates have been chosen so that a1 > 0. So
near x = 0,

f̂(x) = (a1x
j + a2x

2j + . . . + xrj + o(xrj))
1
j

= x (a1 + a2x
j + . . .+ x(r−1)j + o(x(r−1)j))

1
j ,

where the root is chosen so that f̂ ′(0) > 0. Since a1 > 0 and r ≥ 2, f̂ is a Cr

diffeomorphism at 0. Similarly, we see that if f is analytic, then f̂ is analytic.
Finally, we note that since f is orientation preserving, if ζ ∈ Cd , then f̂ must
also be orientation preserving.

Now suppose that f ∈ Diffr−(S1), and that ζ(s(π1)) = I(s(π2)). Let π1 = f◦π1 .
Setting f̂ to be the (π1, π2, ζ)–lift of the identity map, we obtain the desired
conclusions.

Lemma 4.3 Let f1 and f2 be Cr diffeomorphisms of S1 , both with a fixed
point at p, let π : S1 → S1 be a Cr ramified covering map over p with signature
s, and let ζ1 , ζ2 ∈ Dd . Suppose that ζ1 and ζ2 satisfy ζi(s) = s if fi ∈
Diffr+(S1), and ζi(s) = I(s) if fi ∈ Diffr−(S1). Then

f̂2(π, ζ2) ◦ f̂1(π, ζ1) = f̂2 ◦ f1(π, ζ2 ◦ ζ1).

Proof The map f̂2(π, ζ2) ◦ f̂1(π, ζ1)(q) satisfies:
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(1) f̂2(π, ζ2) ◦ f̂1(π, ζ1)(q) = ζ2 ◦ ζ1(q), for all q ∈ π−1(p),

(2) f̂2(π, ζ2) ◦ f̂1(π, ζ1)(e) = ζ2 ◦ ζ1(e), for all e ∈ E(π), and

(3) the following diagram commutes:

S1 S1

S1 S1

S1

S1

-f̂1(π, ζ1)

-f1
?π ?π

-f̂2(π, ζ2)

-f2
?π

By Lemma 4.2, we must have f̂2(π, ζ2) ◦ f̂1(π, ζ1) = f̂2 ◦ f1(π, ζ2 ◦ ζ1).

The following proposition is a Cr version of Proposition 2.3.

Proposition 4.4 Suppose that G is a group, and that ρ : G → Diffr+(S1) is
a representation with global fixed point p. Let π : S1 → S1 be a Cr ramified
cover over p with signature vector s. Then for every homomorphism h : G →
StabDd(s), there is a unique representation

ρ̂ = ρ̂(π, h) : G→ Diffr(S1)

such that, for all γ ∈ G, ρ̂(γ) is the (π, h(γ))– ramified lift of ρ(γ). If h takes
values in StabCd(s), then ρ̂ takes values in Diffr+(S1).

Proof This follows immediately from the previous two lemmas.

The following lemma is a Cr version of Lemma 2.4.

Lemma 4.5 Let G be a group, and let ρ : G→ Diffω(S1) be a representation
with global fixed point p. Let π1, π2 : S1 → S1 be Cr ramified covers over
p ∈ S1 , with s(π1) = ζ(s(π2)), for some ζ ∈ Dd .

Then for every homomorphism h : G→ StabDd(s), the representation ρ̃(π1, h)
is conjugate to ρ̃(π2, ζhζ

−1) in Diffr(S1), where (ζhζ−1)(γ) := ζh(γ)ζ−1 . If ρ
takes values in Diffω+(S1), if ζ ∈ Cd , and if h takes values in StabCd(s), then
ρ̃(π1, h) and ρ̃(π2, ζhζ

−1) are conjugate in Diffr+(S1).

Proof This lemma follows from the diagram below, which commutes by Propo-
sition 4.4 and Lemma 4.2. (Here îd = îd(π1, π2, ζ

−1)).
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S1 S1

S1 S1

S1 S1

S1 S1

-ρ̂(π1, h)

-ρ
?

π1

?

π1

-ρ̂(π2, ζhζ
−1)

-ρ
?

π2

?

π2

�
�
�
�
�
�
�
��

îd

�
�
�
�
�
�
�
��

îd

�
�
�
�
�
�
�
��

id

�
�
�
�
�
�
�
��

id

Consider two lifts f̂(π1, ζ), f̂(π2, ζ) of the same diffeomorphism f (or, more
generally, of conjugate diffeomorphisms). For purely topological reasons, if
these lifts are conjugate by a map with rotation number 0, then s(π1) and
s(π2) have the same length 2d, and the final d entries in these vectors must
agree. (More generally, if the conjugacy has nonzero rotation number, then the
final d entries of the first vector must lie in the Dd–orbit of the final d entries
of the second). We now examine the first d entries of both vectors. We show
that, under appropriate regularity assumptions on f and on the conjugacy,
these entries must also agree, so that s(π1) = s(π2). The next lemma is the
key reason for this.

Lemma 4.6 Let c : [0,∞) → [0,∞) be a C2 contraction. Suppose that, for
some integers m,n > 0, the maps v1(x) = c(xm)1/m and v2(x) = c(xn)1/n are
conjugate by a C1 diffeomorphism h : [0,∞)→ [0,∞). Then m = n.

Proof Since c is a C2 contraction, the standard distortion estimate (see, eg
[8]) implies that for all x, y ∈ [0,∞), there exists an M ≥ 1, such that for all
k ≥ 0,

1
M

≤ (ck)′(x)
(ck)′(y)

≤M. (8)

Assume without loss of generality that n > m and suppose that there exists
a C1 diffeomorphism h : [0,∞) → [0,∞) such that hv1(x) = v2(h(x)), for all
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x ∈ [0,∞). Let H(x) = h(x1/m)n . Note that the C1 function H : [0,∞) →
[0,∞) has the following properties:

(1) H ′(x) ≥ 0, for all x ∈ [0,∞), and H ′(x) = 0 iff x = 0;

(2) for all k ≥ 0, H ◦ ck = ck ◦H .

Then (2) implies that for every x ∈ [0,∞):

H ′(x) = H ′(ck(x))
(ck)′(x)

(ck)′(H(x))

for all k ≥ 0. But (8) implies that (ck)′(x)/(ck)′(H(x)) is bounded indepen-
dently of k , so that H ′(x) = limk→∞H

′(ck(x)) = 0, contradicting property
(1).

Corollary 4.7 Let G and H be infinite subgroups of Âff
s1

(R) and Âff
s2

(R),
respectively, for some s1, s2 ∈ S . If there exists α ∈ Diff1(S1) such that
αGα−1 = H , then s1 = s2 .

If G < Âff
s1

+ (R) and H < Âff
s2

+ (R), with s1, s2 ∈ S+ , and there exists α ∈
Diff1

+(S1) such that αGα−1 = H , then s1 = s2 .

Proof Let G,H and α be given. Note that s1 and s2 must have the same
length 2d, since the global finite invariant sets of G and H must be isomorphic.
Let g, h be elements of G and H with rotation number 0 such that h = αgα−1 .
Since dilations have twice as many fixed points in RP 1 as translations, if g is
a ramified lift of a translation, then so is h. Assume that g = Ŝ(πs1 , id) and
h = T̂ (πs2 , id), where S : x 7→ x + s and T : x 7→ x + t are translations with
s, t > 0. Let q1, . . . , qd and α(q1), . . . , α(qd) be the preimages of ∞ under
πs1 and πs2 , respectively. In a neighborhood of qi , the map g is conjugate
to x 7→ (S(x)mi)1/mi and in a neighborhood of α(qi), h is conjugate to x 7→
(T (x)ni)1/ni , where mi = s(qi) and ni = s(α(qi)). Since S is a C2 contraction
in a neighborhood of ∞ and T is conjugate to S , it follows from Lemma 4.6
that mi = ni for 1 ≤ i ≤ d, which implies that s1 = s2 .

Suppose instead that g is a ramified lift of a map in Aff(R) conjugate to the
dilation D : x 7→ ax, for some a > 1. Since g must have d fixed points with
derivative a, so must h, and so h is also a ramified lift of a map in Aff(R)
conjugate to D . Around ∞, the map D is a C2 contraction, and the same
proof as above shows that s1 = s2 .

The proof in the orientation-preserving case is analogous.
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Proof of Proposition 2.5 Let ρn : BS(1, n) → Diffω(S1) be the standard
representation. Suppose that ρ̂n(πs1 , h1) and ρ̂n(πs2 , h2) ∈ V are conjugate by
α ∈ Diff1(S1), where s1, s2 ∈ S . It follows from Corollary 4.7 that s1 = ss .

We next show h1 = h2 . Let γ ∈ BS(1, n) and let k = ρn(γ). Let k1 =
k̂(πs1 , h1(γ)) and k2 = k̂(πs2 , h2(γ)) Then for all q ∈ π−1

s1
(∞), we have:

αh1(γ)(q) = αk1(q) = k2(α(q)) = h2(γ)(α(q)),

and for all e ∈ E(π1),

αh1(γ)(e) = αk1(e) = k2(α(e)) = h2(γ)(α(e)).

Since α(π−1
s1

(∞)) = π−1
s1

(∞) and α(E(π1)) = E(π1), it follows that h1(γ) =
h2(γ). So αh1 = h2α. Recall that each element ρ̂n(πs, h) of V is given
by a signature vector s ∈ S and a representative h of a conjugacy class in
Hom(BS(1, n), StabDd(s)). So h1 = h2 .

5 Proof of Theorems 1.1 and 1.3

The construction behind this proof is very simple. We are given a Cr represen-
tation ρ of BS(1, n). Using elementary arguments, we are reduced to the case
where f = ρ(a) and g = ρ(b) have a common finite invariant set, the set of
periodic orbits of g . Assume that the rotation numbers of f and g are both 0.
Using the results from Section 3, we obtain a local characterization of f and g
on the intervals between the common fixed points. On each of these intervals,
f is conjugate to the dilation x 7→ nx and g is conjugate to the translation
x 7→ x+1. Gluing together the conjugating maps gives us a Cr ramified cover-
ing map over ∞. Hence ρ is a Cr ramified lift of the standard representation.
Proposition 2.2 implies that there is a rational ramified cover with the same
signature as the the given Cr ramified cover. Lemma 4.5 implies that ρ is Cr

conjugate to a ramified lift of ρn under the rational ramified cover. It remains
to handle the case where the rotation numbers of f and g are not 0, but this
is fairly simple to do, since the elements of the standard representation embed
in analytic vector fields. We now give the complete proof.

Let ρ : BS(1, n) → Diffr(S1) be a representation, where r ∈ [2,∞], or r = ω .

If r <∞, assume that σ(ρ) ≤
(

1
n

) 1
r−1 . If r =∞, we assume that σ(ρ) < 1.

Let f = ρ(a) and g = ρ(b), where aba−1 = bn . Since g is conjugate to gn , it
follows that τ(g) = ±τ(gn) = ±nτ(g), where τ(h) denotes the rotation number
of h ∈ Homeo(S1). Hence g has rational rotation number.
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Lemma 5.1 f preserves the set of periodic points of g .

Proof This follows from the relation fg = gnf . If gk(q) = q , then gnk(f(q)) =
fgk(q) = f(q). So f(q) is also periodic for g .

Suppose that τ(f) is irrational. Then by Lemma 5.1, the periodic points of g
are dense in S1 , which implies that gk = id, for some k ≤ n+ 1. This implies
that conclusion (1) of Theorem 1.1 holds.

Suppose, on the other hand, that τ(f) is rational. Choose l so that gl and
f l are both orientation-preserving and both have rotation number 0. Then f l

leaves Fix(gl) invariant. Choose p ∈ Fix(gl). Any accumulation of {f ln(p)}
must be a fixed point for f l and for gl . We have shown:

Lemma 5.2 f l and gl have a common fixed point.

Note that the fixed points for f l are isolated; if f is not analytic, then σ(ρ) < 1,
which implies that the fixed points for f l are hyperbolic. Let w1 < w2 < . . . <
wk be the set of fixed points of f l . We will see that if gl is not the identity
map, then the set of fixed points for gl is exactly equal to the set of sinks for
f l .

Lemma 5.3 If gl(wi) = wi and (f l)′(wi) > 1, then gl = id on [wi−1, wi+1].

Proof Suppose that (f l)′(wi) = λ > 1, and let α : [wi, wi+1) → [0,∞) be a
C1 linearizing diffeomorphism such that αf lα−1(x) = λx for all x ∈ [0,∞).
Let F = αf lα−1 , and let G = αglα−1 . If gl 6= id on [wi, wi+1), then there is
a point x0 ∈ [0,∞) such that G(x0) 6= x0 . Let x0 be any such point. We may
assume that Gk(x0)→ c as k →∞, for some c <∞, because this will be true
for either G or G−1 . Since GF−k = F−kGn

k
for all k ∈ N, it follows that

G′(F−k(x0)) =
(F−k)′(Gn

k
(x0))

(F−k)′(x0)
(Gn

k
)′(x0),

for all k ∈ N. But since G′(0) = 1 (by Lemma 3.2), this means that (Gn
k
)′(x0)

→ 1, as k →∞ (or k → −∞), for every point x0 that is not fixed by G. Since
G is not the identity, this is not possible. Hence g = id on [wi, wi+1]. A similar
argument shows that g = id on [wi−1, wi],

Corollary 5.4 If gl has a fixed point in the interval (wi, wi+1), then gl = id
on [wi, wi+1]. That is, ∂Fix(gl) ⊆ Fix(f l).
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Proof Suppose that gl(p) = p for some p ∈ (wi, wi+1), and suppose that
fkl(p) → wi as k → −∞. By Lemma 5.1, f lk(p) is periodic for gl for all
k ∈ Z. Since gl is an orientation preserving circle diffeomorphism with a
fixed point, f lk(p) is a fixed point of gl for all k . By continuity, wi is a
common fixed point for f l and gl . Since (f l)′(wi) > 1, Lemma 5.3 implies that
gl = id on [wi, wi+1]. Similarly, if fkl(p)→ wi+1 as k → −∞, then g = id on
[wi, wi+1].

This has the immediate corollary:

Corollary 5.5 f l fixes every component of S1 \ Fix(gl).

Remark Corollary 5.5 also follows from Theorem 1.6. We have given a dif-
ferent proof here since we will need Lemma 5.3 for the proof of Lemma 5.6.

Let −∞ ≤ q1 < q2 < · · · < qd <∞ be the elements of ∂Fix(gl).

Lemma 5.6 On each interval (qi−1, qi], either gl = id, or there is a Cr map
αi : (qi−1, qi]→ (−∞,∞] such that

(1) αi conjugates f l to the map x 7→ nlx, and conjugates gl to the map
x 7→ x+ 1;

(2) αi|(qi−1,qi) is a Cr diffeomorphism onto (−∞,∞)
(3) For all p in a neighborhood of qi ,

αi(p) = oih(p)s

where h is a Cr orientation-preserving diffeomorphism onto a neighbor-
hood of ∞, 1 ≤ s < r , and oi ∈ {±1}.

Proof This follows from Proposition 3.1. Note that we can apply Propo-
sition 3.1 in this setting since we know that if gl 6= id on (qi−1, qi], then
(f l)′(qi) ≤ 1 (by Lemma 5.3). By our assumptions on σ(ρ), if 2 ≤ r < ∞,
then (f l)′(qi) ≤ ( 1

n)
1
r−1 , and if r =∞, then (f l)′(qi) < 1. Therefore one of the

assumptions (A)–(C) of Proposition 3.1 will hold.

Corollary 5.7 Either gl = id, or ∂Fix(gl) = Fix(gl) = {q1, . . . , qd}.

Proof Assume that ∂Fix(gl) = {q1, . . . , qd} 6= Fix(gl), but gl 6= id. Then
there is an interval [qi−1, qi] on which gl = id but where gl 6= id on [qi, qi+1].
By Lemma 3.4, either gl or g−l is Cr conjugate in a neighborhood [qi, p) to
the map x 7→ x/(1 − xs) 1

s for some integer 1 ≤ s < r . But this map is not
r–flat at x = 0, so gl is not Cr at qi , a contradiction.
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Corollary 5.8 If gl 6= id, then the map π : S1 → RP 1 defined by:

π(p) = αi(p), for p ∈ (qi−1, qi]

is a Cr ramified covering map over ∞, f l is a π–ramified lift of x 7→ nlx, and
gl is a π–ramified lift of the map x 7→ x+ 1.

Proof Let qi ∈ Fix(gl). Applying Lemma 5.6 to the interval [qi, qi+1), we
obtain a map αi+1 : [qi, qi+1) → [−∞,∞) which is a Cr diffeomorphism on
(qi, qi+1), and which is a power of a Cr diffeomorphism in a (right) neigh-
borhood of qi ; αi+1(p) = h(p)s for p near qi , for some Cr diffeomorphism h
and some integer 1 ≤ s < r . Similarly, on the interval (qi−1, qi] there is a
map αi : (qi−1, qi]→ (∞,−∞] which is a power of a diffeomorphism in a (left)
neighborhood of qi ; αi(p) = h∗(p)s∗ near qi . We will show that s = s∗ , and
that the diffeomorphisms h and h∗ glue together to give a Cr diffeomorphism
in a neighborhood of qi . This will prove that the map

πi(p) =

{
αi(p), for p ∈ (qi−1, qi]
αi+1(p), for p ∈ [qi, qi+1)

is the restriction to (qi−1, qi+1) of a Cr ramified covering map over ∞. By
construction, the restrictions of f l and gl to (qi−1, qi+1) are πi–ramified lifts
of the maps x 7→ nlx and x 7→ x+ 1 respectively.

The diffeomorphism 1/h maps qi to 0, and conjugates gl to the map x 7→
x/(1 + xs)1/s . Similarly, 1/h∗ conjugates gl to x 7→ x/(1 + xs∗)1/s∗ . Since
g is Cr , we must have s = s∗ . Both 1/h and 1/h∗ are linearizing maps
for f l at qi , and it is not hard to see that they define a Cr diffeomorphism
H in a neighborhood of qi . Therefore h and h∗ glue together to give a Cr

diffeomorphism 1/H in a neighborhood of qi .

It remains to show that πi = πi+1 on (qi, qi+1). Since the restriction of both
of these maps to (qi, qi+1) are diffeomorphisms which linearize f l , they are
the same up to a constant multiple. There is a unique point x0 ∈ (qi−1, qi)
satisfying f l(x0) = gn

l−l(x0); – this is the point x0 = gl(y), where y is the
unique fixed point for f l in (qi, qi+1). Both πi and πi+1 send the point x0 to
the same point 1 ∈ R. So we have πi = πi+1 on (qi, qi+1).

It follows from Lemma 4.5 that the representation of BS(1, nl) generated by f l

and gl is Cr conjugate to an element of V . In the remainder of this section,
we will show that the diffeomorphisms f and g are Cr ramified lifts of the
generators of the standard action of BS(1, n) on S1 , hence the representation
they generate is also Cr conjugate to an element of V . We begin with some
lemmas about ramified lifts of flows on S1 .
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Lemma 5.9 Let ϕ : S1 → S1 be a Cr flow with a fixed point at p, and let

π : S1 → S1 be a Cr ramified covering map over p. Let F = ϕ̂1(π, id) be
the π–ramified lift of the time-1 map ϕ1 with rotation number zero. Then
F embeds as the time-1 map of a Cr flow F t on S1 , and for all t ∈ R,
F t = ϕ̂t(π, id).

Proof By Lemma 4.2, given any t ∈ R there is a unique (π, id) - ramified lift
of ϕt , F t := ϕ̂t(π, id). Lemma 4.3 imples that F t ◦ F s = F s+t = F s ◦ F t for
all s, t ∈ R.

Let X be the Cr−1 vector field that generates ϕ, and let X̂ be the lift of X
under π . This vector field is clearly Cr−1 on S1 \ π−1(p) and clearly generates
the flow F t on S1 . In a neighborhood of qi ∈ π−1(p), X̂ takes the form

X̂(q) = dπ(q)π
−1X(πq),

and π takes the form π(x) = xs. A straightforward calculation shows that the
vector field X̂ is Cr−1 . Similarly, X̂ is analytic if X and π are. This completes
the proof.

Lemma 5.10 Let F : S1 → S1 be the time-1 map of a Cr flow F t , where
r ≥ 2. Suppose that F is not r–flat, and τ(F ) = 0. If G is a Cr orientation
preserving diffeomorphism such that FG = GF , and if τ(G) = 0, then G = F t

for some t ∈ R.

Proof Since τ(F ) = 0 and F is not r–flat, F has a finite set of fixed points.
Let q1 < . . . < qd be the elements of Fix(F ). If FG = GF , then G permutes
the fixed points of F , and since G is orientation preserving and has rotation
number zero, G([qi, qi+1]) = [qi, qi+1] for all qi ∈ Fix(F ). By Lemma 3.7, on
[qi, qi+1), G = F ti for some ti ∈ R, and on (qi, qi+1], G = F si for some si .
Clearly, ti = si . So for 1 ≤ i ≤ d,

G|[qi,qi+1] = F ti , for some ti ∈ R.
If F ′(qi) 6= 1 for some qi ∈ Fix(F ), then since G is C1 at qi , it follows that
ti = ti−1 . If F ′(qi) = 1, then in local coordinates, identifying qi with 0,

F (x) = F 1(x) = x+ axk + o(xk)

for some a 6= 0 and k ≤ r . Therefore

G(x) =

{
x+ ti−1ax

k + o(xk), for x ∈ (qi−1, qi]
x+ tiax

k + o(xk), for x ∈ [qi, qi+1).

Since k ≤ r and G is Cr , ti = ti−1 .
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Corollary 5.11 Let π : S1 → S1 be a Cr ramified covering map over ∞,
and let F = k̂(π, id) be the (π, id)–ramified lift of k ∈ Aff(R), k 6= id. Let
s(π) = (s1, . . . , sd, o1, . . . , od), where si ≤ r−1 for 1 ≤ i ≤ d. By Lemma 5.9, F
embeds as the time-1 map of a Cr flow F t . If H : S1 → S1 is a Cr orientation
preserving diffeomorphism such that FH = HF , and if τ(H) = 0, then H = F t

for some t ∈ R.

Proof By Lemma 5.10, it is enough to show that F is not r–flat. In coordi-
nates identifying a fixed point with 0,

F (x) =
x

(b+ axs)
1
s

,

where either a 6= 1 or b 6= 0, which is clearly not r–flat, if s < r .

Proposition 5.12 Let F ∈ Diffr(S1) be a diffeomorphism such that F l is
orientation-preserving and τ(F l) = 0, for some l > 0. Suppose that F l =
k̂l(π, id) is a Cr ramified lift of kl 6= id, where k ∈ Aff+(R), and suppose that
s(π) = (s(q1), . . . , s(qd), o1, . . . , od), where s(qi) ≤ r − 1 for 1 ≤ i ≤ d. Then
either F is a π–ramified lift of k or F is a π–ramified lift of −k .

Proof Let ζ ∈ Dd be such that ζ(q) = F (q) for all q ∈ π−1(∞), and ζ(e) =
F (e) for all e ∈ E(π).

Lemma 5.13 ζ ∈ Stab#
Dd

(s(π)).

Proof Given any q ∈ π−1(∞), there is an interval [q, p) and Cr diffeomor-
phisms h1 : [q, p)→ [0,∞) and h2 : [F (q), F (p)) → [0,∞) such that

h1F
lh−1

1 (x) = [kl(xs)]
1
s , and h2F

lh−1
2 (x) = [kl(xt)]

1
t ,

where s = s(q) and t = s(F (q)). We can assume that kl is a contraction
on [0,∞). (If not, then use k−l and F−l ). Since F l|[q,p) is conjugate by F

to F l|[F (q),F (p)) , Lemma 4.6 implies that s(q) = s(F (q)), and therefore ζ ∈
Stab#

Dd
(s(π)).

By Lemma 5.13, either ζ(s(π)) = s(π), or ζ(s(π)) = I(s(π)). If ζ(s(π)) =
s(π), then let α : S1 → S1 be the (π, ζ)–ramified lift of the identity map:
α = îd(π, ζ). By Lemma 4.3, α commutes with F l . So Fα−1 commutes with
F l , and by construction, Fα−1 fixes every interval (qi, qi+1) ⊆ π−1(RP 1\{∞}).
By Lemma 5.10, F l embeds as the time-1 map of a Cr flow, F t , and Fα−1 =
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F t0 = φ̂t0(π, id) for some t0 ∈ R, where φ is an analytic flow with φ1 = kl .
Therefore F = φ̂t0(π, id) ◦ îd(π, ζ) = φ̂t0(π, ζ) (using Lemma 4.3). It follows
that t0 = 1/l , and therefore F is the (π, ζ)–ramified lift of the map k .

If ζ(s(π)) = I(s(π)), then we let α = −̂id(π, ζ), the (π, ζ)–ramified lift of
−id : x → −x. As above, Fα−1 is the (π, ζ)–ramified lift of k , and therefore
F = ψtα = −̂k(π, ζ).

Corollary 5.14 f and g are Cr ramified lifts under π of the generators of
the standard action of BS(1, n) on S1 .

Proof The standard representation ρnl : BS(1, nl) → Diffω(RP 1) is analyti-
cally conjugate to the representation κ : BS(1, nl) → Diffω(RP 1) with genera-
tors κ(al) : x 7→ nlx and κ(bl) : x 7→ x+ l . So there is a Cr ramified covering
map π : S1 → S1 over p such that f l = κ̂(al)(π, id) and gl = κ̂(bl)(π, id).
By Proposition 5.12, either f is a ramified lift of ρn(a) : x 7→ nx, or f is
a ramified lift of −ρn(a) : x 7→ −nx. Similarly, g is either a ramified lift of
ρn(b) : x 7→ x + 1, or a ramified lift of −ρn(b) : x 7→ −x − 1. Since f and g
satisfy the relation fgf−1 = gn , the maps that they are lifted from must also
satisfy this relation. Given this requirement, the only possibility is that f is a
π–ramified lift of ρn(a) and g is a π–ramified lift of ρn(b).

Since the generators ρ(a) = f and ρ(b) = g of the representation ρ are ramified
lifts under π of the generators ρn(a) and ρn(b), respectively, of ρn , it follows
that, for every γ ∈ BS(1, n), there exists a unique h(γ) ∈ Dd (or in Cd if ρ is
orientation-preserving) such that:

ρ(γ) = ρ̂n(γ)(π, h(γ)).

Since ρ(γ1γ2) = ρ(γ1)ρ(γ2), it follows that h : BS(1, n) → Dd (Cd ) is a homo-
morphism. Finally, note that h must take values in StabDd(s) (or StabCd(s),
if ρ is orientation-preserving).

This concludes the proof of Theorems 1.1 and 1.3.

Finally, we sketch the proof of Theorem 1.6.

Sketch of proof of Theorem 1.6 Let ρ be a Cr representation of BS(1, n),
with r ≥ 2, let f = ρ(a) and g = ρ(b). We may assume that f has rational
rotation number. By taking powers of the elements of BS(1, n), we may assume
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that both f and g have rotation number 0. Assume that g is not the identity
map.

Let J be a component of the complement of Fix(g). Using a distortion esti-
mate and the group relation one shows that J must be fixed by f , as follows.
Otherwise, the f –orbit of J must accumulate at both ends on a fixed point of
f . The standard C2 distortion estimate shows that there is an M > 1 such
that for all x, y in same component of the f –orbit of J , and for all k ∈ Z,

1
M

< |(f
k)′(x)

(fk)′(y)
| < M.

But, for all k ∈ N , we have that fkgf−k = gn
k
. Hence, for all p ∈ J , we have:

(gn
k
)′(p) = g′(y)

(fk)′(g(y))
(fk)′(y)

,

where y = f−k(p). Note that y and g(y) lie in the same component f−k(J),
and g′(y) is uniformly bounded. This implies that for all p ∈ J and all k ∈ N,
(gn

k
)′(p) is bounded, so that g = id on J , a contradiction.

So f fixes each component of the complement of Fix(g). Let J be such a
component. Since g has no fixed points on J , g embeds in a C1 flow gt ,
defined on J minus one of its endpoints, that is Cr in the interior of J (see, eg
[16]). Furthermore, for all t, fgtf−1 = gnt (this follows from Kopell’s lemma).
Fixing some point p in the interior of J , this flow defines a Cr diffeomorphism
between the real line and the interior of J , sending t ∈ R to gt(p) ∈ J .
Conjugating by this diffeomorphism, gt is sent to a translation by t, and f is
sent to a diffeomorphism F satisfying F (x+t) = F (x)+tn, for all t, x ∈ R. But
this means that F ′(x) = n for all x ∈ R. Up to an affine change of coordinates,
g is conjugate on J to x 7→ x+ 1 and f is conjugate to x 7→ nx.

6 Proof of Proposition 1.5

Let ρ : BS(1, n) → Diffω(S1) be a π–ramified lift of the standard representa-

tion ρn with σ(ρ) =
(

1
n

) 1
r−1 , for some r ≥ 2. Let Q be the set of all points

q ∈ π−1(∞) satisfying s(q) = r − 1; this set is nonempty since σ(ρ) =
(

1
n

) 1
r−1 .

Lemma 4.1 implies that, in a neighborhood of q , π : x 7→ xr−1 , in the appro-
priate coordinates identifying q with 0.

For t ∈ (−1, 1) we deform π to obtain a Cr−1+t2 map πt : S1 → S1 with the
following properties:
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• π0 = π and π−1(∞) = π−1
t (∞), for all t;

• πt|S1\π−1
t (∞) is a C∞ covering map onto its image;

• about each q ∈ π−1(∞) \ Q, πt is locally equal to π ;

• about each q ∈ Q, πt is locally x 7→ xr−1+t2 , in the same charts identi-
fying q with 0 described above.

A slight modification of the proof of Proposition 4.4 also shows that ρn has
a lift to a Cr representation ρt : BS(1, n) → Diffr(S1) so that the following
diagram commutes, for all γ ∈ BS(1, n):

S1 S1

S1 S1

-ρt(γ)

-ρn(γ)
?

πt ?
πt

(One merely needs to check that the integer j in the proof of Lemma 4.2 can
be replaced by the real number r − 1 + t2 ).

Notice that ρt has the property that σ(ρt) =
(

1
n

) 1
r−1+t2 , so that ρs is not

C1 conjugate to ρt unles s = t. One can further modify this construction by
replacing the points of Q by intervals of length εt , extending ρt(b) isometrically
across these intervals, and extending ρt(a) in an arbitrary Cr fashion to these
intervals. Since ρt(b) is r–flat (by Lemma 3.2) on Q for t 6= 0 and r − 1 flat
for t = 0, the representation ρt is Cr and varies Cr−1 continuously in t if
we choose εt → 0 as t → 0. In this way, one can create uncountably many
deformations of ρ. (Note that, in essence, we have deformed π to obtain a
“broken Cr ramified cover” à la Theorem 1.6).

7 Proof of Theorem 1.9

Let r ∈ {∞, ω}, and let G < Diffr(S1) be a solvable group without infinitely
flat elements. Suppose that Gm := {gm : g ∈ G} is not abelian, for any m ∈ Z.
We begin by showing that the group G2 < Diffr+(S1) has a finite set of points
that is globally invariant.

Lemma 7.1 G2 contains a non-trivial normal abelian subgroup N , such that
N contains an element of infinite order. There is an integer d > 0, and a finite
set {q1, . . . , qd}, with q1 < q2 < · · · < qd , such that:
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(1) for all f ∈ G2 , τ(fd) = 0 and f{q1, . . . , qd} = {q1, . . . , qd};
(2) for all g ∈ N , either gd = id or Fix(gd) = {q1, . . . , qd}.

Proof Note that G2 is a solvable group, and every diffeomorphism in G2 is
orientation preserving. Let

G2 = G0 > G1 > . . . > Gn > Gn+1 = {id}
be the derived series for G2 , and let N = Gn be the terminal subgroup in this
series. Recall that N is a normal abelian subgroup of G2 . We first show that
N contains an element of infinite order. We will use the following result of
Ghys ([7] Proposition 6.17):

Lemma 7.2 If H ⊂ Homeo+(S1) is solvable, then the rotation number τ : H
→ R/Z is a homomorphism.

Suppose that every diffeomorphism in N has finite order. Since G2 6= N
(because G2 is not abelian), Gn−1 cannot be abelian – if it were, then Gn would
be trivial. Suppose that f, h ∈ Gn−1 . By Lemma 7.2, τ(fhf−1h−1) = 0. But
fhf−1h−1 is orientation preserving and has finite order, since fhf−1h−1 ∈ Gn .
Therefore fhf−1h−1 = id, and Gn−1 is abelian, a contradiction. So N contains
a diffeomorphism with infinite order.

If τ(g) is irrational, for some orientation-preserving g ∈ N , then the elements
of N are simultaneously conjugate to rotations. But, since N is normal in G2 ,
this implies that the elements of G2 are simultanously conjugate to rotations,
which implies that G2 is abelian, a contradiction.

Hence τ(g) ∈ Q/Z, for every g ∈ N . Note that every g ∈ N either has finite
order, or a finite set of periodic points: if Fix(gl) is infinite, for some integer
l 6= 0, then there is a point q ∈ Fix(gl) that is an accumulation point for a
sequence {qi} ⊂ Fix(gl). But this implies that gl is infinitely flat at q , and
therefore gl = id.

Hence there exists g ∈ N with infinite order and a finite fixed set, Fix(g) =
{q1, . . . , qd}. If h ∈ N is another element of N , then, since h commutes with
g , it follows that h({q1, . . . , qd}) = {q1, . . . , qd}, and so τ(hd) = 0. If the set
of fixed points for hd is infinite, then hd = id, and if Fix(hd) is finite, then
Fix(hd) = {q1, . . . , qd}.
Finally, let f ∈ G2 \N and pick g ∈ N satisfying Fix(g) = {q1, . . . , qd}. Then
there exists a g ∈ N such that fgf−1 = g . This implies that f(Fix(g)) =
Fix(g); that is, f({q1, . . . , qd}) = {q1, . . . , qd}. It follows that τ(fd) = 0. This
completes the proof.
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Let {q1, . . . , qd} be given by the previous lemma, labelled so that −∞ ≤ q1 <
q2 < · · · < qd < ∞, and let l = 2d. We will begin by working with the
group Gl . Note that every g ∈ Gl is orientation-preserving, has zero rotation
number, and fixes every point in the set {q1, . . . , qd}. Throughout this section,
we will be working on the intervals (qi, qi+1), where we adopt the convention
that qd+1 = q1 .

Let M be a normal abelian subgroup of Gl which contains an element of infinite
order. For the rest of the proof, fix a diffeomorphism g ∈M which has infinite
order.

Lemma 7.3 Let C(g) = {f ∈ Gl | gf = fg}. Then C(g) 6= Gl .

Proof A proof of this lemma is essentially contained in [5]. This lemma is
implied by the following theorem, which is classical.

Theorem 7.4 (Hölder’s Theorem) If a group of homomorphisms acts freely
on R, then it is abelian.

If f ∈ C(g), then Fix(f) = Fix(g). So on every interval (qi, qi+1), 1 ≤ i ≤ d,
no element of C(g) has a fixed point. By Theorem 7.4, the restriction of the
action of C(g) to each interval (qi, qi+1) is abelian. Since f(qi) = qi for all
f ∈ C(g) and for all qi ∈ Fix(g), C(g) is an abelian subset of Gl . But Gl is
not abelian, so C(g) 6= Gl .

Lemma 7.5 Let f ∈ Gl \ C(g). Then for every interval (qi−1, qi] there is a
positive real number λi and a Cr map αi : (qi−1, qi]→ RP 1 with the following
properties:

(1) αig(p) = αi(p) + 1 and αif(p) = λiαi(p);

(2) αi|(qi−1,qi) is a Cr diffeomorphism onto (−∞,∞);

(3) there is an orientation-preserving Cr diffeomorphism hi from a neigh-
borhood of qi to a neighborhood of ∞ and integers si ∈ {1, . . . , r − 1},
oi ∈ {±1}, such that, for all p in this neighborhood:

αi(p) = oihi(p)si

The same conclusions hold, with the same λi , oi and αi|(qi−1,qi) , but differ-
ent local (orientation-reversing) diffeomorphism h∗i and integer s∗i , when qi is
replaced by qi−1 and the interval (qi−1, qi] is replaced by [qi−1, qi).

Geometry & Topology, Volume 8 (2004)



920 Lizzie Burslem and Amie Wilkinson

Remark To ensure that the conditions λi > 0 (as opposed to λi 6= 0) hold in
Lemma 7.5, it is necessary that we chose l to be even.

Proof We use the following fact, proved by Takens:

Theorem 7.6 ([15], Theorem 4) Let h : [0, 1) → [0, 1) be a C∞ diffeomor-
phism with unique fixed point 0 ∈ [0, 1). If h is not infinitely flat, then there
exists a unique C∞ vector field X on [0, 1) such that h = h1 , where ht is the
flow generated by X .

For each 1 ≤ i ≤ d, Let gti : (qi−1, qi] → (qi−1, qi] be the flow given by this
theorem with g1

i = g|(qi−1,qi] . If f ∈ Gl \ C(g), then since g ∈ M , we have
fgf−1 ∈ M , and therefore fgf−1 ∈ C(g). By Lemma 3.7, for 1 ≤ i ≤ d, we
must have

fgf−1 = gλii

on (qi−1, qi], for some λi ∈ R \ {0}, λi 6= 1. Note that, because l is even, λi
must be positive, for all i. So assumption (D) of Section 3 holds in the interval
(qi−1, qi] for each qi ∈ {q1, . . . , qd}.

The same reasoning can be applied to [qi−1, qi), using a possibly different flow
g̃ti and constant µi with

fgf−1 = g̃µii .

Since gλii and g̃µii coincide on (qi, qi+1), it is not hard to see that we must
have λi = µi . Now the result follows from Proposition 3.1, as in the proof of
Lemma 5.6 and Corollary 5.8.

Corollary 7.7 For every f ∈ Gl \ C(g), there is a positive real number λ =
λ(f) 6= 1 such that λi = λ, for all 1 ≤ i ≤ d, where λi is given by Lemma 7.5.
For every i, si = s∗i+1 , where addition is mod d.

Proof Let 1 ≤ i ≤ d. As in the proof of Corollary 5.8, we have that g is
conjugate in a left neighborhood of qi to x 7→ x/(1+xsi)1/si and g is conjugate
in a right neighborhood of qi to x 7→ x/(1 + xs

∗
i+1)1/s∗i+1 . Since g is C∞ ,

we must have si = s∗i+1 . But then f is conjugate in a left neighborhood
of qi to x 7→ x/λ

1/si
i and f is conjugate in a right neighborhood of qi to

x 7→ x/(λi+1)1/s∗i+1 . It follows that λi = λi+1 . Set λ to be this common
value.

The proof of the next corollary is identical to the proof of Corollary 5.8.
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Corollary 7.8 For every f ∈ Gl \ C(g), the map π : S1 → RP 1 defined by:

π(p) = αi(p), for p ∈ (qi−1, qi]

is a Cr ramified cover with signature s = (s1, . . . sd, o1, . . . , od). The diffeomor-
phism f is a π–ramified lift of the map x 7→ λ(f)x, and g is a π–ramified lift
of the map x 7→ x+ 1.

Corollary 7.9 g embeds in a unique Cr flow gt , with g = g1 . The elements
of C(g) belong in the flow for g and, for each f ∈ Gl \ C(g), lie in the ramified
lift under πf of the translation group {x 7→ x + β | β ∈ R}. That is, for any
h ∈ C(g), there exist real numbers β , t such that h = gt is a πf –ramified lift
of the map x 7→ x+ β .

Proof This corollary follows directly from Corollary 7.8, Lemma 5.9 and
Lemma 5.10.

Lemma 7.10 For any f1, f2 ∈ Gl \ C(g), there exists a real number γ such
that f2 is a πf1 –ramified lift of the map x 7→ λ(f2)x+ γ .

Proof The proof is expressed in a series of commutative diagrams.

Lemma 7.11 There exists an α ∈ R such that gα is the (πf1 , πf2 , id)–ramified
lift of the identity map.

Proof The following diagram shows that if îd is the (πf1, πf2 , id)–ramified lift
of the identity map on RP 1 , then îd ◦ g = g ◦ îd:

S1 S1

RP 1 RP 1

S1 S1

RP 1 RP 1

-g

-x 7→ x+ 1
?

πf1

?

πf1

-g

-x 7→ x+ 1
?

πf2

?

πf2

�
�
�
�
�
�
�
��

îd

�
�
�
�
�
�
�
��

îd

�
�
�
�
�
�
�
��

id

�
�
�
�
�
�
�
��

id
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Since g embeds in a flow gt that is a ramified lift of an affine flow, it follows
from Corollary 7.9 that there exists an α such that îd = gα .

Lemma 7.12 For every t0 ∈ R there exists γ ∈ R such that gt0 is the
(πf1 , πf2 , id)–ramified lift of the map x 7→ x− γ .

Proof Let α be given by the previous lemma. Let γ be the real number such
that gt0−α is a πf1 - ramified lift of x 7→ x − γ . The proof follows from the
following diagram:

S1 S1

RP 1 RP 1

S1

RP 1

-gt0−α

-x 7→ x− γ?
πf1 ?

πf1

-îd = gα

-id
?

πf2

The composition of the maps on the top row is gα◦gt0−α = gt0 . The composition
of the maps on the bottom row is x 7→ x− γ .

Lemma 7.13 For all t ∈ R, f2g
tf−1

2 = gλ(f2)t .

Proof The proof follows from the following diagram:

S1 S1

RP 1 RP 1

S1

RP 1

S1

RP 1

-f−1
2

-
x 7→ 1

λ(f2)x
?

πf2 ?
πf2 ?

πf2

-gt

-x 7→ x+ t
?

πf2

-f2

-x 7→ λ(f2)x

The composition of the maps on the bottom row gives x 7→ x + λ(f2)t. By
uniqueness (Lemma 5.9), f2g

tf−1
2 = gλ(f2)t for all t ∈ R.

Let α be given by Lemma 7.11, and let γ be given by Lemma 7.12, with
t0 = λ(f2)α. From the following diagram:
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S1 S1

RP 1 RP 1

S1 S1

RP 1 RP 1

-îd = gα

-id
?

πf1

?

πf2

-gλα

-x 7→ x− γ?

πf1

?

πf2

�
�
�
�
�
�
�
��

f2

�
�
�
�
�
�
�
��

f2

�
�
�
�
�
�
�
��

F

�
�
�
�
�
�
�
��

x 7→ λ(f2)x

it follows that F (x) = λ(f2)x+ γ , completing the proof of Lemma 7.10.

Proposition 7.14 Fix f ∈ Gl \ C(g). Then for each h ∈ G, there exists
F ∈ Aff(R) such that h is a πf –ramified lift of F .

Proof By Corollary 7.9 and Lemma 7.10, we have that for each h ∈ G, there
exists k ∈ Aff+(R), so that hl is a πf –ramified lift of kl . Therefore, by Propo-
sition 5.12, h is a πf –ramified lift of either k or −k .

By Lemma 4.5, this completes the proof of Theorem 1.9.
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