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1 Introduction

Let G be a group that acts properly and cocompactly on a piecewise Euclidean
simply connected CAT (0)–complex ∆ (see eg [4] for definitions). (The action of
course is supposed to be cellular, properness means that the isotropy group Gσ
is finite for every cell σ and cocompactness means that ∆ has only finitely many
cells mod G.) It is still unknown whether G is (bi)automatic. Moreover, the
question remains unanswered even in the case when ∆ is a Euclidean building
[6].

“It is reasonable to guess that the answer is ‘yes’ because of the work of Gersten
and Short and because of the geometry and regularity present in buildings, but
this is far from a trivial question” (John Meier’s review [MR 96k:20071] of the
paper [6]).

The first results in this direction are contained in the papers of S Gersten and H
Short [8], [9] where it is proven that if G is given by a finite presentation satis-
fying the small cancellation conditions C(p), T (q) ((p, q) = (6, 3), (4, 4), (3, 6))
then G is biautomatic. They showed in [8] that the fundamental group of a
piecewise Euclidean 2–complex of nonpositive curvature of type A1×A1 or A2

is automatic. (A1×A1 corresponds to the Euclidean planar tessellation by unit
squares, and A2 to the tessellation by equilateral triangles). In the subsequent
paper [9] the authors prove an analogous result for 2–complexes of types B2

and G2 corresponding to the Euclidean tessellations by (π2 ,
π
4 ,

π
4 ) and (π2 ,

π
3 ,

π
6 )

triangles, respectively. It follows from this work that any torsion free group G
which admits a proper cocompact action on a Euclidean building of type A2

is biautomatic. W Ballmann and M Brin [1] have proven the automatic prop-
erty for a group G which acts simply transitively on the vertices of a simply
connected (3,6)–complex. D Cartwright and M Shapiro have proven the follow-
ing theorem [6]: Let G act simply transitively on the vertices of a Euclidean
An–building in a type rotating way. Then G admits a geodesic, symmetric
automatic structure. In [13] some variation of this result is proven in a more
geometric way in the case of n = 2. It is worth mentioning that in the case
of nonpositively curved cube complexes the general result was obtained by G
Niblo and L Reeves [12], namely, any group acting properly and cocompactly
on such a complex is biautomatic.

In this paper we define a certain combing on an arbitrary Euclidean building,
prove the “fellow traveller property” for this combing and the “recursiveness
property”. Our main result is the following.
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Theorem

(1) Let ∆ be any Euclidean building of one of the types An, Bn, Cn , ordered
in a standard way (see Section 3.10 for a definition). Then any group act-
ing freely and cocompactly on ∆ by order-preserving automorphisms admits a
biautomatic structure.

(2) If ∆ is any Euclidean building of one of the types An, Bn, Cn , then any
group acting freely and cocompactly on ∆ is virtually biautomatic (that is there
is a finite index subgroup in it, possessing a biautomatic structure).

In Section 2 we review some of the standard facts on Euclidean Coxeter com-
plexes. In Section 3 we introduce the main notion of an ordering of a Euclidean
building and prove that any Euclidean building can be ordered. In Section 4
we define a natural combing C on a Euclidean building . In Sections 5 and 6
we prove the “fellow traveller property” and the “recursiveness property” for a
combing C . The concluding Section 7 is devoted to the proof our main result.

Acknowledgements I am grateful to the SFB 343, University of Bielefeld for
their hospitality in the falls of 1996–97 years while I carried out most of this
work. I would like to thank Herbert Abels for his kind invitation, interest and
support. Thanks to Sarah Rees for the help to make the language of the paper
more regular. Thanks to referee for many improvements of the text. The work
was supported in part by a RFFI grant N 96-01-01610.

2 Euclidean Coxeter complexes

For the convenience of the reader we recall the relevant material from [2], [10],
thus making our exposition self-contained.

2.1 Roots and Weyl group

Let Φ to be a root system, which is supposed to be reduced, irreducible and
crystallographic. That is Φ is a finite set of nonzero vectors, spanning a finite
dimensional Euclidean space V and such that

1) Φ ∩Rα = {α,−α} for all α ∈ Φ,

2) Φ is invariant under reflection sα in the hyperplane Hα orthogonal to α
for all α ∈ Φ,

3) 2(α,β)
(α,α) ∈ Z for all α, β ∈ Φ,
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4) V does not admit an orthogonal decomposition V = V ′ ⊕ V ′′ such that
Φ = Φ′ ∪ Φ′′ with Φ ⊂ V ′,Φ′′ ⊂ V ′′ .
The Weyl group W of Φ is the group generated by all reflections sα (α ∈ Φ).
In equal terms W is generated by all reflections sH , where H ranges over the
set H of all hyperplanes, orthogonal to the roots from Φ.

For any choice of the basis e1, . . . , en of V there is a lexicographic order on V ,
where

∑
aiei <

∑
biei means that ak < bk if k is the least index i for which

ai 6= bi . We call a subset Φ+ ⊂ Φ a positive system if it consists of all those
roots which are positive relative to some ordering of V of the kind above.

If this is the case, then Φ must be the disjoint union of Φ+ and −Φ+ , the latter
being called a negative system. When Φ+ is fixed, we can write α > 0 in place
of α ∈ Φ+ . It is clear that positive systems exist.

Call a subset Π of Φ a simple system if Π is a vector space basis for V and if
moreover each α ∈ Φ is a linear combination of Π with coefficients all of the
same sign (all nonnegative or all nonpositive). If Π is a simple system in Φ,
then there is a unique positive system containing Π. Every positive system Π
in Φ contains a unique simple system; in particular, simple systems exist.

Any two positive (resp. simple) systems in Φ are conjugate under W . Thus W
permutes the the various positive (or simple) systems in a transitive fashion.
This permutation action is indeed a simply transitive action, that is if w ∈ W
leaves the positive (or simple) system invariant, then w = 1.

2.2 Coroots, lattices

Setting α∨ := 2α/(α,α), the set Φ∨ of all coroots α∨(α ∈ Φ) is also a root
system in V , with simple system Π∨ := {α∨|α ∈ Π}. The Weyl group of Φ∨ is
W , with wα∨ = (wα)∨ . The Z–span ZΦ of Φ in V is called the root lattice;
it is a lattice in V . Similarly, we define the coroot lattice ZΦ∨ . Define the
coweight lattice ZΦ# – it is just a dual lattice of the root lattice ZΦ, that is

ZΦ# = {λ ∈ V |(λ, α) ∈ Z for all α ∈ Φ}.
Since (Φ∨,Φ) ⊂ Z and both ZΦ∨,ZΦ are the lattices, one can conclude that
ZΦ# contains ZΦ∨ as a subgroup of finite index.

2.3 Fundamental domain and spherical Coxeter complex

Let W be the Weyl group of a root system Φ. The hyperplanes H with sH ∈W
cut V into polyhedral pieces, which turn out to be cones over simplices. One
obtains in this way a simplicial complex Σsph = Σsph(W ) which triangulates
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the unit sphere in V . This is a spherical Coxeter complex. More exactly let
Φ+ be a positive system, containing the simple system Π. Associated with
each hyperplane Hα are the closed half-spaces H+

α and H−α , where H+
α = {λ ∈

V |(λ, α) ≥ 0} and H−α = {λ ∈ V |(λ, α) ≤ 0}. Define a sector S = SΠ :=
∩α∈ΠH

+
α associated to Π. As an intersection of closed convex subsets, S is

itself closed and convex. It is also a cone (closed under nonnegative scalar
multiples). Sectors associated to W are always simplicial cones, by which we
mean that, for some basis e1, . . . , en of V the sector S consists of the linear
combinations

∑
aiei with all ai positive. (In other words, S is a cone over

the closed simplex with vertices e1, . . . , en ). We call R≥0ei the defining rays
of S . One can describe the defining rays of the sector SΠ more explicitly in
terms of the basis of coroot lattice. Namely, let {ω̄∨i } be the dual basis of
Π = {α1, . . . , αn}, that is (ω̄∨i , αj) = δij for all i, j = 1, . . . , n. Then∑

1≤i≤n
aiω̄
∨
i ∈ S ⇐⇒ aj = (

∑
1≤i≤n

aiω̄
∨
i , αj) ≥ 0, j = 1, . . . , n

We assert that the rays R≥0ω̄
∨
i are the defining rays for SΠ. Indeed, each line

R ω̄∨i is precisely the line obtained by intersecting all but one Hαi , namely
R ω̄∨i = ∩j 6=iHαj . Consequently one of the halflines of this line is a defining ray
and calculating the scalar products we conclude that this is exactly R≥0ω̄

∨
i .

W acts simply transitively on simple systems and this translates into a simply
transitive action on the the sectors. This means that any two sectors are con-
jugate under the action of W and if wS = S then w = 1. Moreover any sector
S is a fundamental domain of the action of W on V , ie, each λ ∈ V is conju-
gated under W to one and only one point in S . The sectors are characterized
topologically as the closure of the connected components of the complement in
V of ∪Hα . They are in one one correspondence with the top-dimensional sim-
plices (= chambers) of the corresponding spherical complex. Given a sector SΠ

corresponding to a simple system Π, its walls are defined to be the hyperplanes
Hα (α ∈ Π) .

2.4 Euclidean reflections and Euclidean Weyl group

Let Φ be the root system in V as it was defined in Section 2.1. For each root
α and each integer k , define a Euclidean hyperplane Hα,k := {λ ∈ V |(λ, α) =
k}. Note that Hα,k = H−α,−k and that Hα,0 coincides with the reflecting
hyperplane Hα. Note too that Hα,k can be obtained by translating Hα by k

2α
∨ .

Define the corresponding Euclidean reflection as follows: sα,k(λ) := λ−((λ, α)−
k)α∨. We can also write sα,k as t(kα∨)sα , where t(λ) denotes the translation
by a vector λ. In particular, sα,0 = sα . Denote by HZ the collection of all
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hyperplanes Hα,k (α ∈ Φ, k ∈ Z) which we shall call the walls. The elements of
HZ are permuted in a natural way by Wa as well as by translations t(λ), where
λ ∈ V satisfies (λ, µ) ∈ Z for all roots α (that is λ ∈ ZΦ# ). In particular,
ZΦ# permutes the hyperplanes in HZ , hence so does its subgroup ZΦ∨ . Define
the affine Weyl group Wa to be the subgroup of Aff(V ) generated by all affine
reflections sα,k where a ∈ Φ, k ∈ Z. Another description of Wa is that it is
the semidirect product Wa = ZΦ∨ oW of the finite Weyl group W and the
translation group corresponding to the coroot lattice ZΦ∨ , see [10], Section 4.2.

Since the translation group corresponding to ZΦ# is also normalized by W ,
we can form the semidirect product Ŵa = ZΦ# oW , which contains Wa as a
normal subgroup of finite index. Indeed, Ŵa/Wa is isomorphic to ZΦ#/ZΦ∨ .
One can easily see from 1), 2) that Ŵa also permutes the hyperplanes in HZ .
We call this group the extended affine Weyl group.

2.5 Euclidean Coxeter complexes

The hyperplanes H ∈ HZ triangulate the space V and the resulting piecewise
Euclidean complex Σ = ΣΦ is a Euclidean Coxeter complex. More generally
we shall apply the same term to the Euclidean simplicial structure Σ on a
Euclidean space V ′ such that that for some root system Φ in a Euclidean space
V there is an affine isometry φ : V → V ′ which induces simplicial isomorphism
between ΣΦ and Σ. In particular in Σ we have all the notions as in ΣΦ .
The extended Weyl group Ŵa acts by simplicial isometries on ΣΦ and this
translates by φ to the action on Σ but not in a canonical way – if φ : V → V ′

is another isometry then the actions are conjugate by a suitable isometry of V .
The possible ambiguity is resolved by the following lemma.

2.6 Lemma Both Ŵa and Wa are invariant under the conjugation by any
isometry φ of V , which preserves the simplicial structure ΣΦ .

In particular the images of Ŵa and Wa in Aut(Σ) are canonically defined and
we call them the extended affine Weyl group of Σ and by the affine Weyl group
of Σ respectively.

Proof Since φ leaves invariant the family of hyperplanes HZ , it also leaves
invariant the family of reflections in the hyperplanes of this family, hence nor-
malizes the affine Weyl group Wa . Next it leaves invariant the set of special
vertices (see definition in Section 2.8 and lemma 2.9) hence normalizes the
translation group ZΦ# . Since Ŵa is generated by Wa and ZΦ# it is also
normalized by φ.
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The collection A of top-dimensional closed simplices consists of the closures
of the connected components of V ◦ := V \ ∪H∈HZ

H . Each element of A is
called an alcove. The group Wa acts simply transitively on A, [10], Chapter
4, Theorem 4.5. Any alcove A is a fundamental domain of the action of Wa

on V , ie, each λ ∈ V is conjugated under W to one and only one point in
A. In particular V = ∪{SΠ : Π is a simple system}. Since Ŵa permutes the
hyperplanes in HZ , it acts simplicially on Σ.

2.7 Standard alcove

There is an alcove with a particularly nice description (see [2], Corollary of
Proposition 4 in Section 2, Chapter VI or [10] Section 4.9 ). Namely let Π =
{αi} be a simple root system for Φ. Let {ω̄∨i } be the dual basis for {αi} –
this is the basis of the coweight lattice ZΦ# . Let α̃ =

∑
1≤i≤n ciαi be the

corresponding highest root. Then the alcove A = AΠ , associated to Π is a
closed simplex with the vertices 0 and 1

ci
ω̄∨i , i = 1, . . . , n. We call this alcove a

standard alcove associated to Π.

Another description of A = AΠ is given by the formula A = ∩α∈ΠH
+
α ∩H−α̃,1,

where H−α̃,1 is a closed negative half-space defined by the hyperplane Hα̃,1 and
α̃ is the highest root. Comparing this description with the definition of a sector
SΠ given in Section 2.3 we found that AΠ sits on the top of the sector SΠ and
the defining rays of SΠ correspond to the ordered edges of Σ having 0 as its
origin. There is a one one correspondence AΠ ↔ SΠ between the set A0 of
alcoves having 0 as a vertex and the set of sectors of a spherical Coxeter complex
Σsph . W acts on A0 and the fact that any SΠ is a fundamental domain for the
action of W on Σsph translates to the fact that AΠ is a fundamental domain
for the action of W on A0 in a sense that any directed edge of AΠ having 0 as
its origin is W –conjugate to one and only one such a vertex of AΠ .

2.8 Special vertices

The vertex x ∈ ΣΦ is called a special vertex if its stabilizer SWa(x) in Wa

maps isomorphically onto the associated finite Weyl group W . (Note that the
stabilizers of any vertex in Wa and in Ŵa coincide). Equivalently, for any
hyperplane H ∈ HZ there is a parallel hyperplane in HZ , passing through
x. Yet another equivalent definition is that the maximal possible number of
hyperplanes from HZ pass through x.

2.9 Lemma The set of special vertices of the complex Σ coincide with the
lattice ZΦ# (see [2], Proposition 3 in Section 2, Chapter VI).
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Proof Since the zero vertex is special and the coweight lattice ZΦ# acts
simplicially on Σ, we conclude that ZΦ# consists of the special vertices. Con-
versely, let x be a special vertex. Since Wa preserves the property of the vertex
being special and since it acts transitively on the set of alcoves, we may assume
that x is the vertex of the standard alcove

A =< 0,
1
c1
ω̄∨1 , . . . ,

1
cn
ω̄∨n >

described above. If x = 0, then obviously x ∈ ZΦ# . If x = ω̄∨i
ci

and ci = 1
then again x ∈ ZΦ# . Finally, if x = 1

ci
ω̄∨i and ci > 1 then x can’t be special.

Indeed ( 1
ci
ω̄∨i , αi) = 1/ci < 1, thus no member of the family of hyperplanes in

HZ parallel to Hi pass through x.

2.10 Lemma All the vertices of the complex Σ are special if and only if Σ
is of type An .

Proof Since Wa preserves the property of the vertex being special and since it
acts transitively on the set of alcoves, all the the vertices of Σ are special if and
only if all the vertices of the standard alcove A =< 0, 1

c1
ω̄∨1 , . . . ,

1
cn
ω̄∨n > are

special. As we have already seen in the proof of the preceding lemma, the non-
special points of this alcove are in one one correspondence with the numbers
c1, . . . , cn , that are strictly greater than 1. Thus all the vertexes are special if
and only if all the numbers ci in the expression α̃ =

∑
1≤i≤n ciαi are equal to

1. Now inspecting the tables of the root systems in [2], we conclude that this
happens only in the case of the root system of type An .

2.11 More subcomplexes

Note that an intersection of any family of hyperplanes from HZ or correspond-
ing halfspaces is a subcomplex of a Euclidean Coxeter complex. In particular the
line R ω̄∨i = ∩j 6=iHαj is a subcomplex. Note that for any m ∈ Z, i = 1, . . . , n
the point mω̄∨i /ci is the vertex of Σ. Indeed (mω̄∨i /ci, α̃) = m implies that
mω̄∨i /ci ∈ Hα̃,m and (mω̄∨i /ci, αj) = 0 , j 6= i implies that mω̄∨i /ci ∈ Hαj ,0 ,
hence mω̄∨i /ci is an intersection of n hyperplanes Hα̃,m, Hαj ,0 , j 6= i. In
particular the line segments [0, ω̄∨i ] ⊂ R ω̄∨i are the subcomplexes of Σ.

Next, the sectors S = SΠ := ∩α∈ΠH
+
α , −S = −SΠ := ∩α∈ΠH

−
α are sub-

complexes as well as any of their faces (which are the cones) F = FΠ :=
(∩α∈Π′⊆ΠHα) ∩ (∩α∈Π\Π′H

+
α ).
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3 Ordering Euclidean buildings

3.1 Definitions We will consider special edges of a Euclidean Coxeter com-
plex Σ = ΣΦ of dimension n, that is the directed edges e ∈ Σ(1) such that
the origin ιe of e is a special vertex. Let Es be the set of all such edges.
The typical examples of such edges are given by the standard alcove A =<
0, 1

c1
ω̄∨1 , . . . ,

1
cn
ω̄∨n > constructed in Section 2.10. All the directed edges

[0,
1
c1
ω̄∨1 ], . . . , [0,

1
cn
ω̄∨n ]

are special. In some sense any special edge e arrives in this way – indeed, let
ιe = α ∈ ZΦ# , then e− α starts at 0 and there is some simple system Π such
that e− α is an edge of the alcove AΠ , starting at 0.

More generally call a directed edge e quasi-special if it lies on a line segment
[x, y] in Σ(1) with special vertices x, y . An example will be any directed edge
lying on the line segment [0, ω̄∨i ] since 0, ω̄∨i are special, see Section 2.9. This
remark implies that any special edge is quasi-special. Note that Ŵa leaves Es
invariant as well as the set Eqs of all quasi-special edges. (It might be that all
the edges in any Coxeter complex, and hence in any Euclidean building, are
quasi-special, but the proof of this is not in the author’s possession.)

Since the set of all special vertices on the line L of Σ(1) is discrete in Euclidean
topology, we conclude that for any quasi-special edge e there is a unique mini-
mal (with respect to inclusion) line segment [x, y] in Σ(1) with special vertices
x, y , which contains e.

By an ordering of Σ we mean a function τ : Eqs 7→ {1, . . . , n}, n = dim Σ, such
that

1) for any alcove A =< x, x1, . . . , xn > with a special vertex x the function τ
is bijective on the set of special edges {[x, x1], . . . , [x, xn]},

2) τ is Ŵa–equivariant,

3) for any line segment in [x, y] ⊂ Σ(1) with special vertices x, y the ordering
function τ is constant on a set of directed quasi-special edges lying on [x, y]
and oriented from x to y .

3.2 Remarks This resembles the notion of a labelling of a Euclidean Coxeter
complex, which means that it is possible to partition the vertices into n =
dim ∆ + 1 “types”, in such a way that each alcove has exactly one vertex of
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each type. The labellability of a Euclidean Coxeter complex Σ follows from the
fact that the Wa–action partitions the vertices into n orbits, and we can label Σ
by associating one label i = 0, 1, . . . , n to each orbit. In particular the labelling
is Wa–invariant. There is one obvious distinction between these two notions –
“ordering orders the directed edges” and “labelling labels the vertices”. For us it
is important that the ordering is invariant under translations in the apartments.
In general there are translations on Σ which preserve the structure of a Coxeter
complex but does not belong to Wa .

3.3 Theorem Any Euclidean Coxeter complex Σ = ΣΦ can be ordered.
Moreover an ordering is uniquely defined by an ordering of a set of all directed
edges of a fixed alcove starting at some fixed special vertex of alcove.

Proof Consider the set of all pairs (x,A) of based alcoves that is alcoves A
with a fixed special vertex x of it.

We wish to prove that the extended Euclidean Weyl group Ŵa = ZΦ# oW
acts simply transitively on the set of all based alcoves, that is for any pair of
based alcoves (x,A), (x′, A′) there is exactly one element w ∈ Ŵa which takes
x to x′ and A to A′ . The set of all special vertices coincides with the coweight
lattice ZΦ# , (Section 2.9), consequently there is a translation from ZΦ# which
takes the special vertex x to the special vertex x′ , hence we may assume that
x = x′ . Since x is special SW (x) = W and the family of hyperplanes Hx
passing through x define a spherical complex canonically isomorphic to Σsph .
The alcoves based at x are in one–one correspondence with sectors of this
spherical complex, thus by transitivity there is w ∈ SW (x) = W taking A to
A′ .

Now let the element w ∈ Ŵa = ZΦ# oW fix (x,A). The translation tx : v 7→
v + x belongs to Ŵa by lemma 2.9 and t−1

x wtx fixes (0, t−1
x A). In particular

w′ = t−1
x wtx ∈W and since W acts simply transitively on the set of chambers

of Σsph the element w′ is the identity, hence w is the identity.

Fix a based alcove (x,A) then we assert that any special edge is Ŵa–conjugate
to one and only one such an edge of (x,A) having x as an origin. Let e be
a special edge. Since ZΦ# acts simply transitively on the set Σ(0)

spec one may
assume that x = 0. For the same reason one may assume that 0 is the origin of
e. Now the sector corresponding to A is a fundamental domain for the action
of W on the corresponding spherical complex and we can conclude that W is
W –conjugate to one and only one such edge of (x,A) having x as an origin.
A priori this does not mean that it is Ŵa–conjugate to one and only one such

Gennady A Noskov

Geometry and Topology, Volume 4 (2000)

94



edge of (x,A) having x as an origin. But the stabilizer of 0 in Ŵa and that of
in Wa is the same (=W ).

The properties just proven allow us to order all special edges in the following
way. Order the edges of any fixed based alcove (x,A) starting at x arbitrarily
and extend the ordering in a Ŵa–equivariant way.

What is left is to extend the ordering to all quasi-special edges. Any such edge
e lies on a line segment [x, y] ⊂ Σ(1) with special x, y and there is unique
minimal such segment (it is fully defined by the condition that there are only
two special vertices on it, namely x and y .) Let [x, y] be such a segment and
let e be oriented from x to y . If e starts at x then it is a special edge and
already has got its label. If not then we assign to e the same order, which has
the special edge on [x, y], beginning at x. This assigning is a canonical one
thus we have a well defined function τ on the set of all quasi-special vertices.
Let us verify conditions 1)–3) in the definition of an ordering (Section 3.1).
Condition 1) concerns only special edges and the bijection desired is given
by the construction. Ŵa–equivariance for special edges again is given by the
construction and for quasi-special vertices it follows from the observation that
the minimal [x, y] attached to any such an edge is obviously Ŵa–equivariant.
Finally 3) is given by the construction in the case of minimal [x, y] and clearly
any non minimal such a segment is the union of minimal one. The only jumping
of the order can be in the internal special vertex, but now we can use the fact
that the ordering of special edges is Ŵa–equivariant and in particular ZΦ#–
equivariant.

3.4 Corollary The ordering of any Euclidean Coxeter complex corresponding
to a root system is uniquely defined by an (arbitrary) choice of type function τ
from the set {ω̄∨i } of all fundamental coweights corresponding to some simple
system Π to the set {1, . . . , n}.

Proof Indeed, there is an alcove of the form

A =< 0,
1
c1
ω̄∨1 , . . . ,

1
cn
ω̄∨n >,

where c1, . . . , cn are defined by the expression of the highest root

α̃ =
∑

1≤i≤n
ciαi,

see Section 2.7. The directed edges [0, ω̄
∨
i
ci

] of this alcove (based in 0) are in one
one correspondence with the fundamental coweights {ω̄∨i }.
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3.5 Definitions We adopt the following direct definition of a Euclidean
building, see [5]. We call a simplicial piecewise Euclidean complex ∆ a Eu-
clidean building if it can expressed as the union of a family of subcomplexes Σ,
called apartments or flats, satisfying the following conditions:

B0) There is a Euclidean Coxeter complex Σ0 , such that for each apartment
Σ there is a simplicial isometry between Σ and Σ0 .

B1) Any two simplices of ∆ are contained in an apartment.

B2) Given two apartments Σ,Σ′ with a common top-dimensional simplex
(=chamber or alcove), there is an isomorphism Σ ≈→ Σ′ fixing Σ ∩ Σ′ point
wise.

Note that isomorphisms in B2) are uniquely defined. A Euclidean building has
a canonical metric, consistent with the Euclidean structure on the apartments.
So each apartment E of ∆ is a Euclidean space with a metric |x− y|E, x, y ∈ E .
Moreover, the isomorphisms Σ0

≈→ Σ and isomorphisms between apartments
given by the building axiom B2) are isometries. The metrics |x − y|E can be
pieced together to make the entire building ∆ a metric space. The resulting
metric will be denoted by x, y 7→ |x − y|. It is known (see [5], Theorem VI.3)
that the metric space ∆ is complete. Besides for any x, y ∈ ∆ the line segment
[x, y] is independent of the choice of E and can be characterized by

[x, y] = {z ∈ X; |x − y| = |x− z|+ |z − y|}.
Moreover [x, y] is geodesic, that is, it is the shortest path joining x and y and
there is no other geodesic joining x and y .

3.6 Local geodesics are geodesic

A local geodesic is defined as a finite union of line segments such that the
angles between subsequent segments are equal π . The important fact is that
in Euclidean buildings local geodesics are geodesics. This fact is valid for the
much more general case of CAT(0)–spaces, [3], Proposition II.10.

3.7 Definitions We extend the definitions from Section 3.1 to the case of
Euclidean buildings. The notion of a special vertex can be defined in the case
of a Euclidean building just by putting the vertex into an apartment. This is
well defined because any isometrical isomorphism φ between apartments takes
special vertices to special ones (since the same number of walls pass through x
and φ(x)). Analogously the notion of a special edge is well defined.

Call a directed edge e of a building ∆ quasi-special if it lies on a line segment
[x, y] in ∆(1) with special vertices x, y . Let Es, Eqs be the sets of all special

Gennady A Noskov

Geometry and Topology, Volume 4 (2000)

96



and quasi-special edges respectively. Note the inclusion Es ⊆ Eqs which follows
from the fact that any special edge e can be brought to the form e = [0, 1

ci
ω̄∨i ]

by the extended Weyl group, see Section 3.1, and now it is contained in the line
segment [0, ω̄∨i ] in ∆(1) which has the special end points.

By an ordering of an Euclidean building ∆ we mean a function τ : Eqs 7→
{1, . . . , n}, n = dim ∆(1), such that when restricting to the set of quasi-special
edges of any apartment it becomes an ordering of a corresponding Coxeter
complex.

3.8 Lemma Let ΣΦ,Σ′Φ be two realizations of a Euclidean Coxeter complex
in Euclidean spaces V, V ′ respectively and let φ : V → V ′ be an isometry taking
ΣΦ to Σ′Φ. If τ is any ordering on Σ′Φ , then τφ is an ordering on ΣΦ .

Proof The only non obvious condition is that τφ is Ŵa–equivariant that is
τφw = τφ for any w ∈ Ŵa . But the last equation is equivalent to τφwφ−1 = τ
and the assertion follows from the fact that φ normalizes the extended Weyl
group by the lemma 2.6.

3.9 Theorem Any Euclidean building can be ordered. Moreover an ordering
is uniquely defined by an ordering of special edges of a fixed alcove of a building
starting at some fixed special vertex. In particular, there are only finitely many
orderings on any Euclidean building. Isomorphisms in (B2) in 3.5 can be taken
to be order-preserving. If φ is an automorphism of a Euclidean building ∆ and
τ is its ordering, then τφ is again an ordering on ∆.

Proof We follow the proof of a labellability of a building [5], Chapter IV,
Proposition 1. Fix an arbitrary alcove A =< x, x1, . . . , xn > with special
vertex and order the edges [x, x1], . . . , [x, xn] by 1, . . . , n respectively. If Σ
is any apartment containing A, then as was proved in Section 3.3, there is
a unique ordering τΣ which agrees with the chosen ordering on A. For any
two such apartments Σ,Σ′ the orderings τΣ, τΣ′ agree on the special edges of
Σ∩Σ′ ; this follows from the fact that that τΣ′ can be constructed as τΣφ, where
φ : Σ→ Σ′ is the isomorphism fixing Σ ∩ Σ′ . Since by Section 3.8 τφ is again
an ordering and since it coincide on the based alcove in Σ ∩ Σ′ they coincide
everywhere. The various orderings τΣ therefore fit together to give an ordering
τ defined on the union of the apartments containing A. But this union is all
of ∆.

To prove the second assertion, note that isomorphisms φ : Σ→ Σ′ fixing Σ∩Σ′

also fixes some alcove in Σ ∩ Σ′ pointwise, hence it preserves the order.
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Finally, to prove that τφ is again an ordering, just note that φ leaves invariant
the set of all (quasi)-special edges. The Ŵa–invariance follows from the lemma
2.6.

3.10 Standard ordering

Let us order the fundamental coweights ω̄∨1 , . . . , ω̄
∨
n of the corresponding root

system as they are naturally ordered in the tables of root systems given in [2].
This gives the standard ordering of the standard alcove, see Section 2.7 and
thereby the standard ordering of the building.

4 Definition of a combing

Let ∆ be an ordered Euclidean building. We wish to construct a combing C on
∆ which consists of edge paths in the 1–skeleton ∆(1) and is Ŵa–equivariant
when restricted to any apartment. By definition an edge path α in a graph
∆(1) is a map of the interval [0,N ] ⊂ N into ∆(0) such that ∀i ∈ [0,N − 1] the
vertices α(i), α(i+ 1) are the end points of an edge in ∆(1) . It is convenient to
consider α as an ultimately constant map by extending it to a map of [0,∞]
making α(t) stop after t = N , ie, by setting α(t) = α(N) for t ≥ N .

4.1 Combing the building

Take any special vertices x, y ∈ ∆(1) and put them into some apartment Σ.
We consider Σ as a vector space, taking x as an origin. Since x is a special
vertex, the walls H ∈ HZ , passing through x, define the structure of a spherical
Coxeter complex Σsph(x). In particular y lies in some closed sector S of this
spherical complex, based in x. To S one can canonically associate a based
alcove (x,AS) – this is a unique alcove in S with x as one of its vertices.
As with any sector, S is a simplicial cone and the rays defining it are the
rays spanned by the edges of the alcove AS , started in x. More exactly, let
AS =< x, x1, . . . , xn > with the edges [x, xi] = ei of type i, i = 1, . . . , n. These
edges constitute the basis of a vector space structure on Σ, corresponding to a
choice x as an origin. For any ei we define ei–direction as the set of all rays
of the form z + Rei, z ∈ Σ. We have S =

∑
1≤j≤nR+ej relative to our vector

space structure. Now y ∈ S , hence y =
∑

1≤i≤nmiei with m1, . . . ,mn ≥ 0. We
are able now to define the path αxy of a combing C connecting x (= 0 relative
to a vector space structure) and y . This is a concatenation of the line segments

[0,m1e1], [m1e1,m1e1 +m2e2], . . . , [
∑

1≤i≤n−1

miei,
∑

1≤i≤n
miei], (1)
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passing in this order. Geometrically speaking, αxy is a concatenation of an
ordered sequence of n segments (degenerate segments are allowed), such that
the i-th segment is parallel to the line R ei (degenerate segment is considered
as to be parallel to any line).

Define now a combing C by collecting all the paths of the form αxy (for the
special vertices x, y) as well as all their prefix subpaths in ∆(1) .

4.2 Graph structure ∆(1)
spec

Apart from the natural simplicial graph structure on ∆(1) we wish to use an-
other rougher simplicial graph structure ∆(1)

spec . The vertices of ∆(1)
spec are the

special vertices of ∆(1) . Two special vertices x, y are connected by the edge
[x, y] (which is a line segment joining these vertices) if [x, y] lies in ∆(1) and
there are no other special vertices between x and y . The main example of an
edge in ∆(1)

spec will be the line segment [x, x + ω̄∨i ], i = 1, . . . , n in a Euclidean
Coxeter complex, where x is a special vertex, see Section 2.9. One obtains other
examples from the observation that the extended Weyl group acts preserving
the structure ∆(1)

spec .

Let Cspec be a subcombing of C consisting of those paths that connect only
the special vertices of ∆. Note that a combing Cspec gives rise naturally to a
combing of a graph ∆(1)

spec which we will denote by the same symbol.

4.3 Lemma The natural embeddings ∆(1)
spec ⊆ ∆(1) ⊂ ∆ induce quasi-

isometry between the graphs ∆(1)
spec , ∆(1) with their graph metrics and the

building ∆ with its piecewise Euclidean metric.

Proof Recall some definitions (see [11]). Given λ ≥ 1 and ε ≥ 0, a map
f : X → Y of metric spaces is a (λ, ε)–quasi-isometric map if

1
λ
dY (x, y)− ε ≤ dX(f(x), f(y)) ≤ λdY (x, y) + ε

for all x, y ∈ X . If X is an interval, we speak of a quasigeodesic path in Y . Two
metric spaces X and Y are quasi-isometric if there exists a quasi-isometric map
f : X → Y such that Y is a bounded neighborhood of the image of f . Then f
is called a quasi-isometry. If the constant ε above is zero, then we speak about
Lipschitz maps and Lipschitz equivalence.

Firstly we prove that the embedding ∆(1)
spec ⊂ ∆ is a Lipschitz equivalence. If λ

is the Euclidean length of the longest edge in ∆(1)
spec , then clearly d∆ ≤ λd1,sp ,
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where d1,sp is a graph metric on ∆(1)
spec . On the other hand, if x, y are the

special vertices, then by definition αxy is a concatenation of the line segments

[0, k1ω̄
∨
1 ], [k1ω̄

∨
1 , k1ω̄

∨
1 + k2ω̄

∨
2 ], . . . , [

∑
1≤i≤n−1

kiω̄
∨
i ,
∑

1≤i≤n
kiω̄
∨
i ]

passing in this order. Its graph length in ∆(1)
spec is equal to

∑
1≤i≤n ki and this is

an `1–distance between x, y in `1–metric on Σ, given in coordinates attached to
a basis ω̄∨1 , . . . , ω̄

∨
n . Since, up to translations in Σ, there are only finite number

of bases of this type and since the `1–metric is Lipschitz equivalent to the
Euclidean metric there is a constant λ2 > 0, such that d1,sp(x, y) ≤ λ2d∆(x, y)
– this proves that an embedding ∆(1)

spec ⊂ ∆ is a Lipschitz equivalence.

Now, any edge in ∆(1)
spec consists of several edges of ∆(1) and let λ3 be the

largest number of the edges in ∆(1) lying on the edge of ∆(1)
spec . Then for the

graph metric d1 on ∆(1) we have an inequality d1 ≤ λ3d1,sp . Conversely, if λ4 is
the Euclidean length of the longest edge of the graph ∆(1) , then d∆ ≤ λ4d1 and
since d1,sp and d∆ are Lipschitz equivalent we get the inequality d1,spec ≤ λ5d1

for a suitable positive constant λ5 .

4.4 Lemma The induced metric on ∆(1)
spec as well as on ∆(1) (induced from

the Euclidean metric on a building) is Lipschitz equivalent to the edge path
metric on these graph.

Proof This simple observation is indeed true in a more general situation of
R–graphs, that is simplicial graphs, in which any edge is endowed with a metric,
making it to be isometric to a segment of a real line. Namely if the lengths
of the edges in such a graph are bounded from above and from below by some
positive constants, then the R–metric on a graph is Lipschitz equivalent to the
edge path metric on this graph. This is clear. Now in our situation of Euclidean
Coxeter complexes there are only finitely many isometry types of the edges, so
we have the bounds just mentioned.

Properties of C

4.5 αxy is quasigeodesic relative to the edge path metric on ∆(1).

Obviously the path αxy is geodesic relative to an `1–metric on Σ, given in co-
ordinates attached to a basis e1, . . . , en . This `1–metric is Lipschitz equivalent
to a Euclidean metric on Σ, which is Lipschitz equivalent to a graph metric
on Σ. These equivalences preserve the the quasigeodesicity of paths, hence our
path is quasigeodesic. (It seems likely that indeed αxy is geodesic).
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4.6 Support of the path

The path αxy uniquely defines a cone Cα =
∑
{R+ei;mi > 0} which is called

a support of α. (It is uniquely defined in Σ, not in ∆!). Cα is a subcomplex of
Σ, see Section 2.11. Note that α travels inside of Cα (indeed it is the least cone
in which it travels, since it can be defined as the cone span of α). Note also
that Cα is the smallest face of S , containing y in its interior. In particular,
any sector, containing y , contains also Cα .

4.7 αxy is an edge path in the 1–skeleton ∆(1) .

Let S = SΠ for some simple system Π = {αi} of an underlying root system.
Then the corresponding alcove AΠ is a closed simplex with the vertices 0 and
ω̄∨i /ci, i = 1, . . . , n, see Section 2.7. Here {ω̄∨i } is the dual basis for {αi}
(the basis of coweight lattice ZΦ#) and α̃ =

∑
1≤i≤n ciαi is the corresponding

highest root. Hence, after appropriate re-ordering of αi , we may assume that
ei = ω̄∨i /ci, i = 1, . . . , n. The fundamental coweight ω̄∨i is a special vertex and
lies on the line passing through ei , thus the line segment [0, ω̄∨i ] is an edge path
in Σ(1) . Since y is a special vertex it belongs to the coweight lattice ZΦ# by
Section 2.9, and thus, in the notations of Section 4.1, all the numbers ki = mi

ci
are integers. By definition αxy is a concatenation of the line segments

[0, k1ω̄
∨
1 ], [k1ω̄

∨
1 , k1ω̄

∨
1 + k2ω̄

∨
2 ], . . . , [

∑
1≤i≤n−1

kiω̄
∨
i ,
∑

1≤i≤n
kiω̄
∨
i ]

passing in this order. We conclude from this formula that the path is a con-
catenation of the paths, obtained from the line segments [0, ω̄∨i ] (which are
edge paths) by the action of ZΦ# and the last action preserves the simplicial
structure on Σ.

4.8 αxy is contained in the convex hull of the set {x, y}.

By a convex hull of an arbitrary set in the building ∆ we mean the smallest
convex subcomplex containing this set. For example apartments are convex,
hence the convex hull of any set is contained in any apartment, which contains
this set. In a case of a set consisting of two special vertices x, y one can describe
the convex hull ch(x, y) as a parallelepiped, spanned by {x, y}. More exactly,
in the notations of Section 4.7, we assert that

ch(x, y) = {z =
∑

ziei : 0 ≤ zi ≤ mi, i = 1, . . . , n}. (2)

It immediately follows from this description that αxy is contained in ch(x, y).
To prove the equality (2), note firstly that the sector S is a convex subcomplex
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as well as −S (Section 2.11). We see immediately that the parallelepiped P
on the right hand side is the intersection of the sectors S and −S + y and
thus is a convex subcomplex. Hence P ⊇ ch(x, y). Suppose that P 6= ch(x, y),
then ch(x, y) is a proper convex subcomplex of P , containing x, y . Because
ch(x, y) is an intersection of closed half-spaces bounded by elements of HZ ,
there is a half-space H+ defined by some H ∈ HZ , containing ch(x, y), but
not P . (One can prove this fact by showing firstly that ch(x, y) is a convex
hull of finite number of vertices and then follow the standard proof that the
convex polygon is an intersection of half-subspaces, supported on codimension
one faces.) Suppose, for instance, that y is not farther from H than x. Take
the hyperplane H1 ∈ HZ parallel to H and passing through y and let H+

1 be
a half-space bounded by H1 and contained in H+ . Since H1 pass through the
special vertex y it belongs to the structure Σsph(x) of spherical complex in y ,
see Section 4.1, and since H+

1 contains x it contains also the support Cα−1

of the path α−1 , inverse to α. But Cα−1 = −Cα + y , hence it contains the
parallelepiped P , contradiction.

This proof does not work in the case when y is not special, since the set of
hyperplanes from HZ passing through y does not constitute the structure of
spherical complex. But still we can prove that the parallelepiped P in (2) is
contained in ch(x, y). Suppose the contrary, that P is not contained in ch(x, y),
then again there is a half-space H+ defined by some H ∈ HZ , containing
ch(x, y), but not P . Suppose that y is not farther from H than x (the opposite
case was already treated above). Define the structure Σsph(y) by translating
such a structure from any special vertex. Relative to this structure x lies in the
support Cα−1 = −Cα + y , where α−1 is the path inverse to α. Consider the
hyperplane H1 ∈ HZ parallel to H and passing through y and let H+

1 be a half-
space bounded by H1 and contained in H+ . Since H+

1 contains x it contains
also Cα−1 = −Cα + y , hence it contains the parallelepiped P , contradiction.

4.9 C is Ŵa–invariant.

This immediately follows from the fact that the ordering is Ŵa–invariant and
from the geometric interpretation of the paths in C just given.

4.10 If x, y are special vertices, then αxy is uniquely defined by x, y .

Firstly, the convex hull ch(x, y) is uniquely defined. It is a parallelepiped and
its 1–dimensional faces are ordered. Now αxy is a unique edge path from x
to y in ch(x, y) which is a concatenation of 1–faces of ch(x, y) passing in the
increasing order.
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5 Fellow traveller property

5.1 Theorem The combing C of an ordered Euclidean building ∆ con-
structed in Section 4 satisfies the “fellow traveller property”, namely there is
k > 0 such that if α, β ∈ C begin and end at a distance at most one apart, then

d1(α(t), β(t)) ≤ k

for all t ≥ 0. (The metric d1 is the graph metric on ∆(1) .) The same is true

for the combing Cspec on a graph ∆(1)
spec , see 4.2.

Proof A) Let us firstly consider the case where α, β begin at the same vertex
and end at a distance one apart, that is [α(∞), β(∞)] is an edge. It is easily
seen from a k–fellow traveller property that for any c > 0 if γ, γ′ ∈ C begin and
end at a distance at most c apart, then |γ(t)− γ′(t)| ≤ kc for all t ≥ 0. Note
also that we can work in one apartment since the initial vertex of the paths and
the edge [α(∞), β(∞)] are contained in some apartment and thus the whole
paths lie in this apartment, see Section 4.8. Thus we may assume that α, β
are contained in the Coxeter complex Σ and start at 0. Associated to α, β
are their supports Cα, Cβ in which they travel respectively. The intersection
K = Cα ∩ Cβ is a simplicial cone of the form K =

∑
R+vj for some set {vj}

of special edges. Hence

Cα =
∑

R+ui +
∑

R+vj

and
Cβ =

∑
R+wk +

∑
R+vj

where {ui}, {vj}, {wk} are the sets of special edges (possibly empty) and the sets
{ui}, {wk} do not intersect. We will argue by induction on the sum dimCα +
dimCβ. The least nontrivial case is when the sum is equal to 2 and both of
Cα, Cβ are one dimensional, that is they are simplicial rays. If α and β have the
same direction then obviously they 1–fellow travel each other. If not then they
diverge linearly with a speed bounded from below by a constant not depending
on the paths (indeed, there only finitely many of possibilities for the angle
between Cα and Cβ ). Thus they could end at a distance one apart only when
they passed a bounded distance, thus they k–fellow travel for some k > 0.
A similar argument applies when Cα ∩ Cβ = 0. The main case is when K =
Cα ∩ Cβ =

∑
R+vj is nonzero. Again in this case the argument similar to

the above shows that α (resp. β) can move in the u–direction (resp. in the
w–direction) only for a bounded amount of time, c say. The rest of the proof
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is the reduction to the case when the paths lie in K – then we can apply
inductive hypothesis. But we need a definition. Consider a path γ, consising
of two linear subpaths γ′, γ′′ passing in this order and having the directions
v,w correspondingly. Construct the path γ̃ , which goes distance |γ′′| in the
w–direction and distance |γ′| in the v–direction. We call γ̃ an elementary
transformation of the 2–portion path γ . Note now that if |γ′′| ≤ c, then γ̃ and
γ 2c–travel each other. Using the elementary transformations as above we
can push out all the linear subpaths of α with u–directions to the end of the
path. So we assume that α and β are such from the beginning. Of course this
operation takes α from the combing C , but note that the initial v–portion of
α continues to lie in C , since the elementary transformations do not change
the ordering of v–directions. Cutting out the u–tails and w–tails of α and
β correspondingly, we may assume that α and β lie in the cone K and end
within at most distance c for some universal constant c. Now let vj0 be of the
smallest order in the set {vj}. Then each of the paths α, β move some nonzero
time in vj0 –direction, hence they coincide during some nonzero time. Cutting
out the longest coinciding part of α and β we may assume that one of them
does not contain the vj0 –direction at all. But now the dimension of the support
either of α or β decreases and we may apply an induction hypothesis.

B) Consider now the general case where α, β ∈ C begin and end at a distance
at most one apart. Adding a bounded number of edges to α and β one may
assume that α and β end at the special vertices which are distance at most
c apart for some constant c, depending only on ∆. Drawing a path from C
connecting α(0) and β(∞) and making use the part A) of the proof we reduce
the problem to the case when α, β end at the same special vertex. Denote
by Cspec the set of all paths from C connecting special vertices. Now consider
the combing −Cspec consisting by definition of the paths which are inverse to
the paths from Cspec . Obviously −Cspec is obtained in the same way as Cspec
but reversing the underlying ordering. Thus for some k′ the combing −Cspec
satisfies the k′–fellow traveller property for paths which begin at the same
vertex. Now let α−1, β−1 be the paths inverse to α, β so that α−1, β−1 ∈
−Cspec . Consequently α−1, β−1 k′–fellow travel each other. This doesn’t imply
that α and β are k′–fellow travellers since they arrive at α(0) and β(0) at
different times. Let Nα and Nβ the the length of α and β respectively. Then
α−1(t) = α(Nα − t) (assuming that α extended to the negative times in an
obvious way). We have |α(t)−β(t)| = |α−1(Nα−t)−β−1(Nβ−t)| ≤ |α−1(Nα−
t)− β−1(Nα− t)|+ |β−1(Nα − t)− β−1(Nβ − t)|. The first modulus is bounded
since α−1, β−1 fellow travel each other. The second modulus is bounded since
the paths β−1(Nα − t), β−1(Nβ − t)| differ by only a bounded time shift.

Gennady A Noskov

Geometry and Topology, Volume 4 (2000)

104



C) Let α, β ∈ C be the paths from a combing Cspec , beginning and ending at
a distance at most one apart. There is a constant c > 0, depending only on
∆, such that any edge in ∆(1)

spec is of a length ≤ c. Then, applying part B) we
prove that α, β fellow travel each other relative to ∆(1) –metric and since the
metrics d1, d1,spec are Lipschitz equivalent, we get the fellow traveller property
for the combing Cspec on a graph ∆(1)

spec .

6 Recursiveness of a combing C

In this section ∆ will be an ordered Euclidean building with a standard order-
ing, see Section 3.10.

The definition of C given above is ”global” in the sense that a path from C
”knows” where it goes to. In this section we show that a path from C can
be defined by a simple local “direction set”: namely any pair of consecutive
directed quasi-special edges {e1, e2} shall be one of the following two types:

1) {e1, e2} is straight, that is the angle between e1 and e2 is equal π and hence
the union e1 ∪ e2 is the line segment of length 2 in the edge path metric,

or

2) the type i of e1 is strictly less than the type j of e2 , the end of e1 (= the
origin of e2 ) is a special vertex and (e1, e2) = ( 1

ci
ω̄∨i ,

1
cj
ω̄∨j ).

Define C′ to be the family of all paths γ in ∆(1) , in which any pair of consecutive
edges satisfy either 1) or 2).

6.1 Theorem If ∆ is a Euclidean building of one of the following three types
An, Bn, Cn , then the combings C and C′ coincide.

Proof It follows immediately from the global definition of C that it is contained
in C′ . The proof of the converse proceeds by induction on the number of line
segments constituting the path γ ∈ C′ . Take γ ∈ C′ and write it as γ = β ∪ e,
where e is the last edge of γ and β is the portion of α, preceding e . By the
induction hypothesis β ∈ C thus β ⊂ ch(x, y), where x = β(0), y = β(∞)) in
view of Section 4.8. Let Σ be an apartment containing both β(0) and e. Since
Σ is convex it contains ch(x, y) and thereby β . Consequently all our path γ is
contained in Σ. Take x as an origin and identify Σ with the standard Coxeter
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complex ΣΦ . Thus we may assume that β lies in a standard sector
∑

R+ω̄
∨
i

and

y = m1

ω̄∨i1
ci1

+ . . .+mr
ω̄∨ir
cir

,

where all the coefficients mi are natural numbers. Let e1 be the last edge of
β , then it is parallel to ω̄∨ir and is of type ir . With the notation j = ir and by
definition of C′ the type k of e is not smaller than j and the pair {e1, e} is one
of the following two types:

1) {e1, e} is straight, that is the angle between these two vectors is zero and,
hence, by 3.6 the union e1 ∪ e is the line segment of the length 2 in edge path
metric

or

2) the type j of e1 is strictly less than the type k of e and (e1, e) =
( 1
ci
ω̄∨i ,

1
cj
ω̄∨j ).

Since y is a special vertex its stabilizer W (y) is conjugate to W – the Weyl
group of a root system Φ. Since the set of all the edges of type k starting in
β(∞) = y is an orbit Wω̄∨k we have e = w

ω̄∨k
ck

for some w ∈W (y). If one could
find this w ∈ W in such a way that it fixes all ω̄∨i , i ≤ j, then such w fixes β ,
since β lies in a Euclidean subspace spanned by the vectors ω̄∨i , i ≤ j . Now
applying w−1 to the path α, we get that w−1α = β ∪ 1

ck
ω̄∨k , hence w−1α ∈ C .

Taking into account that Wa preserves C , we get that α ∈ C. The problem now
is to find w ∈W (y) with the properties as above. As was mentioned above the
last edge of β is parallel to ω̄∨j and is of type j . Again by definition of C′ we
deduce that ( 1

cj
ω̄∨j , e) = ( 1

cj
ω̄∨j ,

1
ck
ω̄∨k ).

Thus, to finish the proof we need the following technical lemma.

6.2 Lemma (a) Let Φ be a root system of one of the types An, Bn, Cn ,
given by the tables in [2], pages 250–275. Order fundamental coweights by
their indices as they are given in [2]. Let ω be a coweight of type k and

(ω̄∨j , ω) = (ω̄∨j , ω̄
∨
k )

for some j < k . Then there is w ∈W fixing all the vectors ω̄∨i , i ≤ j and such
that ω = wω̄∨k .

(b) The assertion is not true for the remaining classical case when Φ is of type
Dn .
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6.3 Proof of lemma 6.2

(a) Case An, n ≥ 1

Denote by ε0, . . . , εn the standard basis of Rn+1, n ≥ 1. Let V be the hyper-
plane in Rn+1 consisting of vectors whose coordinates add up to 0. Define Φ
to be the set of all vectors of squared length 2 in the intersection of V with the
standard lattice Zε0 + . . .+ Zεn . Then Φ consists of the n(n+ 1) vectors:

εi − εj , 0 ≤ i 6= j ≤ n
and W acts as a permutation group Sn+1 on basis ε0, . . . , εn .

For the simple system Π take

α1 = ε0 − ε1, α2 = ε1 − ε2, . . . , αn = εn−1 − εn.
Then the highest root is

α̃ = ε0 − εn = α1 + α2 + . . . + αn.

The fundamental coweights are

ω̄∨j = (ε0 + . . .+ εj−1)− j

n+ 1

n∑
i=0

εi, 1 ≤ j ≤ n .

Let the coweight ω satisfies the hypotheses of the lemma. Then since the type
is W –invariant ω = uω̄∨k for some u ∈W . As W acts by permutations on the
basis ω̄∨i

ω =
∑

1≤r≤k
εir −

k

n+ 1

n∑
i=0

εi. (3)

By the hypotheses of the lemma

(ω̄∨j , ω) = (ω̄∨j , ω̄
∨
k ) (4)

for some j < k .

The left hand side of (4) is(
ε0 + . . .+ εj−1 −

j

n+ 1

n∑
i=0

εi,
∑

1≤r≤k
εir −

k

n+ 1

n∑
i=0

εi

)
=

card{r|ir ≤ j − 1} − jk

n+ 1
. (5)

The right hand side of (4) is

(ω̄∨j , ω̄
∨
k ) =

(
ε0 + . . . + εj−1 −

j

n+ 1

n∑
i=0

εi, ε0 + . . . + εk−1 −
k

n+ 1

n∑
i=0

εi

)
=
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j(n + 1− k)
n+ 1

= j − jk

n+ 1
. (6)

Now comparing (5) and (6), we conclude that

card{r|ir ≤ j − 1} = j,

hence from (3)

e = (ε0 + . . . + εj−1) + εij + . . .+ εik −
k

n+ 1

n∑
i=0

εi.

But ω = u ω̄∨k and

ω̄∨k = (ε0 + . . .+ εk)−
k

n+ 1

n∑
i=0

εi,

consequently ω = wω̄∨k for some w ∈ W fixing all the vectors ε0, ε1, . . . , εj−1.
Since ω̄∨i , i ≤ j are the linear combinations of the vectors

ε0, ε1, . . . , εj−1,
j

n+ 1

n∑
i=0

εi

(the last one is fixed by W ), we get that ω̄∨i , i ≤ j are also fixed by w .

Case Bn, n ≥ 2

Denote by ε1, . . . , εn the standard basis of Rn, n ≥ 2. Define Φ to be the set of
all vectors of squared length 1 or 2 in the standard lattice Zε1 + . . .+Zεn . So Φ
consists of the 2n short roots ±εi and the 2n(n−1) long roots ±εi±εj, (i < j),
totalling 2n2. For the simple system Π take

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn, αn = εn.

Then the highest root
α̃ = ε1 + ε2.

The Weyl group W is the semidirect product of Sn (which permutes εi) and
(Z/2)n (acting by sign changes on the εi ), the latter normal in W .

The fundamental coweights are

ω̄∨i = ε1 + ε2 + . . .+ εi, 1 ≤ i ≤ n .
Let the coweight e satisfies the hypotheses of the lemma. Then since Wω̄∨k is
the set of all edges of type k we have ω = uω̄∨k for some u ∈ W . As W acts
by “sign” permutations on the basis ω̄i we have that

ω =
∑

1≤r≤k
±εir . (7)
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By hypotheses of the lemma

ω̄∨j ω = ω̄∨j ω̄
∨
k (8)

for some j < k .

The left hand side of (8) is equal to

(ε1 + . . . + εj)(
∑

1≤r≤k
±εir) ≤ card{r|ir ≤ j}. (9)

The right hand side of (8) is equal

ω̄∨j ω̄
∨
k = j. (10)

Now comparing (9) and (10), we conclude that

card{r|ir ≤ j} = j,

hence from (7)
ω = (±ε0 ± . . .± εj) +±εij ± . . .± εik .

But ω = u ω̄∨k and

ω̄∨k = ε1 + ε2 + . . .+ εk, 1 ≤ k ≤ n .

Since ω̄∨i , i ≤ j are linear combinations of the vectors ε0, ε1, . . . , εj−1, we get
that ω̄∨i , i ≤ j are also fixed by w .

But ω = w ω̄∨j , consequently w can be chosen in such a way that it fixes the
vectors ε1, . . . , εj .

Case Cn, n ≥ 2

Starting with Bn , one can define Cn to be the inverse root system. It consists
of the 2n long roots ±2εi and the 2n(n − 1) short roots ±εi ± εj, (i < j),
totalling 2n2. For the simple system Π take

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn, αn = 2εn.

Then the highest root
α̃ = 2ε1.

The Weyl group W is the semidirect product of Sn (which permutes εi) and
(Z/2)n (acting by sign changes on the εi ), the latter normal in W .

The fundamental coweights are

ω̄∨i = ε1 + ε2 + . . .+ εi, 1 ≤ i < n .
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Now one can repeat word by word the case of Bn . This completes the proof of
part (a).

Proof of (b) Let now Φ be of the type Dn, n ≥ 4. Denote by ε1, . . . , εn the
standard basis of Rn . Define Φ to be the set of all vectors of squared length 2
in the standard lattice Zε1 + . . . + Zεn . So Φ consists of the 2n(n − 1) roots
±εi ± εj(1 ≤ i < j ≤ n). For the simple system Π take

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn, αn = εn−1 + εn.

Then the highest root

α̃ = ε1 + ε2.

The Weyl group W is the semidirect product of Sn (which permutes εi) and
(Z/2)n−1 (acting by an even number of sign changes on the εi ), the latter
normal in W .

The fundamental coweights are

ω̄∨i = ε1 + ε2 + . . . + εi, 1 ≤ i < n− 2 ,

ω̄∨n−1 =
1
2

(ε1 + ε2 + . . .+ εn−2 + εn−1 − εn),

ω̄∨n =
1
2

(ε1 + ε2 + . . . + εn−2 + εn−1 + εn).

Now take the vector

ω =
1
2

(ε1 + ε2 + . . .+ εn−2 − εn−1 − εn),

which is a coweight since ω = uω̄∨n where u ∈ W acts by signs changes on
εn−1, εn. Take j = n− 1, then ω̄∨n−1ω = ω̄∨n−1ω̄

∨
n and it is impossible to replace

u by some w ∈ W so that ω = wω̄∨n and w fixes ω̄∨i , i < n. Indeed, let
ω = wω̄∨n and let w be the identity on ω̄∨1 , . . . , ω̄

∨
n−1. Then w fixes εn−1 − εn ,

from which it follows that either w = 1 or w changes the signs both of εn−1, εn.
Contradiction.
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7 Automatic structure for groups acting on Euclid-
ean buildings of type An, Bn, Cn

7.1 Theorem (1) Let ∆ be any Euclidean building of one of the types
An, Bn, Cn , ordered in a standard way (see Section 3.10 for a definition). Then
any group acting freely and cocompactly on ∆ by type preserving automor-
phisms admits a biautomatic structure.

(2) If ∆ is any Euclidean building of one of the types An, Bn, Cn , then any
group acting freely and cocompactly on ∆ possesses a finite index subgroup
which admits a biautomatic structure.

Let G be a group satisfying the conditions of the theorem. We shall proceed
in several steps. Firstly we recall the definitions related to an automatic group
theory, then we establish an isomorphism between the complex ∆(1)

spec and the
Cayley graph of a fundamental groupoid G = π1

(
G\∆, G\∆(0)

spec

)
. Making

use the combing Cspec and its properties we prove the biautomaticity of the
groupoid above. Finally, we apply a result from [7], [12], asserting that any
automorphism group of a biautomatic groupoid G (which is isomorphic to G)
is biautomatic.

7.2 Automatic structures on groups and groupoids

We shall use the groupoids technique and since the groups are a special case
of groupoids, we give all the definitions for groupoids. We summarize here
without proofs the relevant material on groupoids from [7], [12]. A groupoid G
is a category such that the morphism set HomG(v,w) is nonempty for any two
objects (=vertices) and such that each morphism is invertible. In particular
for any v ∈ Ob G the morphism set Gv = HomG(v, v) is a group and any
group G can be considered as a groupoid with one object, whose automorphism
group is G. The group Gv does not depend on v , up to an isomorphism. A
groupoid is said to be generated by a set A of morphisms, if every morphism is
a composite of morphisms in A∪A−1. Fix a vertex v0 ∈ G as a base point and
assume A is a generating set of morphisms with A = A−1 . The Cayley graph
CG = C(G, A, v0) of G with respect to a base point v0 and generating set A is
the directed graph with vertices corresponding to morphisms in G with domain
(=source) v0 , that is

Vert CG = Hom(v0, ∗) = ∪{Hom(v0, v)|v ∈ Ob G}.
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There is a directed edge f a→ fa from the morphism f to the morphism fa, a ∈
A whenever fa is defined (we write the morphisms on the right); we give this
edge a label a. In the case of a group the vertex set of a Cayley graph is just
a group itself and we have a usual notion of a Cayley graph of a group. In
particular each edge path in CG spells out a word in A∗ , where as usual, A∗

denotes the free monoid on A. And vice versa, for any word w ∈ A∗ and any
vertex f there is a unique path in CG , beginning in f and having w as its
label. We put a path-metric on CG by deeming every edge to have unit length.
Note that the group Gv0 acts on CG by left translations. The generating graph
GG = GGA is a graph with the same set of vertices as G and with edges
corresponding to morphisms in A and labeled by them.

There is a natural projection p from CG to GG , defined as follows. Let the
morphism f : v0 → w be a vertex of a Cayley graph CG then p(f : v0 → w) =
w . If f a→ fa is an edge of CG and f : v0 → w, a : w → u then p sends
it to the edge a : w → u of GG . The group Gv0 gives the group of covering
transformations for p and Gv0\C(G, A, v) ' GG. Indeed, the isomorphism is
induced by p and if f a→ fa, f1

a1→ f1a1 are in the fiber, then g = f1f
−1 ∈ Gv0 .

Automatic structures on groupoids

Let G be a finitely generated groupoid and A a finite set and a 7→ ā is a map
of A to a monoid generating set Ā ⊂ G . A normal form for G is a subset L of
A∗ satisfying the following

(i) L consists of words labelling the paths in C(G, A, v0) (that is only com-
posable strings of morphisms are considered, starting at the base point id ∈
Hom(v0, v0))

(ii) The natural map L → Hom(v0, ∗) which takes the word w = a1a2 · · · an
to the morphism ā1ā2 · · · ān ∈ Hom(v0, ∗) is onto.

A rational structure is a normal form that is a regular language ie, the set
of accepted words for some finite state automaton. Recall that a finite state
automaton M with alphabet A is a finite directed graph on a vertex set S
(called the set of states) with each edge labeled by an element of S (maybe
empty). Moreover, a subset of start states S0 ⊂ S and a subset of accepted
states S1 ⊂ S are given. By definition, a word w in the alphabet A is in the
language L accepted by M iff it defines a path starting from S0 and ending in
an accepted state in this graph. A language is regular if it is accepted by some
finite state automaton.

We will say that a normal form L has the “fellow traveller property” if there
is a constant k such that given any normal form words v,w ∈ L labelling the
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paths αv, αw in Cayley graph C(G, A, v0) which begin and end at a distance
at most one apart, the distance d(w(t), v(t)), t = 0, 1, . . . never exceeds k . A
biautomatic structure for a groupoid G is a regular normal form with the fellow
traveller property.

7.3 Theorem ([7], 13.1.5, [12], 4.1, 4.2) Let G be a groupoid and v0 an
arbitrary vertex of G . Then G admits a biautomatic structure if and only if
the automorphism group Gv0 of v0 admits such a structure.

7.4 Groupoid π1

(
G\∆, G\∆(0)

spec

)
In this section G is a group acting freely and cocompactly on a Euclidean
building ∆ of of the following types An, Bn, Cn by automorphisms preserving
the standard ordering.

Fundamental groupoid

The prime example of a groupoid will be the fundamental groupoid π1 (X)
of the path-connected topological space X . The set of objects(=vertices) of
π1 (X) is the set of points of X and the morphisms from x to y are homotopy
classes of paths beginning at x and ending at y . The multiplication in π1 (X)
is induced by compositions of paths. Given a subset Y ⊂ X we obtain a
subgroupoid π1 (X,Y ) whose vertices are the points of Y and the morphisms
are the same as before. In particular if Y consists of a single point then we get
the fundamental group of X based at that point.

Generating set of groupoid π1

(
G\∆, G\∆(0)

spec

)
7.5 Lemma Let A be the set of homotopy classes of the images in G\∆ of

directed edges of the graph ∆(1)
spec . Then A is a finite set, generating groupoid

G = π1

(
G\∆, G\∆(0)

spec

)
.

Proof This set is finite since by condition ∆ has only finitely many cells under
the action of G. To prove that A generates G take a path α from Gv to Gv′,
then since ∆ is contractible , see [5] and G acts freely on ∆ the projection
∆→ G\∆ is a universal cover and there is a unique lift α̃ of α into ∆ which
begins at v. This lift ends at a translate gv′ of v′ where g is determined by the
homotopy class of α. Moreover, any path in ∆ from v to gv′ will project to a
path in G\∆ which is homotopic to α. In particular the path from Cspec which
crawls from v to gv′ is homotopic to α̃. Since this path is the edge path in
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∆(1)
spec it projects into G\∆ as a composition of homotopy classes of the images

in G\∆ of directed edges of the graph ∆(1)
spec, which is a product of morphisms

from A. This means that A is a generating set for G .

Labelling the graph ∆(1)
spec

Consider ∆(1)
spec as a directed graph and label the edge a by an element Ga ∈ A.

7.6 Lemma ∆(1)
spec as a labeled graph is isomorphic to a Cayley graph CG of

a fundamental groupoid G = π1

(
G\∆, G\∆(0)

spec

)
.

Proof Fix a base vertex v0 in ∆(1)
spec and consider Gv0 as a base point in G\∆.

A vertex in G is a homotopy class [f ] of paths from Gv0 to some Gv . There
is a unique lift f̃ of f into ∆ which begins at v0. We send the vertex [f ] to

the end of the path f̃ . Now if [f ]
[a]→ [f ][a] is an edge in CG then there are

unique lifts f̃ , ã of [f ], [a] to ∆ such that ã starts at the end of f̃ . We map the

edge [f ]
[a]→ [f ][a] to the edge ã, labeled by Gã. This defines an isomorphism

as required.

7.7 Language

Recall that we label directed edges in ∆(1)
spec in a G–equivariant way by A, so

each path from Cspec spells out a word in A∗. Define a language L to be the
subset of A∗ which is given by all words which label the paths from combing
Cspec starting at the basepoint v0 . It follows from the above discussion that we

have a bijective map from L to morphisms in G = π1

(
G\∆, G\∆(0)

spec

)
.

Lemma The language L over A determined by the combing Cspec is regular.

Proof (cf [12], 6.1) We shall construct a non-deterministic finite state au-
tomaton M over A which has L as the set of acceptable words. The set of
states of M is A; all states are initial states and all states are acceptable states.
There is a transition labelled by Ge1 from Ge1 to Ge2 if there are ordered edges
e′1, e

′
2 ∈ ∆(1)

spec in Ge1, Ge2 respectively, such that e′2 starts at the tail of e′1 and
one of the following conditions holds:

1) both e′1, e
′
2 constitute a geodesic linear path of the length 2 in ∆(1)

spec , that
is a local geodesicity condition is satisfied in the common vertex, see 3.6.
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2) If e′1 is of type i and e′2 is of type j , and if e′′1 is the last edge in ∆(1) ,
lying on the segment e′1 and e′′2 is the first edge in ∆(1) lying on e′2 , then

(e′′1 , e
′′
2) = ( ω̄

∨
i
ci
,
ω̄∨j
cj

).

Since the condition defining the transitions is the same as in the local description
of C in Section 6, the language L is precisely the language accepted by the finite
state automaton.

7.8 Finishing the proof of the theorem 7.1

By Theorem 7.3 it is enough to show that the fundamental groupoid G =
π1(G\∆, G\∆(0)

spec) is automatic. Fix a base vertex Gv0 for G\∆, where v0 ∈
∆(0)
spec . Let A be an alphabet which is in one one correspondence with a finite

generating set G\∆(1)
spec of G , see 7.5. Let L ⊆ A∗ be a language consisting of

words which are spelled out from paths of G . By the construction of a combing,
see 4.1, L surjects onto G(v0, ∗). By Section 7.7, L is regular. By Section 5
it satisfies k–fellow traveller property. Hence, in view of an isomorphism of
A–labelled graphs ∆(1)

spec ' CG we get that G is biautomatic.

To prove the second assertion just note that the set of all orderings of a Eu-
clidean building is finite and any group acting simplicially on a building, acts
also on this finite set of orderings, hence it contains a subgroup of finite in-
dex which preserves any ordering, that is acts by a type preserving automor-
phisms.

7.9 Remarks Actually, one can derive easily from Sections 4.3,4.4,4.5 that
the structures we have built are quasigeodesic ones. On the other hand, as Prof
W Neumann has pointed out to us, every (synchronous) automatic structure
contains a sublanguage which is an (synchronous) automatic structure with
the uniqueness property ([7] 2.5.1) and it follows ([7] 3.3.4) that (synchronous)
automatic structures with uniqueness are always quasigeodesic.

Combing Euclidean buildings

Geometry and Topology, Volume 4 (2000)

115



References

[1] W Ballmann, M Brin, Polygonal complexes and combinatorial group theory,
Geom. Dedicata, 2 (1994) 165–191

[2] N Bourbaki, Groupes et algebres de Lie. Chapitres IV, V et VI, Hermann
(1972)
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