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Abstract Suppose the spaces X and X × A have the same Lusternik-
Schnirelmann category: cat(X × A) = cat(X). Then there is a strict

inequality cat(X × (A ⋊ B)) < cat(X) + cat(A ⋊ B) for every space B ,
provided the connectivity of A is large enough (depending only on X ).
This is applied to give a partial verification of a conjecture of Iwase on the
category of products of spaces with spheres.
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Introduction

The product formula cat(X × Y ) ≤ cat(X) + cat(Y ) [1] is one of the most
basic relations of Lusternik-Schnirelmann category. Taking Y = Sr , it implies
that cat(X × Sr) ≤ cat(X) + 1 for any r > 0. In [5], Ganea asked whether
the inequality can ever be strict in this special case. The study of the ‘Ganea
condition’ cat(X ×Sr) = cat(X)+1 has been, and remains, a formidable chal-
lenge to all techniques for the calculation of Lusternik-Schnirelmann category.
In fact, it was only recently that techniques were developed which were pow-
erful enough to identify a space which does not satisfy the Ganea condition [8]
(see also [9, 12]). It is still not well understood exactly which spaces X do
not satisfy the Ganea condition, although it has been conjectured that they are
precisely those spaces for which cat(X) is not equal to the related invariant
Qcat(X) (see [14, 17]).

Since the failure of the Ganea condition appears to be a strange property for
a space to have, it is reasonable to expect that such failure would have useful
and interesting implications. In this paper we explore some of the implications
of the equation cat(X × A) = cat(X) for general spaces A, and for A = Sr in
particular.
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A brief look at the method of the paper [8] will help to put our results into
proper perspective. The new techniques begin with the following question: if
Y = X ∪f et+1 , the cone on f : St → X , then how can we tell if cat(Y ) >
cat(X)? It is shown (see [9, Thm. 5.2] and [12, Thm. 3.6]) that, if t ≥ dim(X),
then cat(Y ) = cat(X) + 1 if and only if a certain Hopf invariant Hs(f) (which
is a set of homotopy classes) does not contain the trivial map ∗. It is also
shown [9, Thm. 3.8] that if ∗ ∈ ΣrHs(f), then cat(Y ×Sr) ≤ cat(X)+1. Thus
Y does not satisfy Ganea’s condition if ∗ 6∈ Hs(f), but there is at least one
h ∈ Hs(f) such that Σrh ≃ ∗.

Of course, if Σrh ≃ ∗, then Σr+1h ≃ ∗ as well, and this suggests the following
conjecture (formulated in [8, Conj. 1.4]):

Conjecture If cat(X × Sr) = cat(X), then cat(X × Sr+1) = cat(X).

In this paper we prove that this conjecture is true, provided r is large enough.

Theorem 1 Suppose X is a (c − 1)-connected space and let r > dim(X) −
c · cat(X) + 2. If cat(X × Sr) = cat(X), then

cat(X × St) = cat(X)

for all t ≥ r .

The conjecture remains open for small values of r .

Our main result is much more general: it shows how the equation cat(X×A) =
cat(X) governs the Lusternik-Schnirelmann category of products of X with a
vast collection of other spaces.

Theorem 2 Let X be a (c−1)-connected space and let A be (r−1)-connected

with r > dim(X) − c · cat(X) + 2. If cat(X × A) = cat(X) then

cat(X × (A ⋊ B)) < cat(X) + cat(A ⋊ B)

for every space B .

Here A ⋊ B = (A × B)/B is the half-smash product of A with B . When A
is a suspension, the half-smash product decomposes as A ⋊ B ≃ A ∨ (A ∧ B)
(see, for example, [12, Lem. 5.9]), so we obtain the following.

Corollary Under the conditions of Theorem 2, if A is a suspension, then

cat(X × (A ∧ B)) = cat(X)
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for every space B .

Our partial verification of the conjecture is an immediate consequence of this
corollary: it the special case A = Sr and B = St−r .

Organization of the paper In Section 1 we recall the necessary background
information on homotopy pushouts, cone length and Lusternik-Schnirelmann
category. We introduce an auxiliary space and establish its important properties
in Section 2. The proof of Theorem 2 is presented in Section 3.

1 Preliminaries

In this paper all spaces are based and have the pointed homotopy type of CW
complexes; maps and homotopies are also pointed. We denote by ∗ the one
point space and any nullhomotopic map. Much of our exposition uses the
language of homotopy pushouts; we refer to [11] for the definitions and basic
properties.

1.1 Homotopy Pushouts

We begin by recalling some basic facts about homotopy pushout squares. We
call a sequence A → B → C a cofiber sequence if the associated square

A
f //�� B��

∗ // C
is a homotopy pushout square. The space C is called the cofiber of the map f .
One special case that we use frequently is the half-smash product A⋊B , which
is the cofiber of the inclusion B → A × B .

Finally, we recall the following result on products and homotopy pushouts.

Proposition 3 Let X be any space. Consider the squares

A //�� B�� and

X × A //�� X × B��
C // D X × C // X × D.

If the first square is a homotopy pushout, then so is the second.

Proof This follows from Theorem 6.2 in [15].

Algebraic & Geometric Topology, Volume 4 (2004)
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1.2 Cone Length and Category

A cone decomposition of a space Y is a diagram of the form

L0�� L1�� Lk−1��
Y0

// Y1
// · · · // Yk−1

// Yk

in which Y0 = ∗, each sequence Li → Yi → Yi+1 is a cofiber sequence, and
Yk ≃ Y ; the displayed cone decomposition has length k . The cone length of Y ,
denoted cl(Y ), is defined by

cl(Y ) =





0 if Y ≃ ∗
∞ if Y has no cone decomposition, and
k if the shortest cone decomposition of Y has length k.

The Lusternik-Schnirelmann category of X may be defined in terms of the cone
length of X by the formula

cat(X) = inf{cl(Y ) |X is a homotopy retract of Y}.

Berstein and Ganea proved this formula in [3, Prop. 1.7] with cl(Y ) replaced
by the strong category of Y ; the formula above follows from another result of
Ganea — strong category is equal to cone length [7]. It follows directly from
this definition that if X is a homotopy retract of Y , then cat(X) ≤ cat(Y ).
The reader may refer to [10] for a survey of Lusternik-Schnirelmann category.

The category of X can be defined in another way that is essential to our work.

Begin by defining the 0th Ganea fibration sequence F0(X) // G0(X)
p0 // X

to be the familiar path-loop fibration sequence Ω(X) //P(X) // X . Given
the nth Ganea fibration sequence

Fn(X) // Gn(X)
pn // X ,

let Gn+1(X) = Gn(X) ∪ CFn(X) be the cofiber of pn and define pn+1 :
Gn+1(X) → X by sending the cone to the base point of X . The (n + 1)st

Ganea fibration pn+1 : Gn+1(X) → X results from converting the map pn+1 to
a fibration. The following result is due to Ganea (cf. Svarc).

Theorem 4 For any space X ,

(a) cl(Gn(X)) ≤ n,

(b) the map pn : Gn(X) → X has a section if and only if cat(X) ≤ n, and
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(c) Fn(X) ≃ (Ω(X))∗(n+1) , the (n + 1)-fold join of ΩX with itself.

Proof Assertion (a) follows immediately from the construction. For parts (b)
and (c), see [6]; these results also appear, from a different point of view, in
[16].

2 An Auxilliary Space

Let G̃n denote the homotopy pushout in the square

Gn−1(X) � � i1 //�� Gn−1(X) × A��
Gn(X) // G̃n.

The maps pn : Gn(X) → X and 1A : A → A piece together to give a map
p̃n : G̃n → X × A. The space G̃n and the map p̃n play key roles in the
forthcoming constructions; this section is devoted to establishing some of their
properties.

2.1 Category Properties of G̃n

We begin by estimating the category of G̃n .

Proposition 5 For any noncontractible A and n > 0, cat(G̃n) < n + cat(A).

Proof For simplicity in this proof, we write Fi for Fi(X) and Gi for Gi(X).

Let cat(A) = k , so A is a retract of another space A′ with cl(A′) = k . Let
G̃′

n = Gn ∪Gn−1×A′ ; clearly G̃n is a homotopy retract of G̃′

n and so it suffices
to show that cl(G̃′

n) < n + k . Let

L0�� L1�� Lk−1��
A′

0
// A′

1
// · · · // A′

k−1
// A′

k

be a cone decomposition of A′ . We will also use the cone decomposition of Gn

given by the cofiber sequences Fi−1 → Gi−1 → Gi . According to a result of
Baues [2] (see also [13, Prop. 2.9]), for each i and j there is a cofiber sequence

Fi−1 ∗ Lj−1
// Gi × A′

j−1 ∪ Gi−1 × A′

j
// Gi × A′

j .
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Now define subspaces Ws ⊆ G̃′

n by the formula

Ws =

{ ⋃
i+j=s Gi × A′

j if s ≤ n

Gn × A′

0 ∪
(⋃

i+j=s
i<n

Gi × A′

j

)
if s > n

with the understanding that A′

j = A′

k for all j ≥ k . The cofiber sequences
guaranteed by Baues’ theorem can be pieced together with the given cone de-
compositions of A′ and Gn to give the cofiber sequences

Fs ∨ Ls ∨
(∨

i+j=s−1

i<n−1

Fi ∗ Lj

) // Ws
// Ws+1

for each s < min{n, k}; when s ≥ n we alter the cobase of the cofiber sequence
by removing the Fs summand, and when s ≥ k we must remove the summand
Ls . Since G̃′

n = Wn+k−1 , we have the result.

Next, we show that the map p̃n : G̃n → X×A has one of the category-detecting
properties of pn : Gn(X × A) → X × A.

Proposition 6 If cat(X×A) = cat(X) = n, then p̃n has a homotopy section.

Proof We follow [4] (see also [8, Thm. 2.7]) and define

Ĝ′

n(X × A) =
⋃

i+j=n

Gi(X) × Gj(A).

There is a natural map h : Ĝ′

n(X×A) → X×A induced by the Ganea fibrations
over X and A. According to [4, Thm. 2.3], cat(X × A) = n if and only if h
has a homotopy section.

Each map Gi(X) × Gj(A) → X × A (with j > 0) factors through Gi(X) × A
and these factorizations are compatible because pi+1 extends pi . So h factors
as Ĝ′

n(X × A) → G̃n → X × A. Therefore, if cat(X × A) = n, then h, and
hence p̃n , has a section.

2.2 Comparison of G̃n with Gn(X) × A

Let j : G̃n → Gn(X) × A denote the natural inclusion map.

Proposition 7 Assume that X is (c − 1)-connected and that A is (r − 1)-
connected. Then the homotopy fiber F of the map j is (nc+ r− 2)-connected.
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Proof There is a cofiber sequence

G̃n

j // Gn(X) × A // ΣFn−1(X) ∧ A.

Therefore the homotopy fiber of j has the same connectivity as the space
Ω(ΣFn−1(X) ∧ A) ≃ Ω(Ω(X)∗n ∗ A), namely nc + r − 2.

Corollary 8 Assume dim(Z) < nc+r−2 and let f, g : Z → G̃n . Then f ≃ g
if and only if jf ≃ jg .

The proof is standard, and we omit it.

2.3 New Sections from Old Ones

Suppose that cat(X) = cat(X × A) = n. By Proposition 6 there is a section
σ : X × A → G̃n of the map p̃n : G̃n → X × A. Define a new map σ′ : X →
Gn(X) by the diagram

X
σ′ //

i1 �� Gn(X)

X × A
σ // G̃n

� � j // Gn(X) × A.

pr1

OO
We need the following basic properties of σ′ .

Proposition 9 If cat(X × A) = cat(X) = n, then

(a) σ′ is a homotopy section of the projection pn : Gn(X) → X , and

(b) if X is (c− 1)-connected and A is (r− 1)-connected with r > dim(X)−
nc + 2, then the diagram

X
σ′ //

i1 �� Gn(X)� _
k��

X × A
σ // G̃n

commutes up to homotopy.
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Proof First consider the diagram

X
σ′ //

i1 �� Gn(X)

k �� Gn(X)
pn // X

X × A
σ //

1X×A ,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX G̃n

j // Gn(X) × A

pr1

OO
pr1 //

pn×1A�� Gn(X)

pn

OO
pn��

X × A
pr1 // X.

The diagram of solid arrows is evidently commutative. Therefore, we have
pn ◦ σ′ ≃ pr1 ◦ 1X×A ◦ i1 ≃ 1X , proving (a).

To prove (b) we have to show that two maps X → G̃n are homotopic. Since
dim(X) < nc + r − 2, it suffices by Corollary 8 to show that j ◦ (σ ◦ i1) ≃
j ◦ (k ◦ σ′). Since pr2 ◦ j ◦ (σ ◦ i1) ≃ ∗ ≃ pr2 ◦ j ◦ (k ◦ σ′), it remains to show
that pr1 ◦ j ◦ (σ ◦ i1) ≃ pr1 ◦ j ◦ (k ◦σ′). But both of these maps are homotopic
to σ′ .

3 Proof of the Main Theorem

Proof of Theorem 2 We have n = cat(X) = cat(X × A) by hypothesis.
It follows from Proposition 6 that there is a section σ : X × A → G̃n of the
map p̃n : G̃n → X × A. We then get the section σ′ : X → Gn(X) that was
constructed and studied in Section 2.3.

Consider the following diagram and the induced sequence of maps on the ho-
motopy pushouts of the rows

(X × A) × B

σ×1B ≃s�� X × B

σ′
×1B��i1×1Boo pr1 // X

σ′�� Y��
G̃n × B

p̃n×1B �� Gn(X) × B
pr1 //k×1Boo

pn×1B�� Gn(X)

pn�� homotopy

pushout
// P��

(X × A) × B X × B
i1×1Boo pr1 // X Y.

Proposition 9 implies that the upper left square commutes up to homotopy.
Since i1 × 1B is a cofibration, we can apply homotopy extension and replace
the map σ×1B : (X×A)×B → G̃n×B with a homotopic map s which makes
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that square strictly commute. All other squares are strictly commutative as
they stand.

Since the composites (p̃n×1B)◦(σ′×1B) and pn ◦σ′ are the identity maps and
(p̃n×1B)◦s is a homotopy equivalence, each vertical composite in the modified
diagram is a homotopy equivalence. Thus Y is a homotopy retract of P , and
consequently cat(Y ) ≤ cat(P ).

The space Y is the homotopy pushout of the top row in the diagram, which is
the product of the homotopy pushout diagram

B //�� ∗��
A × B // A ⋊ B

with the space X . Therefore Y ≃ X × (A ⋊ B) by Proposition 3. Since Y is
a homotopy retract of P , it follows that

cat(X × (A ⋊ B)) ≤ cat(P ),

the proof will be complete once we establish that cat(P ) < cat(X)+cat(A⋊B).
This is accomplished in Lemma 10, which is proved below.

Lemma 10 The space P constructed in the proof of Theorem 2 satisfies

cat(P ) ≤ cl(P ) < cat(X) + cat(A ⋊ B).

Proof The space G̃n is defined by the homotopy pushout square

Gn−1(X) //�� Gn(X)��
Gn−1(X) × A // G̃n.

Take the product of this square with the space B and adjoin the homotopy
pushout square that defines P to obtain the diagram

Gn−1(X) × B //�� Gn(X) × B //�� Gn(X)��
Gn−1(X) × A × B // G̃n × B // P.

By [11, Lem. 13], the outer square

Gn−1(X) × B //�� Gn(X)��
Gn−1(X) × A × B // P

Algebraic & Geometric Topology, Volume 4 (2004)
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is also a homotopy pushout square. The top map is the composite

Gn−1(X) × B
pr1 // Gn−1(X)� � // Gn(X),

and so we have a new factorization into homotopy pushout squares:

Gn−1(X) × B
pr1 //�� Gn−1(X) //�� Gn(X)��

Gn−1(X) × A × B // L // P.

To identify the space L, observe that the left square is simply the product of
the space Gn−1(X) with the homotopy pushout square

B //�� ∗��
A × B // A ⋊ B.

By Proposition 3, L ≃ Gn−1(X)× (A⋊B). Hence the right-hand square is the
homotopy pushout square

Gn−1(X) //�� Gn(X)��
Gn−1(X) × (A ⋊ B) // P.

Therefore cl(P ) ≤ cat(X) + cat(A ⋊ B) by Proposition 5.
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