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Intrinsic knotting and linking of complete graphs

Erica Flapan

Abstract We show that for every m 2 N , there exists an n 2 N such that
every embedding of the complete graph Kn in R3 contains a link of two
components whose linking number is at least m . Furthermore, there exists
an r 2 N such that every embedding of Kr in R3 contains a knot Q with
ja2(Q)j � m , where a2(Q) denotes the second coe�cient of the Conway
polynomial of Q .
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1 Introduction

The study of intrinsic knotting and linking began with the work of Conway
and Gordon [CG], who showed that every embedding in R3 of the complete
graph on six vertices, K6 , contains a non-trivial link of two components, and
every embedding of K7 in R3 contains a non-trivial knot. Since the existence
of such a link or knot is intrinsic to the graph, and does not depend on the
particular embedding of the graph in R3 , we say that K6 is intrinsically linked
and K7 is intrinsically knotted . We state Conway and Gordon’s Theorem more
precisely with the following notation. Let L1 [ L2 be an oriented link, and let
lk(L1; L2) denote the linking number of L1 and L2 ; let Q be a knot, and let
a2(Q) denote the second coe�cient of the Conway polynomial of Q. Conway
and Gordon proved that every embedding of K6 contains a link L1 [L2 which
has lk(L1; L2) � 1 (mod 2), and every embedding of K7 contains a knot Q
which has a2(Q) � 1 (mod 2). Furthermore, they illustrated an embedding of
K6 such that the only non-trivial link L1[L2 contained in K6 is the Hopf link
(which has jlk(L1; L2)j = 1); and they illustrated an embedding of K7 such
that the only non-trivial knot Q contained in K7 is the trefoil knot (which has
ja2(Q)j = 1). In this sense K6 exhibits the simplest type of intrinsic linking
and K7 exhibits the simplest type of intrinsic knotting.

In this paper, we will show that for larger values of n, the complete graph Kn

can exhibit a more complex type of intrinsic linking or knotting. In particular,
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there exists an n such that every embedding of Kn contains a non-trivial 2-
component link which is not the Hopf link, and there exists an n such that every
embedding of Kn contains a non-trivial knot which is not the trefoil knot. In
[FNP] we considered links of more than two components, and showed that
every embedding of K10 in R3 contains a 3-component link L0 [L1 [L2 such
that both lk(L0; L1) � 1 (mod 2) and lk(L0; L2) � 1 (mod 2); furthermore,
n = 10 is the smallest number such that Kn has this property. Here we shall
generalize Conway and Gordon’s Theorem by considering the linking number
of 2-component links in Z rather than in Z2 , and by considering the second
coe�cient of the Conway polynomial in Z rather than in Z2 .

We begin by proving that every embedding of K10 contains a non-trivial link of
two components other than the Hopf link. In particular we prove the following.

Theorem 1 Every embedding of K10 in R3 contains a 2-component link L =
L1 [ J1 such that for some orientation of L we have lk(L1; J1) � 2.

Theorem 2 will show that the complexity of the intrinsic linking of Kn (as
measured by the linking number) can be made as large as we wish by making
n su�ciently large.

Theorem 2 Let p 2 N be given, and let n = p(15p − 9). Then every embed-
ding of Kn in R3 contains a 2-component link L = Lp [ Jp such that for some
orientation of L we have lk(Lp; Jp) � p.

It is natural to ask whether the complexity of the intrinsic knotting of Kn

can also be made as large as we wish by choosing n su�ciently large. While
the linking number seems like the natural measure of the complexity of a 2-
component link, there are various ways to measure the complexity of a knot.
The second coe�cient of the Conway polynomial a2(Q) of an oriented knot
Q is a convenient invariant to use because it relates knotting and linking. In
particular, Kau�man [Ka] has shown that it satis�es the following equation

a2(K+) = a2(K−) + lk(L1; L2) (1)

where K+ and K− are identical oriented knots outside of the crossing illustrated
in Figure 1, and the oriented link L1[L2 is obtained by smoothing this crossing
as illustrated.

Due to the utility of equation (1), the second coe�cient of the Conway polyno-
mial has been used to prove various theorems about knots contained in spatial
graphs (see for example [CG], [Fo], [TY], [Sh]). Using a2(Q) as a measure of
knot complexity we prove the following theorem.
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K+ K−

L1 L2

Figure 1: The skein moves

Theorem 3 Let m 2 N be given, let p be an integer such that p � 4
p
m,

and let n = p(15p − 9). Then every embedding of K2n in R3 contains a knot
Q with ja2(Q)j � m.

Observe that by picking p to be the smallest integer such that p � 4
p
m, we

have p � 4
p
m + 1 and hence 2n � 720m − 60. In particular, this means that

2n only grows linearly with m.

The question of �nding the minimum number of vertices necessary to guarantee
a certain type of intrinsic linking or knotting remains open. Since K5 does not
have enough vertices to contain a link, n = 6 is the smallest number of vertices
necessary such that every embedding of Kn contains a link with L1 [ L2 with
jlk(L1; L2)j � 1. Theorem 1 shows every embedding of K10 in R3 contains a
link with L1 [ L2 with jlk(L1; L2)j � 2. However, it is not known whether 10
is the smallest such n. In general, it is an open question to �nd a function
’ : N! N such that for every p 2 N, ’(p) is the minimum number of vertices
necessary such that every embedding of K’(p) contains a 2-component link
L1[L2 with jlk(L1; L2)j � p. With respect to intrinsic knotting, the embedding
of K6 given by Conway and Gordon contains no non-trivial knot, thus n = 7
is the minimum number of vertices necessary such that every embedding of
Kn contains a knot Q with ja2(Q)j � 1. It follows from Theorem 3 that every
embedding of K972 in R3 contains a non-trivial knot other than the trefoil knot.
However it is not known what the smallest n is such that every embedding of
Kn in R3 contains a knot other than the trefoil knot. Furthermore, it is an
open question to �nd a function  : N! N such that for every m 2 N,  (m) is
the minimum number of vertices necessary such that every embedding of K (m)

contains a knot Q with ja2(Q)j � m.

2 Intrinsic Linking

The following lemma allows us to go from a 3-component link (with a su�cient
number of vertices) to a 2-component link whose linking number is at least the
sum of the linking numbers of two pairs of components of the 3-component link.
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Lemma 1 Let L[Z[W be a 3-component link contained in some embedding
of Kn in R3 . Suppose that lk(L;Z) = p1 > 0 and lk(L;W ) = p2 > 0 for some
orientation of L [ Z [ W . Suppose that Z and W each contain at least q
vertices and q > p1 + p2 . Then Kn contains a simple closed curve J with at
least 2q vertices which is disjoint from L such that, for some orientation of
L [ J , we have lk(L; J) � p1 + p2 .

Proof On Z we select q vertices and label them consecutively by v1 , : : : , vq
in such a way that Z is oriented in the direction of increasing order of the vj .
On W we select q vertices and label them consecutively by w1 , : : : , wq in
such a way that W is oriented in the direction of decreasing order of the wj .
For each j = 1, : : : , q , let Aj denote the simple closed curve vjwjwj+1vj+1vj ,
where the subscripts are taken mod q . We orient each Aj so that going from
vj to wj along the edge vjwj is the positive direction.

Now in the homology group H1(R3 − L;Z) we have the equation

[Z] + [W ] + [A1] + : : :+ [Aq] = 0:

Thus
p1 + p2 = [Z] + [W ] = −[A1]− : : :− [Aq]:

Since [Aj] is an integer for each j and q > p1 + p2 , there is some j such that
[Aj ] � 0. Without loss of generality [Aq] � 0. Hence in H1(R3−L;Z) we have
the inequality

−[A1]− : : :− [Aq−1] � p1 + p2:

Now let J denote the simple closed curve obtained from A1 [ : : : [ Aq−1 by
omitting the edges vjwj for j = 2, : : : , q − 1. We orient J so that going from
w1 to v1 along the edge w1v1 is the positive direction. Then in H1(R3 − L;Z)
we have

[J ] = −[A1]− : : :− [Aq−1]:

Hence lk(L; J) � p1 + p2 and J has at least 2q vertices.

We shall prove Theorem 1 by using Lemma 1 together with [FNP].

Theorem 1 Every embedding of K10 in R3 contains a 2-component link L[J
such that, for some orientation, we have lk(L; J) � 2.

Proof Let K10 be embedded in R3 . It follows from [FNP] that K10 contains a
3-component link L[Z[W such that lk(L;Z) � 1 (mod 2) and lk(L;W ) � 1
(mod 2). We orient the link L [ Z [ W so that lk(L;Z) = p1 � 1 and
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lk(L;W ) = p2 � 1. If either pi � 3 we are done. Otherwise, p1 = p2 = 1.
Clearly Z and W each have at least 3 vertices. Now we apply Lemma 1 to
obtain a simple closed curve J such that lk(L; J) � 2.

Lemma 2 will allow us to go from a pair of disjoint 2-component links (each
with a su�cient number of vertices) to a 3-component link, while bounding
the linking numbers of the 3-component link below. The proof of Lemma 2 is
similar in flavor to the proof of Lemma 1, though the details di�er.

Lemma 2 Let X1 [ Y1 [ X2 [ Y2 be a 4-component link contained in some
embedding of Kn in R3 . Suppose that for some orientation of X1[Y1[X2[Y2

we have lk(X1; Y1) � 1 and lk(X2; Y2) = p � 1. Also suppose that X1 , Y1 ,
X2 , Y2 each contain at least q vertices and q > p. Then Kn contains disjoint
simple closed curves L, Z and W , each with at least q vertices, such that
lk(L;Z) � 1 and lk(L;W ) � p for some orientation of L [ Z [W .

Proof If lk(X2; Y1) is non-zero, then let L = X2 , Z = Y1 , and W = Y2 .
Now if we orient L[Z [W appropriately we get a link with lk(L;Z) � 1 and
lk(L;W ) � p. If lk(Y2;X1) is non-zero, let L = Y2 , Z = X1 , and W = X2 .
Then L[Z[W is the desired link. So from now on, we shall assume that both
lk(Y1;X2) = 0 and lk(X1; Y2) = 0.

We choose q vertices on each of X1 and X2 and label the vertices of X1 and
X2 as we did the vertices of Z and W in the proof of Lemma 1. We also de�ne
the oriented simple closed curves Aj as we did in the proof of Lemma 1. Now
for both i = 1 and i = 2, in the �rst homology groups H1(R3 − Yi;Z) we have
the equation

[X1] + [X2] + [A1] + : : :+ [Aq] = 0:

Now by our assumptions that lk(Y1;X2) = 0 and lk(X1; Y2) = 0, we have
[X2] = 0 in H1(R3 − Y1;Z) and we have [X1] = 0 in H1(R3 − Y2;Z). Thus in
H1(R3 − Y2;Z) we have

0 < p = [X2] = −[A1]− : : : − [Aq]:

Since q > p, without loss of generality [Aq] � 0 in H1(R3 − Y2;Z). Hence

−[A1]− : : : − [Aq−1] � p
in H1(R3 − Y2;Z).

In H1(R3 − Y1;Z) we have

[X1] = −[A1]− : : : − [Aq]:
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First we suppose that [Aq] = 0 in H1(R3 − Y1;Z). So −[A1] − : : : − [Aq−1] =
[X1] � 1 in H1(R3−Y1;Z). In this case, we let L denote the simple closed curve
obtained from A1[ : : :[Aq−1 by omitting the edges vjwj for j = 2, : : : , q−1.
We orient L so that going from w1 to v1 along the edge w1v1 is the positive
direction. Then L has at least 2q vertices and lk(L; Y1) = lk(X1; Y1) � 1 and
jlk(L; Y2)j � p. We are done by letting Z = Y1 and W = Y2 .

Now suppose that [Aq] 6= 0 in H1(R3 − Y1;Z). Let L denote the simple
closed curve obtained from X2 [ Aq by omitting the edge wqw1 . We ori-
ent L so that going from v1 to w1 along the edge v1w1 is the positive di-
rection. Then L has at least q + 2 vertices. Also since lk(X2; Y1) = 0
we have jlk(L; Y1)j = jlk(Aq; Y1)j � 1; Now by changing the orientation on
Y1 , if necessary, lk(L; Y1) � 1. Since [Aq] � 0 in H1(R3 − Y2;Z) we have
lk(L; Y2) � lk(X2; Y2) = p. So we are done by letting Z = Y1 and W = Y2 .

Now we will use Lemmas 1 and 2, together with an inductive argument, to
prove Theorem 2.

Theorem 2 Let p 2 N be given, and let n = p(15p − 9). Then every em-
bedding of Kn in R3 contains a 2-component link Lp [ Jp such that for some
orientation of Lp [ Jp , we have lk(Lp; Jp) � p.

Proof Suppose that for every oriented link Lp [ Jp contained in Kn we have
lk(Lp; Jp) < p.

Let G1 , : : : , Gp be p disjoint copies of K15p−9 which are contained in Kn .
For each i = 1, : : : , p, let Hi be a subgraph of Gi containing all 15p − 9
vertices of Gi such that, as a topological space, Hi is homeomorphic to K6 ,
yet between every pair of vertices which have valence 5 in Hi there is a path
in Hi containing p − 1 vertices which are each of valence 2 in Hi . Since K6

contains 15 edges and 15(p− 1) + 6 = 15p− 9, there is such a subgraph Hi in
K15p−9 . Now by [CG], each Hi contains a link Xi [ Yi such that with some
orientation we have lk(Xi; Yi) � 1 and Xi and Yi each contain 3 vertices with
valence 5 and 3(p − 1) vertices with valence 2 in Hi . Thus Xi and Yi each
contain a total of 3p vertices.

We will prove by induction that for every m = 1, : : : , p, the Km(15p−9) , which
has all of its vertices in

Sm
i=1Gi , contains a link Lm [ Jm such that, with

some orientation, lk(Lm; Jm) = pm � m and Lm and Jm each have at least
3p vertices. We saw above that this is true for m = 1. Assume that it’s
true for m. Thus lk(Lm; Jm) = pm , and by our initial assumption pm < p.
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Also Gm+1 is disjoint from Km(15p−9) and contains a pair of simple closed
curves Xm+1 and Ym+1 each with 3p vertices such that lk(Xm+1; Ym+1) � 1.
Thus the disjoint simple closed curves Lm , Jm , Xm+1 , and Ym+1 each contain
at least 3p vertices and 3p > pm since p > pm . Thus by Lemma 2, the
K(m+1)(15p−9) , which has all of its vertices in

Sm+1
i=1 Gi , contains simple closed

curves Lm+1 , Zm+1 and Wm+1 each with at least 3p vertices such that, for
some orientation of Lm+1 [ Zm+1 [Wm+1 , we have lk(Lm+1; Zm+1) = qm � 1
and lk(Lm+1;Wm+1) = rm � pm � m. By assumption qm < p and rm < p,
so qm + rm < 3p. Thus we can apply Lemma 1 to obtain a simple closed curve
Jm+1 which is contained in K(m+1)(15p−9) such that, with some orientation,
lk(Lm+1; Jm+1) � qm + rm � 1 + m and Jm+1 has at least 6p vertices. Thus
for all m = 1, : : : , p, the Km(15p−9) , which has all of its vertices in

Sm
i=1Gi ,

contains a link Lm[Jm such that, with some orientation, lk(Lm; Jm) � m and
Lm and Jm each have at least 3p vertices. It follows that Kp(15p−9) contains
a link Lp [ Jp such that, with some orientation, lk(Lp; Jp) � p. However this
contradicts our assumption that for every oriented link Lp[Jp contained in Kn

we have lk(Lp; Jp) < p. Hence we must, in fact, have a 2-component link Lp[Jp
in Kn such that for some orientation of the link we have lk(Lp; Jp) � p.

We now observe as follows that for any given p 2 N, it is not possible to have
an n 2 N, such that every embedding of Kn contains a 2-component link with
linking number equal to precisely p. First recall that the linking number of
any oriented 2-component link is equal to one half of the sum of +1 for every
positive crossing and −1 for every negative crossing. We illustrate these two
types of crossings in Figure 2.

Positive crossing Negative crossing

Figure 2: Positive and negative crossings

Let n 2 N be �xed and let Kn be embedded in R3 . We shall �nd a (possibly
di�erent) embedding of Kn in R3 which contains no 2-component link L1 [L2

with lk(L1; L2) = p. Let q = maxfjlk(Li; Lj)jg taken over all disjoint pairs of
simple closed curves Li and Lj , contained in Kn . Suppose there is some link
L1 [ L2 in Kn such that for some orientation, lk(L1; L2) = p. Let e be an
edge in L1 and let f be an edge in L2 . We create a new embedding of Kn by
adding 2p + 2q + 2 half twists between the edges e and f without changing
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anything else about the embedding. We call this new embedding K 0n and this
new pair of edges e0 and f 0 . Now for any pair of disjoint oriented simple closed
curves Li and Lj in Kn , there is a corresponding pair of disjoint oriented
simple closed curves L0i and L0j in K 0n . Furthermore, L0i and L0j contain e0 and
f 0 respectively if and only if Li and Lj contain e and f respectively. Now
suppose that one of L0i and L0j contains e0 and the other contains f 0 . Then
lk(L0i; L

0
j) = lk(Li; Lj) � (p + q + 1). Since lk(Li; Lj) � −q we know that

lk(Li; Lj) + (p + q + 1) � p + 1 > 0, so jlk(Li; Lj) + (p + q + 1)j � p + 1.
Since lk(Li; Lj) � q we know that lk(Li; Lj) − (p + q + 1) � −p − 1 < 0, so
jlk(Li; Lj)− (p+ q+ 1)j � p+ 1. Thus jlk(L0i; L

0
j)j = jlk(Li; Lj)� (p+ q+ 1)j �

p+ 1.

On the other hand, for any pair L0i and L0j which do not contain e0 and f 0 ,
then lk(L0i; L

0
j) = lk(Li; Lj). It follows that K 0n contains fewer links which have

linking number equal to p than Kn did. If we repeat this process enough times,
we will eventually have an embedding of Kn which contains no links that have
linking number equal to p.

3 Intrinsic Knotting

In order to consider intrinsic knotting of complete graphs, we shall make use
of the pseudo-graph D4 (illustrated in Figure 3) in a similar manner to that of
[TY] and [Fo].

e1

e0

c0

c1

b1 b0 d0 d1

Figure 3: The pseudo-graph G4

A Hamiltonian cycle in a graph or pseudo-graph G is a simple closed curve in
G which contains every vertex of G. Each Hamiltonian cycle of D4 has the
form bicjdkel where i, j , k , l 2 f0; 1g. For each such cycle we de�ne

"(bicjdkel) =

(
+1 if i+ j + k + l is even
−1 if i+ j + k + l is odd

Algebraic & Geometric Topology, Volume 2 (2002)



Intrinsic knotting and linking of complete graphs 379

Let Γ denote the set of all Hamiltonian cycles in D4 . Recall that if γ is a simple
closed curve in R3 , then a2(γ) denotes the second coe�cient of the Conway
polynomial of γ . For any embedding of D4 in R3 we de�ne

� = j
X
γ2Γ

"(γ)a2(γ)j

Let B , C , D , and E denote the simple closed curves b0 [ b1 , c0 [ c1 , d0 [ d1 ,
and e0 [ e1 respectively. It is shown in [TY] that, for a given embedding of D4

in R3 , we have the equation

� = jlk(E;C)lk(B;D)j (2)

Equation (2) enables us to relate knotting and linking in an embedded graph.
We use this equation to prove Theorem 3.

Theorem 3 Let m 2 N be given, let p denote an integer such that p � 4
p
m,

and let n = p(15p − 9). Then every embedding of K2n in R3 contains a knot
Q with ja2(Q)j � m.

Proof Let K2n be embedded in R3 . Let G1 and G2 denote two disjoint Kn ’s
which are contained in K2n . By Theorem 2, each Gi contains a link Xi [ Yi
such that, for some orientation of Xi [ Yi , we have lk(Xi; Yi) � p � 4

p
m.

For i = 1 and i = 2, let ui and vi be distinct vertices on Xi , and let zi
and wi be distinct vertices on Yi . Consider the embedded subgraph G of K2n

consisting of X1 [ Y1 [X2 [ Y2 together with the edges v1u2 , w1v2 , z1w2 , and
u1z2 . Figure 4 illustrates the abstract graph G, with all of the other vertices
omitted.

X1

u1

v1

z2

u2

Y2

X2

w2

v2

z1

w1

Y1

Figure 4: The graph G
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From the embedded graph G, we obtain an embedding of the pseudo-graph D4

by omitting all vertices of valence 2 and collapsing the edges v1u2 , w1v2 , z1w2 ,
and u1z2 . Now by equation (2) we have � = jlk(X1; Y1)lk(X2; Y2)j � 16m.
Thus

P
γ2Γ ja2(γ)j � j

P
γ2Γ "(γ)a2(γ)j � 16m. However D4 has precisely 16

Hamiltonian cycles. Thus there is some γ0 2 Γ such that ja2(γ0)j � m. Now
observe that there is a simple closed Q in K2n such that γ0 is obtained from
Q by collapsing precisely the edges v1u2 , w1v2 , z1w2 , and u1z2 . Thus Q has
the same knot type as γ0 and hence ja2(Q)j � m.

We can see as follows that for a given m 2 N there is no n 2 N such that every
embedding of Kn contains a knot Q with ja2(Q)j = m. First observe that if Q
is any knot and R is a right handed trefoil knot, then it follows from equation (1)
in the introduction that a2(Q#R) = a2(Q)+1. Let m 2 N and n 2 N be �xed,
and let Kn be embedded in R3 . Consider all simple closed curves Qi which are
contained in Kn , and let q = minfa2(Qi); 0g � 0. We modify the embedding of
Kn by adding m− q � m right handed trefoil knots to every edge within a ball
which does not intersect the graph elsewhere. We call this modi�ed embedding
K 0n . Now for each simple closed curve Q0i in K 0n there is a corresponding simple
closed curve Qi in Kn . Since every simple closed curve in K 0n contains at least
3 edges, each Q0i is a connected sum which has at least 3(m − q) more right-
handed trefoil knots as summands than Qi had. Thus for every simple closed
curve Q0i in K 0n , we have a2(Q0i) � a2(Qi) + 3(m− q) � 3m− 2q � 3m. Thus
K 0n contains no knot Q0 such that ja2(Q0)j = m.
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