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Abstract

We show that all closed flat n-manifolds are di�eomorphic to a cusp cross-
section in a �nite volume hyperbolic n+ 1-orbifold.
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1 Introduction

By a flat n-manifold (resp. flat n-orbifold) we mean a manifold (resp. orbifold)
En=Γ where En is Euclidean n-space and Γ a discrete, cocompact torsion-free
subgroup of Isom(En) (resp. Γ has elements of �nite order). In [7], Ham-
rick and Royster resolved a longstanding conjecture by showing that every flat
n-manifold bounds an (n + 1)-dimensional manifold, in the sense that each
di�eomorphism class has a representative that bounds.

Flat manifolds and orbifolds are connected with hyperbolic orbifolds via the
structure of the cusp ends of �nite volume hyperbolic orbifolds|if Mn+1 is a
non-compact �nite volume hyperbolic orbifold, then by a standard analysis of
the thin parts, a cusp cross-section is a flat n-orbifold (see below and [14]).
In the early eighties, motivated by this and work of Gromov [6], Farrell and
Zdravkovska [5] posed the following geometric version:

Question Does the di�eomorphism class of every flat n-manifold have a rep-
resentative W which arises as the cusp cross-section of a �nite volume 1-cusped
hyperbolic (n+ 1)-manifold?

We note that it makes sense to ask only for bounding up to di�eomorphism
type, since it is a well-known consequence of Mostow Rigidity that there are
algebraic restrictions on the isometry type of the flat n-manifolds that can arise
as cusp cross sections of �nite volume hyperbolic (n+ 1)-manifolds.
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In this generality, the question has a positive answer in dimension 2, that is, for
the torus and Klein bottle, but as is shown in [10] is false in dimension 3 (and
indeed in all dimensions 4k − 1 � 3). On the other hand, since �nite volume,
non-compact hyperbolic manifolds exist in all dimensions (see x6 for example),
this together with the fact that maximal abelian subgroups are separable (see
below and [9]) can be used to deduce the n-torus is a cusp cross section of a
hyperbolic manifold with possibly many cusps.

In this paper we shall show:

Theorem 1.1 For every n � 2, the di�eomorphism class of every flat n-
manifold has a representative W which arises as some cusp cross-section of a
�nite volume cusped hyperbolic (n+ 1)-orbifold.

As already remarked, much more is known in dimension 2, and we only include
this since the argument also works there. In dimension 3, [11] proves a little
more, namely that every flat 3-manifold is a cusp cross-section of a hyperbolic
4-manifold, but even there, the number of cusps is not known to be one. Also
in dimension 3, in [13], it is shown by an ad hoc argument that of the 10
di�eomorphism types of flat 3-manifolds, 7 have representatives that arise as
a cusp cross-section in some 5 cusped hyperbolic manifold related to gluings of
the ideal 24-cell in H4 .

The proof of Theorem 1.1 uses arithmetic methods, together with some extra
control one can arrange to make a separability argument. The main ingredient
in the proof is the following (see x2 for de�nitions and notation):

Theorem 1.2 Let Γ be the fundamental group of a flat n-manifold. Then
there is a quadratic form qn+2 de�ned over Q, of signature (n+ 1; 1) for which
Γ embeds as a subgroup of O0(qn+2; Z).

The group O0(qn+2; Z) is arithmetic, and hence of �nite co-volume acting on
Hn+1 . The proof of Theorem 1.1 is then completed by using a subgroup sepa-
rability argument to pass to a subgroup of �nite index in O0(qn+2; Z) for which
the group Γ is a maximal peripheral subgroup.

As with [11], we cannot guarantee 1-cusped examples, and at present, we have
been unable to pass to manifolds, even assuming separability of geometrically
�nite subgroups.

It appears that the question in its full generality is much harder to approach, for
example, it appears be unknown, whether, for n � 4, there even exist 1-cusped
hyperbolic n-manifolds of �nite volume. As far as the authors are aware, this
is known only in dimensions 2 and 3.
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2 Preliminaries.

2.1 Quadratic forms

We need to recall some standard facts about quadratic forms and orthogonal
groups of such forms; [8] is a standard reference.

If f is a quadratic form in n+1 variables with coe�cients in K and associated
symmetric matrix F , let

O(f) = fX 2 GL(n + 1;C) j XtFX = Fg
be the Orthogonal group of f , and

SO(f) = O(f) \ SL(n+ 1;C);

the Special Orthogonal group of f . These are algebraic groups de�ned over K .
If L is a subring of C we denote the set of L-points of these groups by O(f ;L)
(resp. SO(f ;L)).

De�nition. Two n-dimensional quadratic forms f and q de�ned over a �eld
K (with associated symmetric matrices F and Q) are equivalent over K if
there exists P 2 GL(n;K) with P tFP = Q.

If K � R is a number �eld, and RK its ring of integers, then SO(f ;RK) is
an arithmetic subgroup of SO(f ; R), [3] or [2]. In particular SO(f ;RK) has
�nite co-volume acting on an associated symmetric space. The following is
well-known and proved in [1] for example.

Lemma 2.1 If f and q are equivalent over K then:

� SO(f ; R) is conjugate to SO(q; R) and SO(f ;K) is conjugate to
SO(q;K).

� SO(f ;RK) is conjugate to a subgroup of SO(q;K) commensurable with
SO(q;RK).

2.2 Crystallographic groups and hyperbolic orbifolds

We record some facts about crystallographic and Bieberbach groups that we will
need, see [4] for a comprehensive discussion of these groups, and [14] Theorem
4.2.2 for the theorem stated below.

An n-dimensional crystallographic group is a cocompact discrete group of
isometries of En . When Γ is torsion-free it is called a Bieberbach group. By

Algebraic & Geometric Topology, Volume 2 (2002)



288 D.D. Long and A.W. Reid

Bieberbach’s Third Theorem (see [4]), the number of n-dimensional crystallo-
graphic groups up to a�ne equivalence is �nite. What we require is summarized
in the following from [14] page 222:

Theorem 2.2 An n-dimensional crystallographic group Γ contains a normal
subgroup of �nite index consisting of translations, that is free abelian of rank
n. The maximal such subgroup is characterized as the unique maximal abelian
subgroup of �nite index in Γ.

Theorem 2.2 implies that associated to an n-dimensional crystallographic group
Γ is a �nite group �(Γ), the holonomy group, and an extension:

1 −! Zn −! Γ −! �(Γ) −! 1:

When Γ is a Bieberbach group we get a free action on En , by rigid motions,
that is for all γ 2 Γ, and v 2 En ,

v ! �(γ)v + tγ ;

for some tγ 2 En (see [4] for details).

2.2.1

We refer the reader to [12] or [14] for further details on what is contained in
the next two subsections.

Equip Rn+1 with the quadratic form fn = h−1; 1 : : : ; 1; 1i of signature (n; 1).
The connected component of the identity in O(fn;R) will be denoted O0(fn;R).
This group preserves the upper sheet of the hyperboloid fn(x) = −1 but con-
tains reflections so reverses orientation. We identify O0(fn; R) with Isom(Hn).
Passing to the connected component of the identity in SO(fn; R), denoted
SO0(fn; R) (which has index 4 in O(fn; R)), gives a group which may be
identi�ed with Isom+(Hn); it preserves the upper sheet of the hyperboloid
fn(x) = −1 and the orientation. Given a (discrete) subgroup � of O(n; 1; R),
� \ SO0(n; 1; R) has index � 4 in Γ.

2.2.2

An element of O0(fn; R) is parabolic (resp. elliptic) if it has a unique �xed
point which lies on Sn−1

1 (resp. has a �xed point in Hn). Given a non-compact
hyperbolic n-orbifold Q = Hn=� of �nite volume, and C a cusp cross-section
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of Q, then there is a subgroup �C < � consisting of parabolic and elliptic
elements having an invariant horosphere H such that H=�C = C . The group
�C is a crystallographic group. This group is called a maximal peripheral
subgroup of �.

In terms of the model above, an element is parabolic if and only if it is not
elliptic and leaves invariant a unique light-like vector v . Furthermore, in the
context of � and �C above, all elements of �C will preserve this unique light-
like vector. We summarize what we need.

Lemma 2.3 Let Q = Hn+1=� be a non-compact �nite volume hyperbolic
orbifold. �C is a maximal peripheral subgroup of � if and only if �C is the
maximal subgroup of � leaving the light-like vector v invariant. Furthermore
when �C is maximal, by choice of a horosphere H , H=�C

�= C is an embedded
cusp cross-section of Q.

2.2.3

We record the following for convenience concerning arithmetic subgroups of
Isom(Hn). For more details, see [3], [2] and [16].

Let f be a diagonal quadratic form with rational coe�cients and signature
(n; 1). Thus there is a P 2 GL(n + 1;R) such that P tFP = Fn , and so the
group PO0(f ; Z)P−1 de�nes a discrete arithmetic subgroup of Isom(Hn). The
theory of arithmetic groups then gives,

Theorem 2.4 In the notation above, the groups PO0(f ; Z)P−1 are �nite co-
volume subgroups of Isom(Hn).

In what follows, we will suppress the conjugation by P . A group O0(f ; Z) (and
hence the conjugate in Isom(Hn)) is cocompact if and only if the form f does
not represent 0 non-trivially with values in Q, see [3]. Whenever n � 4, the
arithmetic groups constructed above are non-cocompact, since it is well known
every inde�nite quadratic form over Q in at least 5 variables represents 0 non-
trivially, see [8]. In fact up to commensurability, all non-cocompact arithmetic
subgroups of O0(fn; R) arise from this construction (see [16]).

2.3 Some technical lemmas

In this section we gather together a collection of well-known results on sep-
arability properties of groups that will be used to pass from Theorem 1.2 to
Theorem 1.1.
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Recall that a subgroup H of a group G is separable in G if, given any g 2 GnH ,
there exists a subgroup K < G of �nite index with H < K and g =2 K . G is
called subgroup separable (or LERF) if all �nitely generated subgroups of G are
separable in G. The pro�nite topology on a group G is de�ned by proclaiming
all �nite index subgroups of G to be a basis of open neighbourhoods of the
identity. Since open subgroups are closed in the pro�nite topology, the following
reformulates separability:

Lemma 2.5 Let G be a group and H < G is a subgroup. G is H -subgroup
separable if and only if H is closed in the pro�nite topology on G.

Lemma 2.6 Let G be a group and H < K < G. Assume that H is separable
in G and that [K : H] <1. Then K is separable in G.

Proof By Lemma 2.5, H is closed in the pro�nite topology on G. Standard
properties of topological groups imply that any coset gH of H in G is therefore
a closed subset. Since [K : H] < 1, K is a �nite union of closed sets, hence
closed, and therefore separable in G.

The following is also well-known (see [9]):

Lemma 2.7 Let G be a residually �nite group, and A a maximal abelian
subgroup. Then A is separable in G.

3 Proof of Theorems 1.1 and 1.2

This section is devoted to proving theorems 1.1 and 1.2. We prove the latter
�rst, which we restate for the reader’s convenience:

Theorem 1.2 Let Γ be the fundamental group of a flat n-manifold. Then
there is a quadratic form qn+2 de�ned over Q, of signature (n+ 1; 1) for which
Γ embeds as a subgroup of O0(qn+2; Z).

Before embarking on the proof we remark that the �rst part of the proof can be
replaced by the argument in the proof of Bieberbach’s third theorem giving an
integral representation into GL(n + 1;Z) of a Bieberbach group. However, we
will use some additional features of the construction given below in completing
the proof of Theorem 1.1.

Algebraic & Geometric Topology, Volume 2 (2002)



All flat manifolds are cusps of hyperbolic orbifolds 291

Proof of Theorem 1.2 Suppose that Γ is the fundamental group of a flat
n-manifold, so as discussed in x2.2, we have a free action of Γ on En by rigid
motions. Thus, if g 2 Γ, then g acts as

v ! �(g)v + tg:

and the assignment
g ! �(g)

is a homomorphism of Γ to its holonomy group �(Γ), with kernel the maximal
translation subgroup of Γ.

Suppose that �1; ::::; �n generate the maximal normal free abelian Zn in G,
where �i acts as translation by mi , where we declare that this is the vector
mi = (0; :::; 1; :::; 0), one in i− th place. The group Γ acts by conjugacy on the
subgroup h�1; ::::; �ni and a calculation reveals that g�ig−1 is the translation
given by

v ! v + �(g)mi:

The normality of the translation subgroup shows that

g�ig
−1 = �

ai;1(g)
1 ::::::�

ai;k(g)
n

for some collection of integers fai;j(g)g. Equating these two statements gives a
�nite integral representation of G given by

�(g)mi = �jai;j(g)mj

We now construct an integral linear representation of Γ, as follows. Choose
a presentation for the group Γ using generators g1; :::::; gp and with relations
wt(g1; :::; gp) = I , and add all relators which say wj(g1; :::; gp) = �j for each
1 � j � n. (These ensure that the chosen mi ’s don’t change.) Each gi acts as

v ! �(gi)v + ti;

so that expanding the equations coming from the relators, we get a collection
of equations for the ti ’s with rational coe�cients which have some solution (for
example, that coming from the identity representation that we are given for Γ
as a Bieberbach group).

It follows that there are rational solutions to these equations and we claim that
any such solution gives a faithful and rational representation of G. Pick any ra-
tional solution and regard this as a representation � : Γ! �(Γ). The conditions
imposed by the second batch of equations guarantee that the restriction of �
to the translation subgroup of Γ is actually the identity homomorphism. Since
the translation subgroup is isomorphic to Zn and this is Hop�an, it follows
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that ker(�) avoids the translation subgroup of �nite index and hence ker(�) is
trivial, since Γ is torsion free. This shows that � is an isomorphism as required.

It follows that there is a rational solution for the ti ’s in terms of the mi ’s.
Convert the a�ne representation on En to a rational linear representation on
En+1 by

��(g) =

 
�(g) j tg

0 j 1

!
:

This is a faithful rational linear representation of Γ, which comes from coning
the given action of Γ by rigid motions in the hyperplane en+1 = 1 to the origin
in En+1 . By conjugating the representation, we may rescale the vector en+1

and thus arrange that the representation �� is actually by integral matrices.

It is slightly more convenient at this stage to de�ne a new faithful integral
representation by setting

�(g) = (��(g)T )−1 =

 
�(g−1)T j 0

−�(g−1)(tg)T j 1

!
;

where AT denotes transpose. We can then extend this representation to En+2

by mapping g to

�̂(g) =

 
�(g) j vg

0 j 1

!
where the column vector vg is to be determined.

Now let h; i be any �T invariant positive de�nite inner product on the Z-module
h�1; ::::; �ni; such an inner product exists by taking a random inner product and
forming the � -average. Let D be the symmetric rational matrix associated to
this form in the fmig basis. Extend this form to En+2 by summing on a
subspace H2 , which in the language of quadratic forms is a hyperbolic plane.
More precisely, we let H2 denote the 2-dimensional form 2XY , with associated

symmetric matrix
�

0 1
1 0

�
(see [8] Chapter 1). The form D � H2 now has

signature (n+ 1; 1).

Denoting vectors lying in En by w and the last two dimensions by v1 and v2 ,
it is a simple matter of linear algebra to show that vg = (Wg; �g) 2 En � hv1i
may be chosen so that each �̂(g) is an isometry of the form D �H2 .

The linear algebra suggests that the matrices �̂(g) may be nonintegral in the
last column, since the initial solution vectors vg need only be rational. However,
conjugating by a matrix of the form 

I j 0
0 j K

!
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we may �nd a new collection of matrices which are the same save in the last
column, and which has vg replaced by K:vg . In particular, for suitable K we
may arrange that the conjugated representation is integral.

After this conjugation, the new representation now leaves invariant a di�erent
form, but this new form is rationally equivalent to D � H2 ; in particular, it
continues to have signature (n+ 1; 1).

Claim With this choice, we get a faithful integral representation of the group
Γ.

Proof We need only show that the relations in Γ hold. Faithfulness will follow,
because if a product of these matrices is the identity, then it must at least be the
identity in the n + 1 representation which is already a faithful representation
of Γ.

We prove the claim by showing that any isometry, γ say, which is the identity
on the upper left n+ 1� n+ 1 block is in fact the identity.

Note that by construction, every γ 2 Γ stabilizes v1 .

Pick a random w 2 En . Then 0 = hw; v2i = hγw; γv2i = hw;w0 + �v1 + v2i =
hw;w0i. This holds for all w , so that w0 = 0.

Also 0 = hv2; v2i = hγv2; γv2i = h�v1+v2; �v1+v2i = 2� so that � = 0, implying
γv2 = v2 . as required.

This completes the proof of theorem 1.2.

Remark Note that the construction exhibits Γ explicitly as a subgroup of the
stabiliser of the lightlike vector v1 .

Proof of Theorem 1.1 To complete the proof of Theorem 1.1 we proceed
as follows. Let qn+2 be the form constructed above and consider O0(qn+2; Z).
As noted in the Remark above, the construction yields Γ as a subgroup of the
stabiliser in O0(qn+2; Z) of the light-like vector v1 , however the proof provides
no control over whether Γ is actually equal to Stab(v1). To achieve this, we
show that the subgroup Γ is separable in O0(qn+2; Z) and then the theorem
follows by a standard separability argument.

To this end, let C be the maximal peripheral subgroup of O0(qn+2; Z) �xing
v1 , so that Γ < C < O0(qk+2; Z), and C is a crystallographic group. We recall
that by Theorem 2.2, C contains a translational subgroup T � which is free
abelian of rank n, and is the maximal abelian subgroup of C .
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We begin by observing that our construction of the group Γ began with a trans-
lational subgroup which contained translation by 1 in each of the coordinate
directions, so that after the two dilation conjugacies which convert rational to
integral, we see that for some integer pi1, the maximal translational subgroup
T � of Stab(v1) � O0(qn+2; Z) contains the group Tp consisting of translations
by p in each of the coordinate directions of the �rst n+ 1 coordinates.

We claim that Tp is separable in O0(qn+2; Z). The reason is this: Firstly, any
element of O0(qn+2; Z) which lies outside T � can be separated from Tp since
in fact it can be separated from T � by Lemma 2.7.

Secondly, we claim that any element of T � − Tp may be separated from Tp .
This involves a few cases, which we now sketch.

In the �rst place, we observe that all the elements of γ 2 T � have the �rst n+1
entries of its last row being zero, since hγ(w); v1i = hw; γ−1(v1)i = hw; v1i = 0.

Moreover, if we look at the upper left n� n block of any element of Tp , this is
constructed to be the identity matrix and if the element γ we wish to separate
does not have this property then we may separate by choosing a random prime
q not dividing some such entry and use the restriction of the homomorphism
SL(n+ 2;Z)! SL(n+ 2;Z=qZ) to the integral subgroup O0(qn+2; Z).

It follows that it remains to separate an element γ 2 T � − Tp which is the
identity matrix in the �rst n + 1 columns save for the �rst n entries in the
n + 1-st row. It is these entries which contribute to the translational nature
of the elements of Tp . However, recall that we have proved that any isometry
of h; i which is the identity on the upper left n + 1 � n + 1 block must in fact
be the identity matrix. It follows that in the matrix γ these entries cannot all
be divisible by p (else the upper left n+ 1� n+ 1 block is identical with that
for some matrix of Tp and we deduce that γ 2 Tp ) so that we may use the
reduction map SL(n+ 2;Z)! SL(n+ 2;Z=pZ) to separate γ in this case.

We note that this argument can actually be used to show a little more, namely
that for any integer r , the subgroups Trp of Tp are separable in O0(qn+2; Z).

The separability of Γ may now be deduced. For if we let TΓ be the maximal
abelian subgroup of Γ, then TΓ \ Tp is a subgroup of �nite index in Tp and it
follows that there is an integer r for which Trp � TΓ\Tp � Γ. The separability
of Γ follows from Lemma 2.6. This completes the proof of theorem 1.1.

Remark The number of cusps for the groups O0(qn+2; Z) can be greater than
one, even for simple examples. For example, the groups O0(fn; Z) have 1 cusp
for 2 � n � 8, but O0(f9; Z) has 2 cusps. This can be seen from [15] and [16]
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which describes these unit groups as groups generated by reflections in certain
ideal simplices in Hn . The number of cusps being easy to read o� from the
Coxeter diagrams.

4 Example

We �nish o� by giving an example of the construction as an aid to the proof
of Theorem 1.2. We shall take the Hantsche-Wendt manifold, which arises as
the 3-fold cyclic branched cover of the �gure-eight knot. Its fundamental group
is therefore a Bieberbach group in dimension 3. Representing matrices are
provided on pp. 6-7 of [4] which in our notation are:

��(a) =

0BB@
−1 0 0 1=2
0 −1 0 1=2
0 0 1 1=2
0 0 0 1

1CCA and ��(b) =

0BB@
1 0 0 1=2
0 −1 0 0
0 0 −1 0
0 0 0 1

1CCA
We conjugate to clear fractions and form the representation � and hence �̂. In
this case an invariant form for the �nite holonomy is D = x2 +y2 +z2 and when
we solve the equations for the group to be an isometry for the form D�H2 we
obtain:

�̂(a) =

0BBBBB@
−1 0 0 0 1
0 −1 0 0 1
0 0 1 0 1
1 1 −1 1 −3

2
0 0 0 0 1

1CCCCCA and �̂(b) =

0BBBBB@
1 0 0 0 1
0 −1 0 0 0
0 0 −1 0 0
−1 0 0 1 −1

2
0 0 0 0 1

1CCCCCA
Letting K = 2, and conjugating, gives integral matrices,

�̂(a) =

0BBBBB@
−1 0 0 0 2
0 −1 0 0 2
0 0 1 0 2
1 1 −1 1 −3
0 0 0 0 1

1CCCCCA and �̂(b) =

0BBBBB@
1 0 0 0 2
0 −1 0 0 0
0 0 −1 0 0
−1 0 0 1 −1
0 0 0 0 1

1CCCCCA
preserving the rationally equivalent form x2 + y2 + z2 + 4wt.

Note that the above form is equivalent over Q to f4 = x2 + y2 + z2 +w2 − t2 .
In [13] the authors obtain the Hantsche-Wendt manifold as a cusp cross-section
of a hyperbolic 4-manifold arising from a torsion-free subgroup in O0(f4; Z).

Acknowledgements The �rst author was partially supported by the N.S.F,
and the second was partially supported by the N.S.F, the Alfred P. Sloan Foun-
dation and a grant from the Texas Advanced Research Program.

Algebraic & Geometric Topology, Volume 2 (2002)



296 D.D. Long and A.W. Reid

References

[1] I. Agol, D.D. Long and A.W. Reid, The Bianchi groups are separable on
geometrically �nite subgroups, Annals of Math. 153 (2001), pp. 599{621.

[2] A. Borel, Compact Cli�ord-Klein forms of symmetric spaces, Topology 2
(1963), pp. 111 { 122.

[3] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups,
Annals of Math. 75 (1962), 485{535.

[4] L.S. Charlap, Bieberbach Groups and Flat Manifolds, Universitext, Springer-
Verlag (1986).

[5] F.T. Farrell and S. Zdravkovska, Do almost flat manifolds bound, Michigan
J. Math. 30 (1983), pp 199{208.

[6] M.L. Gromov, Almost flat manifolds, J. Di�. Geom. 13 (1978), pp 231{241.
[7] G. Hamrick and D. Royster, Flat Riemannian manifolds are boundaries,

Invent. Math. 66 (1982), pp. 405 {413.
[8] T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin (1973).
[9] D.D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. Lon-

don Math. Soc. 19 (1987), pp. 481{484.
[10] D.D. Long and A.W. Reid, On the geometric boundaries of hyperbolic 4-

manifolds, Geometry and Topology, 4 (2000), pp. 171{178.
[11] B.E. Nimershiem, All flat three-manifolds appear as cusps of hyperbolic four-

manifolds, Topology and Its Appl. 90 (1998), pp. 109-133.
[12] J.G. Ratcli�e, Foundations of Hyperbolic Manifolds, G.T.M. 149, Springer-

Verlag, (1994).
[13] J.G. Ratcli�e and S.T. Tschantz, The volume spectrum of hyperbolic 4-

manifolds, Experimental Math 9 (2000), pp. 101{125.
[14] W.P. Thurston, Three-Dimensional Geometry and Topology, Volume 1,

Princeton University Press (1997).
[15] E.B. Vinberg, On groups of unit elements of certain quadratic forms, Mat.

Sb. 87 (1972) pp. 17{35.
[16] E.B. Vinberg and O.V. Shvartsman, Discrete groups of motions of spaces

of constant curvature, Geometry II, Encyc. Math. Sci. 29, pp 139{248, Springer-
Verlag (1993).

Department of Mathematics, University of California
Santa Barbara, CA 93106, USA
and
Department of Mathematics, University of Texas
Austin, TX 78712, USA

Email: long@math.ucsb.edu, areid@math.utexas.edu

Received: 6 December 2001

Algebraic & Geometric Topology, Volume 2 (2002)


