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Abstract The working mathematician fears complicated words but loves
pictures and diagrams. We thus give a no-fancy-anything picture rich
glimpse into Khovanov’s novel construction of “the categorification of the
Jones polynomial”. For the same low cost we also provide some computa-
tions, including one that shows that Khovanov’s invariant is strictly stronger
than the Jones polynomial and including a table of the values of Khovanov’s
invariant for all prime knots with up to 11 crossings.
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1 Introduction

In the summer of 2001 the author of this note spent a week at Harvard Univer-
sity visiting David Kazhdan and Dylan Thurston. Our hope for the week was
to understand and improve Khovanov’s seminal work on the categorification
of the Jones polynomial [Kh1, Kh2]. We’ve hardly achieved the first goal and
certainly not the second; but we did convince ourselves that there is something
very new and novel in Khovanov’s work both on the deep conceptual level (not
discussed here) and on the shallower surface level. For on the surface level
Khovanov presents invariants of links which contain and generalize the Jones
polynomial but whose construction is like nothing ever seen in knot theory
before. Not being able to really digest it we decided to just chew some, and
then provide our output as a note containing a description of his construction,
complete and consistent and accompanied by computer code and examples but
stripped of all philosophy and of all the linguistic gymnastics that is necessary
for the philosophy but isn’t necessary for the mere purpose of having a working
construction. Such a note may be more accessible than the original papers. It
may lead more people to read Khovanov at the source, and maybe somebody
reading such a note will figure out what the Khovanov invariants really are.
Congratulations! You are reading this note right now.
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338 Dror Bar-Natan

1.1 Executive summary In very brief words, Khovanov’s idea is to replace
the Kauffman bracket (L) of a link projection L by what we call “the Khovanov
bracket” [L], which is a chain complex of graded vector spaces whose graded
Euler characteristic is (L). The Kauffman bracket is defined by the axioms

@) =1; (OL)=(¢+q "N L) ) =(3)—q00).

Likewise, the definition of the Khovanov bracket can be summarized by the
axioms

W=0—2-0 [OL=Ve[] [<]=7(0—[<]%Dpa{1}—0).

Here V is a vector space of graded dimension g + ¢~!, the operator {1} is the
“degree shift by 1” operation, which is the appropriate replacement of “multi-
plication by ¢”, F is the “flatten” operation which takes a double complex to
a single complex by taking direct sums along diagonals, and a key ingredient,
the differential d, is yet to be defined.

The (unnormalized) Jones polynomial is a minor renormalization of the Kauff-
man bracket, J(L) = (—1)"~¢"+ 2"~ (L). The Khovanov invariant H(L) is the
homology of a similar renormalization [L[-n_]{ns — 2n_} of the Khovanov
bracket. The “main theorem” states that the Khovanov invariant is indeed a
link invariant and that its graded Euler characteristic is .J (L). Anything in
H(L) beyond its Euler characteristic appears to be new, and direct computa-
tions show that there really is more in H(L) than in its Euler characteristic.

1.2 Acknowledgements I wish to thank David Kazhdan and Dylan Thurston
for the week at Harvard that led to writing of this note and for their help since
then. I also wish to thank G. Bergman, S. Garoufalidis, J. Hoste, V. Jones,
M. Khovanov, A. Kricker, G. Kuperberg, A. Stoimenow and M. Thistlethwaite
for further assistance, comments and suggestions.

2 The Jones polynomial

All of our links are oriented links in an oriented Euclidean
space. We will present links using their projections to the ; 5
plane as shown in the example on the right. Let L be a X

link projection, let X be the set of crossings of L, let n = ; S
|X|, let us number the elements of X from 1 to n in some \\>
arbitrary way and let us write n = ny +n_ where ny (n_) 6

is the number of right-handed (left-handed) crossings in X. 7+ =4 n- =2
(again, look to the right).
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On Khovanov’s categorification of the Jones polynomial 339

Recall that the Kauffman bracket [Ka] of L is defined by the formulas® () = 1,
(OL) = (¢ + ¢ ){L) and (X) = (X) — ¢((), that the unnormalized Jones
polynomial is defined by J(L) = (—1)"~¢™+~2"— (L), and that the Jones poly-
nomial of L is simply J(L) := J(L)/(q + ¢~'). We name < and )( the 0-
and 1-smoothing of X, respectively. With this naming convention each vertex
a € {0,1}* of the n-dimensional cube {0,1}?* corresponds in a natural way
to a “complete smoothing” S, of L where all the crossings are smoothed and
the result is just a union of planar cycles. To compute the unnormalized Jones
polynomial, we replace each such union S, of (say) k cycles with a term of the
form (—1)"q"(q 4+ ¢~ 1)*, where r is the “height” of a smoothing, the number
of 1-smoothings used in it. We then sum all these terms over all o € {0,1}*
and multiply by the final normalization term, (—1)"-¢"+~2"~. Thus the whole
procedure (in the case of the trefoil knot) can be depicted as in the diagram
below. Notice that in this diagram we have split the summation over the ver-
tices of {0,1}* to a summation over vertices of a given height followed by a
summation over the possible heights. This allows us to factor out the (—1)"
factor and turn the final summation into an alternating summation:

2(71 @(qﬁ-q*l) (HP(a+e™h)?
9

110
+ i+ \

@q-ﬁ-fl)? &jq(tﬁ-q_l) @qz(tﬁ-q_l)2 (HdPa+a™h)?
000 010 O 101 O O 111

N XS

&(wq* D) %2(%11)2
001 Q 011

S

a
/

N\
N\

v v v v
(g+q¢ ") - 3alg+a") + 3Pa+aH)? - Pla+qt)?
'(71)n_qn+72n_ .(q+q—1)—1
—_

a+¢+d ¢ J(@)=¢"+q°— "

—2 2 6
N
q 1 4 (with (n4,n_) = (3,0))

'Our slightly unorthodox conventions follow [Kh1]. At some minor regrading and
renaming cost, we could have used more standard conventions just as well.
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340 Dror Bar-Natan

3 Categorification

3.1 Spaces

Khovanov’s “categorification” idea is to replace polynomials by graded vector
spaces? of the appropriate “graded dimension”, so as to turn the Jones polyno-
mial into a homological object. With the diagram (1) as the starting point the
process is straight forward and essentially unique. Let us start with a brief on
some necessary generalities:

Definition 3.1 Let W = @,, W,, be a graded vector space with homogeneous
components {W,,}. The graded dimension of W is the power series ¢dim W :=
Do @™ dim W, .

Definition 3.2 Let -{l} be the “degree shift” operation on graded vector
spaces. That is, if W = @, W,, is a graded vector space, we set W{l},, :=
Win—1, so that qdim W{l} = ¢! ¢dim W'.

Definition 3.3 Likewise, let -[s] be the “height shift” operation on chain com-

plexes. That is, if C is a chain complex ... — C" 4, C:TH... of (possibly
graded) vector spaces (we call 7 the “height” of a piece C" of that complex),
and if C = CJ[s], then C" = C"® (with all differentials shifted accordingly).

Armed with these three notions, we can proceed with ease. Let L, X', n and n4
be as in the previous section. Let V' be the graded vector space with two basis
elements v+ whose degrees are £1 respectively, so that ¢dim V = ¢g+¢~'. With
every vertex a € {0,1}% of the cube {0,1}* we associate the graded vector
space V(L) := V®*{r}, where k is the number of cycles in the smoothing of L
corresponding to o and 7 is the height || = >, a; of o (so that ¢dim V(L)
is the polynomial that appears at the vertex a in the cube at (1)). We then set
the rth chain group [L]" (for 0 < r < n) to be the direct sum of all the vector
spaces at height r: [L]" := @,.,—|o| Va(L). Finally (for this long paragraph),
we gracefully ignore the fact that [L] is not yet a complex, for we have not yet
endowed it with a differential, and we set C(L) := [L][-n—]{n4+ —2n_}. Thus
the diagram (1) (in the case of the trefoil knot) becomes:

2Everything that we do works just as well (with some linguistic differences) over Z.
In fact, in [Kh1l] Khovanov works over the even more general ground ring Z[c] where
degc=2.
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:
(el + oI + [eP [eP)

[-n_J{ns—2n_}

= @)
[[ ]] (with (nq,n_) = (3,0))

c(@). (2)

The graded Euler characteristic x4(C) of a chain complex C is defined to be the
alternating sum of the graded dimensions of its homology groups, and, if the
degree of the differential d is 0 and all chain groups are finite dimensional, it is
also equal to the alternating sum of the graded dimensions of the chain groups.
A few paragraphs down we will endow C(L) with a degree 0 differential. This
granted and given that the chains of C(L) are already defined, we can state and
prove the following theorem:

Theorem 1 The graded Euler characteristic of C(L) is the unnormalized
Jones polynomial of L:

Xq(C(L)) = J(L).
Proof The theorem is trivial by design; just compare diagrams (1) and (2)

and all the relevant definitions. Thus rather than a proof we comment on the
statement and the construction preceding it: If one wishes our theorem to hold,
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342 Dror Bar-Natan

everything in the construction of diagram (2) is forced, except the height shift
[-n_]. The parity of this shift is determined by the (—1)"- factor in the
definition of .J (L). The given choice of magnitude is dictated within the proof
of Theorem 2. O

3.2 Maps

Next, we wish to turn the sequence of spaces C(L) into a chain complex. Let
us flash the answer upfront, and only then go through the traditional ceremony
of formal declarations:

2(71 @/{1} @ Ve2{2}
C\) 100 d1x0 w 110
3 :

2 N
QO

P
dx00 : 2 : di1x

v e? & V{1} Vve2(2} QQO O V@3{3}
@000 doxo & 010 &) 101 d1a Q O 111

& . XL 8

doox @ ; de11
R
: 001 do.*1 Q 011 .
;1 &d _ € —1 &d
MZ:U(: )t de \.s|z::1( 1)éde |5\Z:2(: )*de
; v v v ; v ;
[]° = o] - [o]? = o]’
= o] ) o), (3)

(with (n4,n_) = (3,0))

This diagram certainly looks threatening, but in fact, it’s quite harmless. Just
hold on tight for about a page! The chain groups [L]" are, as we have already
seen, direct sums of the vector spaces that appear in the vertices of the cube
along the columns above each one of the [L]" spaces. We do the same for the
arrows d” — we turn each edge £ of the cube to map between the vector spaces
at its ends, and then we add up these maps along columns as shown above.
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The edges of the cube {0,1}* can be labeled by sequences in {0,1,x}* with
just one x (so the tail of such an edge is found by setting * — 0 and the head
by setting * — 1). The height |¢| of an edge ¢ is defined to be the height of its
tail, and hence if the maps on the edges are called d¢ (as in the diagram), then
the vertical collapse of the cube to a complex becomes d" := Z|§|:r(_1)§d§'

It remains to explain the signs (—1)¢ and to define the per-edge maps d¢. The
former is easy. To get the differential d to satisfy d o d = 0, it is enough that
all square faces of the cube would anti-commute. But it is easier to arrange the
de¢’s so that these faces would (positively) commute; so we do that and then
sprinkle signs to make the faces anti-commutative. One may verify that this
can be done by multiplying d¢ by (—1) := (—I)EKJ' % where j is the location
of the % in &. In diagram (3) we've indicated the edges ¢ for which (—1)¢ = —1
with little circles at their tails. The reader is welcome to verify that there is an
odd number of such circles around each face of the cube shown.

It remains to find maps d¢ that make the cube commutative (when taken with
no signs) and that are of degree 0 so as not to undermine Theorem 1. The
space V, on each vertex a has as many tensor factors as there are cycles in
the smoothing S,. Thus we put these tensor factors in V,, and cycles in S, in
bijective correspondence once and for all. Now for any edge £, the smoothing at
the tail of ¢ differs from the smoothing at the head of £ by just a little: either
two of the cycles merge into one (see say & = 0x0 above) or one of the cycles
splits in two (see say £ = 1x1 above). So for any £, we set d¢ to be the identity
on the tensor factors corresponding to the cycles that don’t participate, and
then we complete the definition of £ using two linear maps m : V@V — V
and A:V -V ®V as follows:

(QQQCQ)—%V@VQV) m:{v+®v_'_>v— VUt @ Ut vy

V- @Uy —U_ V- Qu_+—0

(4)

(COL00) — (VEVeV) A: {”*H”@”JFU@M
Vo — V- QU_

()

We note that because of the degree shifts in the definition of the V,’s and
because we want the d¢’s to be of degree 0, the maps m and A must be of
degree —1. Also, as there is no canonical order on the cycles in S, (and hence on
the tensor factors of V), m and A must be commutative and co-commutative
respectively. These requirements force the equality m(vy @ v_) = m(v_ ®@ vy)
and force the values of m and A to be as shown above up to scalars.
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Remark 3.4 It is worthwhile to note, though not strictly necessary to the
understanding of this note, that the cube in diagram (3) is related to a certain
(1 + 1)-dimensional topological quantum field theory (TQFT). Indeed, given
any (14 1)-dimensional TQFT one may assign vector spaces to the vertices of
{0,1}* and maps to the edges — on each vertex we have a union of cycles which
is a 1-manifold that gets mapped to a vector space via the TQFT, and on each
edge we can place the obvious 2-dimensional saddle-like cobordism between the
1-manifolds on its ends, and then get a map between vector spaces using the
TQFT. The cube in diagram (3) comes from this construction if one starts from
the TQFT corresponding to the Frobenius algebra defined by V', m, A, the
unit vy and the co-unit € € V* defined by e(vy) = 0, e(v_) = 1. See more
in [Kh1].

Exercise 3.5 Verify that the definitions given in this section agree with the
“executive summary” (Section 1).

3.3 A notational digression

For notational and computational reasons® it is convenient to also label the
edges of L. Our convention is to reserve separate interval of integers for
each component, and then to label the edges within this component in an
ascending order (except for one jump down) — see Figure 3 in Section 4.
Given o € {0,1}¥, we label every cycle in the smoothing S, by the mini-
mal edge that appears in it, and then we label the tensor factor in V, ac-
cordingly. So for example (with L = & labeled as in Figure 3), the big and

small components of Sp11 = would be labeled 1 and 3 respectively, and

thus Vp11 would be Vi @ V3{2}. The indices in the latter space have only
a notational meaning that allows us easier access to its tensor factors. Thus
Vi®Vs =2 VRV, yet the standard basis elements of V] ® V3 have nice standard

names: {vlo3 vlod vlod w13}

With this notation, we can make the cube of Equation (3) a little more explicit.
We denote by A% the map which acts on a tensor product of labeled copies
of V' as the identity on all factors except the one labeled Vi, ;) which gets
mapped by A of Equation (5) to V; ® V;. Likewise m;; denotes the natural
extension by identity maps of m : V; @ V; — Vi All said, the cube in
diagram (3) becomes:

)

3You may skip this section if the previous section was clear enough and you don’t
intend to read the computational Section 4.
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3.4 The main theorem

Claim 3.6 The n-dimensional cube as in Equation (3) (just as well, (6)) is
commutative (for any L, and provided all maps are taken with no signs) and
hence the sequences [L] and C(L) are chain complexes.

Proof A routine verification. D

Let H"(L) denote the rth cohomology of the complex C(L). It is a graded
vector space depending on the link projection L. Let Kh(L) denote the graded
Poincaré polynomial of the complex C(L) in the variable t; i.e., let

Kh(L) := Y _t" qdimH"(L).
(When we wish to emphasize the ground field F, we write Khy(L).)

Theorem 2 (Khovanov [Khl]) The graded dimensions of the homology groups
H"(L) are link invariants, and hence Kh(L), a polynomial in the variables t
and q, is a link invariant that specializes to the unnormalized Jones polynomial
att =—1.
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3.5 Proof of the main theorem

To prove Theorem 2, we need to study the behavior of [L] under the three
Reidemeister moves? (R1): _R « _~ , (R2): 2O < == and (R3):

\ _
~ _\/ - 7 k \\ . In the case of the Kauffman bracket/Jones polynomial,

this is done by reducing the Kauffman bracket of the “complicated side” of each
of these moves using the rules (X) = (<) — ¢ () and (OL) = (¢+ ¢ ')(L) and
then by canceling terms until the “easy side” is reached. (Example: < S > =
() =g ) =(q+qg ) ~)—q( ~ ) =q{ ~)). We do nearly
the same in the case of the Khovanov bracket. We first need to introduce a
“cancellation principle” for chain complexes:

Lemma 3.7 Let C be a chain complex and let C' C C be a sub chain complex.

e If (' is acyclic (has no homology), then it can be “canceled”. That is, in
that case the homology H(C) of C is equal to the homology H(C/C'") of
c/C.

e Likewise, if C/C’ is acyclic then H(C) = H(C').

Proof Both assertions follow easily from the long exact sequence
. — H"(C') — H"(C) — H"(C/C") — H" (") — ...

associated with the short exact sequence 0 — ' — C — C/C" — 0. O

3.5.1 Invariance under (R1).

In computing H( _R_ ) we encounter the complex
c=[R]=([&] ™ [R]1). (7)

(Each of the terms in this complex is itself a complex, coming from a whole
cube of spaces and maps. We implicitly “flatten” such complexes of complexes
to single complexes as in Section 3.2 without further comment). The complex
in Equation (7) has a natural subcomplex

¢ =([&1,, = []a)

“We leave it to the reader to confirm that no further variants of these moves need
to be considered. For example, we check only the “right twist” version of (R1). The
left twist version follows from it and from (R2).
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We need to pause to explain the notation. Recall that [L] is a direct sum over
the smoothings of L of tensor powers of V', with one tensor factor corresponding
to each cycle in any given smoothing. Such tensor powers can be viewed as
spaces of linear combinations of marked smoothings of L, where each cycle

in any smoothing of L is marked by an element of V. For L = _2_ all

smoothings have one special cycle, the one appearing within the icon 2 .

The subscript vy in [[/O\]]mr means “the subspace of [[/O\]] in which the
special cycle is always marked vy ”.

It is easy to check that C’ is indeed a subcomplex of C, and as vy is a unit for
the product m (see (4)), C’ is acyclic. Thus by Lemma 3.7 we are reduced to
studying the quotient complex

/ o
C/C = (HA]]/U+=O — 0)
where the subscript “/v4 = 0” means “mod out (within the tensor factor corre-
sponding to the special cycle) by v = 0”. But V/(v4 = 0) is one dimensional

and generated by v_, and hence apart from a shift in degrees, [[Jo\]] J1s=0

is isomorphic to [[A]] The reader may verify that this shift precisely gets
canceled by the shifts [-n_]{ny —2n_} in the definition of C(L) from [L]. D

3.5.2 Invariance under (R2), first proof.

In computing H( 22X ) we encounter the complex C of Figure 1. This com-
plex has a subcomplex C’ (see Figure 1), which is clearly acyclic. The quotient
complex C/C’ (see Figure 1) has a subcomplex C” (see Figure 1), and the quo-
tient (C/C’)/C" (see Figure 1) is acyclic because modulo vy = 0, the map
A is an isomorphism. Hence using both parts of Lemma 3.7 we find that
H(C) = H(C/C") = H(C"). But up to shifts in degree and height, C" is just
[==C]. Again, these shifts get canceled by the shifts [-n_]{ny —2n_} in
the definition of C(L) from [L]. O

3.5.3 Invariance under (R3), unsuccessful attempt.

For the Kauffman bracket, invariance under (R3) follows from invariance under
(R2). Indeed, assuming relations of the form (OL) = d(L) and (X) = A(X) +
B(() the move (R3) follows from (R2) without imposing any constraints on
A, B and d (beyond those that are necessary for (R2) to hold):

() =408 o) = a(R ) oo( R ) = ()
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[>oC]{1} X [>=C]{2} [>oC], {1} = [>OC]{2}
AT (stgrt) T - T (acgn@ T
Px] @ — [=X]{1 0 — 0
[>oC],,, {1} — 0 0 — 0
AT (rgi{iglle) T - T (ﬁgi/;h) T

P —  [<] o =l

[[DOC]]/v+:0{1} — 0
Figure 1: A picture-only proof of invariance under ( /C’ ) /C”
(R2). The (largely unnecessary) words are in the A (acyclic)
main text. [[ SCC ]] - 0

The case of the Khovanov bracket is unfortunately not as lucky. Invariance
under (R2) does play a key role, but more is needed. Let us see how it works.

If we fully smooth the two sides of (R3), we get the following two cubes of
complexes (to save space we suppress the Khovanov bracket notation [-] and
the degree shifts {-}):

SR Yoo M

\/\: D Gl / r\
\/A/ T % 4 T J k
hat A

\ \

Y A /\

(8)
wxr— H% — —>)fC
/! /
M e

The bottom layers of these two cubes correspond to the partial smoothings

\>_</ and ’>_<\ and are therefore isomorphic. The top layers correspond to

v -
~ and 7 R\ and it is tempting to use (R2) on both to reduce to
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0

A A
N
R
wxr— —Qrfr 7UC— — ?JC
/ / / /!
)

0

¥

But this fails for two reasons. These cubes aren’t isomorphic (their bottom
layers are isomorphic and their top layers are isomorphic, but the maps between
them are different), and the (R2)-style reduction used to get here is invalid, for
in the presence of the bottom layers what would be the analog of C” simply
isn’t a subcomplex. Fortunately, there is a somewhat more complicated proof
of invariance under (R2) that does lead to a correct argument for invariance
under (R3).

3.5.4 Invariance under (R2), second proof.

We start in the same way as in the first proof and reduce to the complex C/C’
which is displayed once again in Figure 2 (except this time we suppress the []
brackets and the degree shift {-} symbols). In C/C’ the vertical arrow A is a
bijection so we can invert it and compose with the horizontal arrow dyy to get
amap 7: D0C,, _og— X . We now let C" be the subcomplex of C/C’
containing all o € DCX  and all pairs of the form (3,73) € 2O0C,,, _o®

=X (see Figure 2). The map A is bijective in C"" and hence C"” is acyclic
and thus it is enough to study (C/C")/C".

What is (C/C")/C"? Well, the freedom in the choice of « kills the lower left
corner of C/C’, and the freedom in the choice of (3 identifies everything in
the upper left corner with some things in the lower right corner (this is the
relation § = 703 appearing in Figure 2; in more detail it is (5,0) = (0,70)
in D0OC,,,_o® X ). What remains is just the arbitrary choice of v in
the lower right corner and hence the complex (C/C")/C" is isomorphic to the
complex C” of Figure 1 and this, as there, is what we wanted to prove. 0O
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plel N p— 0 8 — 0
| | |l ]
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Figure 2: A second proof of in-
variance under (R2). 0 -
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e
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3.5.5 Invariance under (R3).

We can now turn back to the proof of invariance under (R3). Repeat the
definitions of the acyclic subcomplexes C' and C"” as above but within the top
layers of each of the cubes in Equation (8), and then mod out each cube by
its ' and C"” (without changing the homology, by Lemma 3.7). The resulting
cubes are

0

\
B Gjﬁf/m:o

L)
1=T151
0/ T KME\%//{ 0/ TTQ/B::% ) /

B2 € ;7\ oy =0

d1,+01 d2 %01

wxr \Xf U? g ?JC

A A VA Ve

¥ N 5

Now these two complexes really are isomorphic, via the map T that keeps the
bottom layers in place and “transposes” the top layers by mapping the pair
(B1,71) to the pair (2,72). The fact that T is an isomorphism on spaces level
is obvious. To see that T is an isomorphism of complexes we need to know that
it commutes with the edge maps, and only the vertical edges require a proof.
We leave the (easy) proofs that 71 o di .01 = dax01 and dy .0 = T2 0 da 10 as
exercises for our readers. O
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3.6 Some phenomenological conjectures

The following conjectures were formulated in parts by the author and by M. Kho-
vanov and S. Garoufalidis based on computations using the program described
in the next section:

Conjecture 1 For any prime knot L there exists an even integer s = s(L)
and a polynomial KK (L) in t*' and ¢*! with only non-negative coefficients so
that

Kho(L) = ¢ ' (1+¢*+ (1 +tq")KH (L)) (9)
Khp,(L) = ¢ '(1+¢°) (1+ (1 +tg*)KK(L)). (10)

(Fy denotes the field of two elements.)

Conjecture 2 For prime alternating L the integer s(L) is equal to the signa-
ture of L and the polynomial KI (L) contains only powers of tq>.

We have computed Khg(L) for all prime knots with up to 11 crossings and
Khg, (L) for all knots with up to 7 crossings and the results are in complete

agreement with these two conjectures®.

We note that these conjectures imply that for alternating knots KA’ (and hence
Khg and Khy,) are determined by the Jones polynomial. As we shall see in
the next section, this is not true for non-alternating knots.

As a graphical illustration of - T ol elslalalalaal o 11213
Conjectures 1 and 2 the ta- 3 T
ble on the right contains the 1

dimensions of the homology :1)) C=5Y ;’ !
groups Hj,(10100) (the co- 5 5 1 (3+D)

efficients of ¢"¢™ in the in- -7 6|4

variant Kh(1019p)) for all r _'191 7} g >

and m in the relevant range. 13 2| 4

Conjecture 1 is the fact that i? ; 4

if we subtract 1 from two of o T 1

the entries in the column r =
0 (a “pawn move”), the remaining entries are arranged in “knight move” pairs

SExcept that for 11 crossing prime alternating knots only the absolute values of o
and s were compared.
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7| -6 5 4 -3 2 -1 0 1 2 3
m
3 1/1
I 0/1 | 0/6 |2/10|0/4
1 0/2 | 0/13 | 0/36 | 0/59 | 3/60 | 1/30| 0/6

3 0/1 | 0/10 | 0/45 | 0/120 | 0/220 | 0/304 | 0/318 | 5/287 | 2/110| 0/30 | 0/4
5 0/8 | 0/70 | 0/270 | 0/600 | 0/862 | 0/847 | 5/564 | 4/237 | 0/60 | 0/10 | 0/1
-7 | 0/28]0/210 | 0/675 | 0/1200 | 0/1288 | 6/847 | 4/318 | 0/59 | 0/5
-9 | 0/56]0/350 | 0/900 | 0/1200 | 4/862 | 5/304| 0/36 | 0/1
11 | 0/70|0/350 | 0/675 | 4/600 | 6/220 | 0/13
-13 | 0/56 | 0/210 | 2/270 | 4/120 | 0/2
15 | 0/28| 1/70 | 4/45
17| 0/8 | 2/10
19 [ 1/1

Table 1: dim™H],(10100)/ dimC],(10109) for all values of r and m for which
C,(10100) # 0.

of the form with @ > 0. Conjecture 2 is the fact that furthermore

a
all nontrivial entries in the table occur on just two diagonals that cross the

column » =0 at m = 0 £ 1 where 0 = —4 is the signature of 1019g. Thus af-
ter the fix at the r = 0 column, the two nontrivial diagonals are just shifts
of each other and are thus determined by a single list of entries (1 2 4 4
6 54321, in our case). This list of entries is the list of coefficients of
KR (10100) = ™7 + 2070 + 4u™5 4+ 40~ + 6u™3 + 5u=2 4+ 4u~' + 3 + 2u + u?
(with u = tg*).

As an aside we note that typically dim M} (L) is much smaller than dimC] (L),
as illustrated in Table 1. We don’t know why this is so.

A further phenomenological conjecture is presented in [Ga]. This paper’s web
page [1] will follow further phenomenological developments as they will be an-
nounced.

4 And now in computer talk

In computer talk (Mathematica [Wo| dialect) we represent every link projection
by a list of edges numbered 1,...,n with increasing numbers as we go around
each component and by a list crossings presented as symbols X;;; where 4, ...,
are the edges around that crossing, starting from the incoming lower thread and
proceeding counterclockwise (see Figure 3).
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o
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Z~ /1 G
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3 3 1 7

C
Figure 3: The crossing Xjjx, the right handed trefoil knot X1504X5362X3146 and the

2
3
2 8%
1
6
Miller Institute knot (aka 62) X3.10.4.11X0,4,10,5X5,3,62X11,7,12,6X1,9.2.8X7,1,8.12 (We've

used a smaller font and underlining to separate the edge labeling from the vertex
labeling).

w

4.1 A demo run

We first start up Mathematica [Wo] and load our categorification package,
Categorification® (available from [1]):

Mathematica 4.1 for Linux
Copyright 1988-2000 Wolfram Research, Inc.
-- Motif graphics initialized --

In[l]:= << Categorification®
Loading Categorification‘...
Next, we type in the trefoil knot:
In[2]:= L = Link([X[1,5,2,4], X[5,3,6,2], X[3,1,4,6]];
Let us now view the edge 0%1 of the cube of smoothings of the trefoil knot (as
seen in Section 3.3, this edge begins with a single cycle labeled 1 and ends with
two cycles labeled 1 and 3):
In[3]:= {S[L, "001"], S[L, "0x1"], S[L, "011"]}

Out[3]= {cl1], c[1] -> c[11*c[3], c[1]1*c[31}

Next, here’s a basis of the space Vp11 (again, compare with Section 3.3):
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In[4):= V[L, "011"]
Out[d]= {vm[11*vm[3], vm[3]1*vp[1], vm[1]l*vp[3], vp[1l*vp[31}

And here’s a basis of the degree 2 elements of Vij; (remember the shift in
degrees in the definition of V,!):

In[5):= VIL, "111", 2]

Out[5]= {vm[2]*vm[3]*vp[1], vm[1]*vm[3]*vp[2], vm[1]*vm[2]*vp[3]1}

The per-edge map d¢ is a list of simple replacement rules, sometimes replacing
the tensor product of two basis vectors by a single basis vector, as in the case
of dgox = mq2, and sometimes the opposite, as in the case of dp,q = A'3:
Inf6]:= d[L, "00%"]

Out[6]= {vp[1l*vp[2] -> vp[1]l, vm[2]*vp[1] -> vm[1], vm[1]l*vp[2] -> wvm[1],

vm[1]*vm[2] -> O}
In[7]:= d[L, "0%1"]
Out[7]= {vp[1] -> vm[31*vp[1] + vm[11*vp[3], vm[1] -> vm[1]*vm[3]}
Here’s a simple example. Let us compute di. applied to Vigr:

In8]:= VIL, "101"] /. d[L, "1%1"]

Out[8]= {vm[11*vm[2]*vm[3], vm[2]*vm[3]*vp[1],

vm[1]*(vm[3]*vp[2] + vm[2]*vp[3]), vp[1l*(vm[3]*vp[2] + wvm[2]*vp[31)}

And now a more complicated example. First, we compute the degree 0 part of
[@]'. Then we apply d' to it, and then d? to the result. The end result better
be a list of zeros, or else we are in trouble! Notice that each basis vector in
[@]'2 is tagged with a symbol of the form v[...] that indicates the component
of [@]"? to which it belongs.

In[9]:= chains = KhBracket[L, 1, 0]

Out[9]= {v[0, 0, 1I1*vm[1], v[0, 1, Ol*vm[1], v[1, O, Ol*vm[1]}
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In[10]:= boundaries = d[L] [chains]

Out[10]= {v[1, 0, 1]1*vm[1l*vm[2] + v[0, 1, 1]*vm[1]*vm[3],

v[1, 1, 0)*vm[1]*vm[2] - v[0, 1, 1]*vm[1]*vm[3],

-(v[1, 0, 1]*vm[1]*vm[2]) - v[1, 1, OJ*vm[1]*vm[2]}
In[11]:= d[L] [boundaries]
Out[11]= {0, 0, 0}

Because of degree shifts, the degree 3 part of C'(@) is equal to the degree 0
part of [&]!:

In[12]:= cC[L, 1, 3] == KhBracket[L, 1, 0]

Out[12]= True

It seems that 7?(&) is one dimensional, and that the non trivial class in H?(&)
lies in degree 5 (our program defaults to computations over the rational num-
bers if no other modulus is specified):

In[13]:= qgBettilL, 2]

Out[13]= q°5

Here’s Khovanov’s invariant of the right handed trefoil along if its evaluation
at t = —1, the unnormalized Jones polynomial J(&):

In[14]:= kh1 = Kh[L]

Out[l4]= q + g"3 + q"5*t"2 + q~9%t"3
In[15]:= kh1 /. t -> -1

Out[15]= q + "3 + q°5 - @79

We can also compute Khr, (&) and use it to compute J(&) again (we leave it
to the reader to verify Conjecture 1 in the case of L = &):

In[16]:= kh2 = Kh[L, Modulus -> 2]
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Out[l6]= q + q"3 + @ 5*t™2 + q 7*t"2 + q 7T*t"3 + g 9%t"3
In[17]:= kh2 /. t -> -1
Out[l7]= q + "3 + q°5 - @79

The package Links‘ (available from [1]) contains the
definitions of many interesting knot and link projec-
tions including Millett’s 10 crossing hard-to-simplify 4
unknot (shown on the right) and the knots 5; and
10132 (knot numbering as in Rolfsen’s [Ro]):

In[18]:= << Links®
Loading Links‘...

In[19]:= MillettUnknot

Out[19]= Link[X[1, 10, 2, 111, X[9, 2, 10, 3], X[3, 7, 4, 61, X[15, 5, 16, 4],
Xx[5, 17, 6, 161, X[7, 14, 8, 15], X[8, 18, 9, 17],

x[11, 18, 12, 191, X[19, 12, 20, 13], X[13, 20, 14, 11]
In[20]:= Kh[MillettUnknot]
Out20]= q~(-1) + q
In21]:= kh3 = Kh[Knot[5, 11]

Out[21]= q~(-5) + q~(-3) + 1/(q~15%t"5) + 1/(q"11xt~4) + 1/(q"11*%t"3) +

1/(q°7%t"2)

In[22]:= kh4 = Kh([Knot[10, 132]]

Out[22]= q~(-3) + q"(-1) + 1/(q~15%t"7) + 1/(q"11*t"6) + 1/(q"11*t"5) +
1/(q79*t~4) + 1/(q 7*t"4) + 1/(q"9%t~3) + 1/(q"5*t~3) +

2/(q 5%t~2) + 1/(g*t)
In[23]:= (kh3 /. t -> -1) == (kh4 /. t -> -1)

Out[23]= True
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These are excellent news! We have just learned that our program is not confused
by complicated mess, and even better, we have just learned that Khovanov’s
invariant is strictly stronger than the Jones polynomial, for J(51) = J(10132)
whereas Kh(51) # Kh(10132).

Here are two further pieces of good news:

In[24]:= diffl = Together[Kh[Knot[9, 42]] - Kh[Mirror[Knot[9, 42]11]1]
Out[24]= (1 + q 4%t - £°2 + q 4%t"2 - q 4%t"3 + q 6%t"3 + q 8%t"3 - q 4%t 4 +
Q" 10%t™4 - q"6%t"5 - q"8%t"5 + q 10%xt"5 - q 10%t°6 + q 14%t°6 -

q~10%t"7 - q~14%t~8)/(q 7*t"4)
In[25] := diff2 = Expand[q~9*t~5*(Kh[Knot[10, 125]]-Kh[Mirror[Knot[10, 125]111)]

Out[25]= 1 + q 4%t - t°2 + q 4*t"2 - q 4%t"3 + q 6%t"3 + q 8%t"3 - q 4*t 4 +
QT10%t"4 - q 6¥t"5 - 2%q"8*t"5 + 2%q 10%t"5 + q 12¥t"5 - q8¥t"6 +
QT14%t"6 - q 10%t"7 - q 12%t"7 + q 14%t"7 - q 14%t"8 + q 18%t"8 -
qQ 14%t"9 - q~18%t"10

In[26]:= {diff1, diff2} /. t -> -1

Out[26]= {0, 0}

Thus we see that Kh detects the facts that 940 # 942 and 10725 # 10125 whereas

the Jones polynomial doesn’t detect that. See also Section 4.5.

4.2 The program

The program Categorification.m and the data files Data.m and Links.m
demonstrated in this article are available at
http://www.maths.warwick.ac.uk/agt/ftp/aux/agt-2-16/

(with a link from the home page of this paper) and also from the arXiv at at [1].
A complete listing of the package Categorification.m takes up less than 70
lines of code, demonstrating that categorification must be quite simple.
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4.3 KW (L) for prime knots with up to 10 crossings

Conjecture 1 on page 351 introduces an integer s = s(L) and a polynomial
KW (L). By direct computation using our program we verified that these quan-
tities are determined by Khg(L) for all knots with up to 11 crossings. These
quantities easily determine Khg(L) (and also Khp,(L), at least up to knots
with 7 crossings), as in the statement of Conjecture 1.

There are many fewer terms in Kh'(L) as there are in Khg(L) or in Khy, (L) and
thus with the rain forests in our minds, we’ve tabulated s and KA (L) rather
than Khg(L) and/or Khy,(L). To save further space, we’ve underlined negative
numbers (1 := —1), used the notation a], to denote the monomial at"¢™ and
suppressed all “+” signs. Thus KK (77) = (16% + (14% + ﬁ +24-2¢°t + ¢ 2 + 4513

is printed as 15221529211213.

Staring at the tables below it is difficult not to notice that s(L) is often equal to
the signature o = o(L) of L, and that most monomials in most Kk’ (L)'s are of
the form ¢"¢?" for some r. We’ve marked the exceptions to the first observation
by the flag & and the knots where exceptions to the second observation occur
by the flag #. All exceptions occur at non-alternating knots. (And for your
convenience, these are marked by the flag ).

Acknowledgement and Warning. The combinatorial data on which I based
the computations was provided to me by A. Stoimenow (see [St]), who himself
borrowed it from J. Hoste and M. Thistlethwaite [HT], and was translated to
our format by a program written by D. Thurston. The knot pictures below were
generated using R. Scharein’s program KnotPlot [Sc]. The assembly of all this
information involved some further programming and manual work. I hope that
no errors crept through, but until everything is independently verified, I cannot
be sure of that. I feel that perhaps other than orientation issues (some knots
may have been swapped with the mirrors) the data below is reliable. Finally,
note that we number knots as in Rolfsen’s [Ro], except that we have removed
10162 which is equal to 10161 (this is the famed “Perko pair”). Hence Rolfsen’s
10163,... 166 are ours 10162,... 165 -

All data shown here is available in computer readable format at [1, the file
Data.m|.
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2
1326122124151%

87; 2; 2
1%1i1§282§2§121§

8s; 0; 0
1%1%25282523131§

89; 0; O
434201
15152;22282% 14211%

810; 2; 2
1313252023331214

811; 2; 2

812; 0; 0

Nk o; s; flags I Nk o; s; flags
KK (L) KK(L)

313 2 2

g

4y; 0; 0

1315

51; 4 4 52; 2 2
G ottt

61; 0; 0 62; 2 2
15131513 151313131]

63; 0; 0

131213191413

;6 6 @ Ty 2 2
15413015 154130151515
73; 4, 4 @ T4; 2; 2
1315132318, 2313182519,

75; 4 4 76; 2 2
15,1523 15202 g;;%z%% 13,152523151913
773 0; O

13231520231513

81; 0; 0 82; 4 4
13,1515191313 g;ggi%g 13,15, 1525151514
83; 0; 0 84; 2 2
152313192413 <2§§§£> 15152315152313
85; 4; 4 @ 86; 2 2

1315332520311513
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Nk o; s; flags Nk o; s; flags
KK (L) KK(L)
813; 0; 0 814; 2 2
132221293122121¢ 13,23,253233231914
815; 4; 4 816; 2% 2
17527,25,47,253823 13,25353335202413
817; 0; O 81s; 0; O

1328333530332313

1333334549313313

819; 6; 6; OM
131513

820; 0, 0; &
5 4342
1;_&@;18

821; 2 2 ¢

1215015261513

9; 8 8 92; 2 2
1s15l5 g sl 1 I 151
93; 6; 6 94 4; 4

1513182513025 1%

9 o7 16 o5 54132
198274 115270251613

95; 2; 2
2517262519021 1%

96 6; 6
9 18 97 56 95 14532
1116214212310 52614

97; 4 4
9 18 97 66 95 46342
s 176 2142153102526 1%

985 2; 2

99; 6; 6
9 18 97 56 95 64532
1is11631421231025 2614

910; 4; 4
252335352303%2 116

911; 4; 4
1315183333283313015,

912; 2 2
7 16 o5 54636241
1;_41;_22;_03g3g31251815

913; 4; 4
2523334523039, 174156

914; O; 0
30201
152;22383%322%12}1‘;’0

915; 2; 2
2,1
1@2284%34213%33 1?01?2

916; 6; 6
153723433303%22741%

917; 2; 2

918, 4 4
9 18 97 96 45 940352
175 176314312470353621

D e e e v g e

9205 4 4
7 06 o5 ol 35251
1L4 22 3Lo 3545312518 1%
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Nk o; s; flags Nk o; s; flags
K (L) KK (L)
921; 2; 2 922; 2; 2

132,20434333341319,

13153235304} 332314

9237 4 4
9 658 97 96 k5 949352
135216314312510353621

924; 0; 0

925; 2; 2

926; 2; 2
306261
152222484543332§1§0

9o8; 2 2
6 o5 543,21
1LQ 2LO 3§55414§382% li

929; 2 2
5 ~4,3,2,1
1@2@4@4145483% 2421 1%

930; 0; 0

931; 2; 2

932; 2; 2
36261
153333505553432813,

934; 0; 0
5 o4 ,3,2,1
1I_O3§4g616§585%321g

935, 2 2
9 97 16 65 94,352
178374 11527038 1622

9365 4; 4
2.1
131520353333351301%,

937; 0; 0 938; 4, 4
1302528573539441713 1732064744567, 45423%
9395 2; 2 9405 2 2
1323305453434425,15, 13,35, 55607263494313
941; 0; 0 942; 2; 05 O
13,200 35454347392413 1515151}

93;, 4 4 O
17191413131

944; 0; 0; ¢

9455 2 2 ¢

9465 0; 0; <
6 ;4,341
13, 151515

s 2 2% O
1§221L30212223
64290424446

0 &SRR ESPR RS -

9ag; 2 2 O
1325193331324
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I Nk; o; - s; flags I Nk; o; s; flags
KK (L) KK(L)
910 4 4 O
2523235172%
101; 0: 0 102; 6; 6

105  4; 4
3:241 ‘
15151,23213%232415,16,

107; 2; 2 10g; 4, 4
8 47 o6 65 54 ,36241 6 15 04030201
1;_61;_42;_23;_0354532221815 1;_21;_025252;22182513
10g; 2: 2 1010; 0; O

4.35241
15152;22383%332%1%11?0

36201
152;22384% 32332213,15,

1011; 25 2

1012;  2; 2
3,241
15122238454233331%1?2

10143 4

)

4

10463 2; 2
435201 ‘
15153;22484%323%1%11‘?0

1018, 27 2
6 5 04,32 ,1
122E3g4g5g453835131g

10195 25 2
5 0403 ,2,1 :
1LO2§35414§384§2?11§1§

1020; 27 2

8 17 b b odo3a2.1
1361742122103836212213

1021; 4; 4

1022; 0; 0
4.35251 f
15153232434533331@?0

10235 2 2
1%2%3%4855534%3;11?01?2

1024;  2;

)

2

1025; 4; 4

1026; 0; 0
4,3,2,1 :
15254;42585%42321%11?0
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Nk o; s; flags Nk o; s; flags
KK (L) KK(L)
1097; 2 2 102s; 0; 0O

7 06 45 rda3.2p1
1T_4 2T_2 4T_0 5§6§615§38 2% 13

132233395343333415,1,

1029;  2;

)

2

1030; 27 2

1034;  0; O
1%1%%283533232;}1?01?2

1035;  0; O
4.3,2,1
15153;32484%333%1%11?0

1036; 27 2

1037;  0; O

1038; 27 2
8 A7 66 456 43,251
116214312410585641321013

10405 25 2
352 ,1
152;4550657553452301%5

1042; 0; 0

B ORI -

R IR -

WA

1046;  6; 6
2
1§281%32222§2?01?2114

1047; 4 4
3,201 f
161;22283%4222331?01?2

O
4!

104s;  0; O

D

2R

-
.

A

10495 6; 6
1069 8 7 ,6 5 940302
1302183165144126103536 21

1050; 45 4
2,1
13153035534345330 15,174

1051; 2; 2

b

3021 :
152;42486%63424‘811‘;’01?2

1052; 25 2

1053, 4; 4
1069 8 L7 6 ~5 4,342
130218316614512 710954631

Algebraic & Geometric Topology, Volume 2 (2002)

363



364

Dror Bar-Natan

10g2; 27 2
6 o5 o4r3.2.1 .
1L22LO3§555Z5§483%2212

10s3;  2; 2
3521
153;42687%726%4%12?01?2

10s4; 27 2
362 ,1
152;4268 7% 826%5%3?0 1?2

I 7;;};/ o; s; flags I nk;/ o; s; flags
(L) Kh (L)

1055, 4; 4 10s6;  4; 4
@ 15302053365744%,630433523 1313304162535843025,17,
@ 1057 2, 2 10533 0; 0

1322435074 735854230 1%, 13,25 4543635349441313

1059; 25 2 1060; 0; O

1328435,606363432415, @ 13,2004565 71 7569543313

10615  4; 4 1062;  4; 4
@ 133315283323231415, @ 131325333343333415,1,

1063; 4; 4 10645 25 2
@ 150205256 51441,500433825 @ 13133333404343331415,

1065; 25 2 1066; 6; 6
@ 132233496153434815,15, @ 13037543461, 6%, T3,434523

1067; 2 2 10685 0; O
@ 17427,3%, 5755525135 1013 @ 17,15, 30454557 45392413

10695  2; 2 1070; 25 2
@ 1333436983 7363542301, @ 15154345506553432413

10715 0; O 1072;  4; 4
@ 13)2545636569614323134 @ 1315305563626443)35, 17,

1073; 25 2 1074; 27 2
@ 17,2543 63 7a 7365403513 @ 15517,33,550 4562523320 13

1075; 0; O 107¢; 4; 4
@ 13354365756563432413 @ 13393153534443,25,17,

1077, 25 2 107s; 4; 4
@ 131237495463434425,1$, @ 15521,33,650 5562523520 13

1079; 0; O 10s0; 6; 6
@ 10 15454355504343131 % 150275 476674535 T1o 454624
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Nk o; s; flags Nk o; s; flags
KK (L) KK(L)

10s5; 4; 4 10s6; 0; O

7 06 ob 44:3,2,1 403241
13421537045554145202513 153353657075654325 15,
10s7;  0; O 10ss;  0; O

403 2,1 5 0430201
15254;6268@6?14%3;11?0 1@35558;82888553321§
10s9; 2 2 10g0; 0; O

7 66 =5 ~40302-1 403-2,1 :
1@225@7@859;72584513 15255152687%5421422§1?0
10915 0; O 1092;  4; 4

5 654 ,3r2,1,0r1/420314 261 ,001Q27374F5 96 17
1902546536560524725 13 1425466581 7675570312 114
1093; 2, 2 1094; 2; 2

4~3,2,1
15254242686§5Z422§1§0

1095; 27 2
392,1
153252688%82625@?01?2

1096;  0; O
43,21
15356;62888%635%2%1?0

1097; 2; 2

1324073 TR T8 T443630,1T,

109g; 4; 4
8 A7 6 A5 403241
1362745126706585574220 13

1099; O; 0

10100; 4; 4

PP DDIBERRE -

10101; 4; 4 10102; 0; O
3343638363079241437617s 1328435560615343241%,
10103; 2; 2 10104; 0; O
17,2543 55 7e6355402313 13,2542636360614323 11
101055 25 2 10106; 25 2
132853637983 73533415, 13284353,606363432415,
10107; 0; O 10108; 25 2
13035557185 7974532314 1302535534350543323 14
10109; 0; O 10110; 2; 2
13025556, 737964532314 13,2305565 71 7359542313
101115 4; 4 101125 2 2
1325495573636 44320, 17, 13,3004 Ta 71 7569443313
101137 2; 2 10714; 0; O

1337538595103836443015,

B OTRBIEGE O -
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I Nk o; s; flags Nk o; s; flags
K (L) KK (L)
101155 0; O 10116; 27 2

10117; 2; 2
32,1 f
153;5278959272%3?01‘{2

10119; 0; 0
453,21
15356;72889%725%3%11?0

10118; O
101205  4;
10,9
L3

8 o7 of 15 HAn3 2
3189165148721 OT_O 75654;

4

101215 2, 2
7 06 25 ohdind1n20l
1;743;26108@0510;82684%1?1

10122; 0;

453201
1@@;82889%83524?;11?0

0

&)

@ 10123; 0; O 10124; 8; 8 OB
15,4565971051009634313 12141416,

@ 101255 25 25 & 10126; 25 25 €
13,18151913 17,250 15282719
101275 45 4 10128; 6; 6; O

@ 15517,28,35, 25351515 111213142419,

@ 101207 0; 0; O 010; 0; 05 O
13,15252323201413 17,250 15152719

@ 101315 25 25 ¢ 10132; 05 25 O
156114215370 25352115 1515151515

@ 10133; 25 25 < 10134; 6; 6; <
15517,15,23 152212 1122133415,26,17,

@ 0 0; 0; ¢ 0156, 2 0; O
13,15353733392423 15131225191412

@ 101373 0; 0; & 10138; 25 25 ¢
13,15,25282%223101} 1515332533342322
10139; 65 85 Oeedd 101405 0; 0; <

<%§§§%§> 1214141516,18, 15,151513

@ 101415 0; 0; & 10142; 65 6; &
13,15, 15282213191} 1112132426,
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Nk o; s; flags

KK (L)

Nk o; s; flags

KK (L)

101435 25 25 &

101445 25 25 O
6 a5 0463 4,251
1122;70353541351825

101455 25 4

9 17 16 45 1443
1el12 1101101616

101465 0; 0; &
5 04036261
1m2gzg3g35282§12

10147 25 25 $
4,3,2,1
15152;22282%231%

101485 25 25 &

10149; 4 4 ¢

10150; 4 4 <
2,1
1;1228253323231%

101515 25 27 & 10152; 6; 8 <
30251 1049 18 47 46 45 6543
152;323845432@;1 13176114212 170 11028 15
10153, 0; 0; OB 10154; 45 6; O

5 43,241
1;_015121;181})131;}

1315251318250 1 1511417

10155; 0; 0; &
2.1
1;12282%232%1;}1‘;’0

101565 25 25 &

101573 4 4 $
103547485537302174

10158; 0; 0; <
443 1251 :
15254;32484%222%

101595 25 25 &

10160; 45 4 <&
17151925231324

101615 45 6; Ot

9 ;7 46 45 ;5,4.3
el 1150151616

10162; 25 25 &

BORBDDEHIBBE -

0163 25 25 €
133733495543 3324

101655 25 25 &
193533334527029,17,

Algebraic & Geometric Topology, Volume 2 (2002)

367



368 Dror Bar-Natan

4.4 KN(L) for prime knots with 11 crossings

This data is available as a 20-page appendix to this paper (titled “Khovanov’s
invariant for 11 crossing prime knots”) and in computer readable format from [1].

4.5 New separation results

Following is the complete list of pairs of prime knots with up to 11 crossings
whose Jones polynomials are equal but whose rational Khovanov invariants
are different: (41,117119), (51,10132), (52,??7), (72,@), (81,%), (92,?7113),
(942,942), (943,11%y), (10125,10125), (10130, 117;), (10133,11%;), (10136,11,),
(11347 1134)’ (11387 11g4)7 (11g07 1171133)7 (11?97 1171138)’ (11g27 1152)7 (11711327 1171133)'

4.6 Kh(L) for links with up to 11 crossings

For links with more than one components, we have computed Kh(L) (not
KW (L), which does not make sense) for L with up to 11 crossings. The re-
sults are available as a 16 page appendix to this paper (up to 10 crossings) and
as a 26 page appendix (11 crossings) and in computer readable format from [1].
Below we only display the results for links with up to 6 crossings. The same
acknowledgement and warning of the previous section still applies:

KA(L) nt L KAL)

0107272 2 4 44 43 124090
19191212 42 d y 13,14,13,121319
312121150901112 2 6 46 45 44 43 124070
Lg1613152520 1613 61 @ s116116 112110 151614

0101112121313 14 14 15 16 16 2 6 15 15 14 54 53 1252.1.040
1131415151519 170175174174 176 | 63 @1161141121122102101826141412

13181713, 1331, 21,

RDBG O
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A Quick Reference Guide to Khovanov’s Categorification of the Jones Polynomial
Dror Bar-Natan, 9 May 2002
y—al ¢ ).

(OL) = (g+a )Ly () = i

The Jones Polynomial: J(L) = (—1)"-¢"+~?"~ (L), where (n;,n_) count (%,) crossings.
Khovanov’s construction: [L] — a chain complex of graded Z-modules;

The Kauffman Bracket: (0) = 1;

0—smoothing’

0] =0—

Z
height 0

—0; [OL] =V &[L]; [X] = Flatten (U - X1 = Dq{1} — 0) H

height 0 height 1
H(L) = H(C(L) = [L][-n-]{n; —2n_})

¢dimV =g+q¢ ' with g¢dimO:= Z q¢" dim O,,,;

m

V = span({vy,v_); degvy = £1;

O{l}p == Opy so  ¢dimO{l} = ¢' ¢dim O; -[s] + height shift by s;

vy @ Uy vy
v_®@v_—0

(QO=CD)—wevay)
(COLQO)—vaver)

Vy QU+ v
m:
V- @ Uy v

qoaq ® S Jey T,

A Vy 2 VL QUuo +v- @ vy
N — v ®@u

B . ) (1) g 2n L
Example: Poaq 2414¢2—¢8 il Z,) 60 a+¢+d -
(a+a")? - 3q(a+a7") + 3¢*(a+q7')? - Pla+qt)?
<
z @z(vﬂf‘) Q% O ¢ata?
g v} ver(z)
E 100 divo CO 110 that’s a
= é)O cobordism!
5
2 (@]
5 & R &0 R Q0
& da e i din
& 00 & m 11
(g+¢71)? §) alg+q7") ¢*(a+q7')? QOO Pla+qt)?
Faele -
000 00 010 101 B 111
& 2
8%8)
doos dinn
g1
V2 (g}
o11
3 (~1)de 3 (~1)tde
lgl=0 lel=2
v v v
1 2
[l - [o]' : [oF? ‘ [l
¢ SE e [=n_J{n4—2n_}
(here (—1)% := (=1)%i<i if & =) = [&@] C(®).

Theorem 1. The graded Euler characteristic of C(L) is J(L).

Theorem 2.
any field F.

Theorem 3. H(C(L)) is strictly stronger than J(L): H(C(51)) # H(C(10132)) whereas J(5;) = J(10132).
Khy(L) = ¢~ (14 ¢* + (1 + tg*)KI) and Khg,(L) = ¢*~1(1 + ¢*) (L + (1 + tq*)Kl') for

Conjecture 1.

(with (n4,n_)=(3,0))

The homology H(L) is a link invariant and thus so is Khg(L) := Y t" qdim HR(C(L)) over

even s = s(L) and non-negative-coefficients laurent polynomial Kh' = KK (L).
Conjecture 2. For alternating knots s is the signature and KA depends only on t¢>.

References.

Khovanov’s arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and DBN’s
http://www.ma.huji.ac.il/~drorbn/papers/Categorification/.
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Figure 4: A quick reference guide — cut, fold neatly and place in your wallet.



