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Abstract

We consider product 4{manifolds S1�M , where M is a closed, connected
and oriented 3{manifold. We prove that if S1 � M admits a complex
structure or a Lefschetz or Seifert �bration, then the following statement is
true:
S1 �M admits a symplectic structure if and only if M �bers over S1 ,

under the additional assumption that M has no fake 3{cells. We also
discuss the relationship between the geometry of M and complex structures
and Seifert �brations on S1 �M .
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1 Introduction

A closed, oriented, smooth 4{manifold X which �bers over a Riemann surface
admits a symplectic structure unless the �ber class is torsion in H2(X;Z). In
particular, a �bration of a closed, oriented 3{manifold M over S1 induces a
symplectic form on S1 �M .

Conjecture T Let M be a closed, oriented 3{manifold such that S1 �M
admits a symplectic structure. Then M �bers over S1 .

This conjecture was �rst stated by Taubes [27] and is still open. Recent work of
Chen and Matveyev [4] proves that it holds when M has no fake 3{cells, S1�M
admits a symplectic structure and a Lefschetz �bration with symplectic �bers.

In this paper, we generalize Chen and Matveyev’s result proving that the con-
jecture holds when S1 �M admits an arbitrary Lefschetz �bration (possibly
with nonsymplectic �bers). More generally, we prove the following:
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Theorem 1.1 Suppose M is a closed 3{manifold without a fake 3{cell.

(L) If S1 �M admits a Lefschetz �bration, then Conjecture T holds.

(S) If S1 �M admits a Seifert �bration, then Conjecture T holds.

(K) If S1 �M admits a Kähler structure, then Conjecture T holds.

(C) If S1 �M admits a complex structure, then Conjecture T holds.

Here, a fake 3{cell means a compact, contractible 3{manifold which is not
homeomorphic to D3 . Note that the Poincar�e conjecture implies that there is
no fake 3{cell.

Remark We’ll see that a nonsymplectic Lefschetz �bration on a product 4{
manifold has no singular �bers and has �ber a torus. Since a Seifert �bration
can be thought of as a T 2{�bration with multiple �bers, (S) is a further gener-
alization of (L). Statement (C) is clearly a generalization of (K). Note that all
(symplectic) product 4{manifolds which admit complex structures turn out to
be Seifert �bered. This means that all other statements follow from (S) using
the result of Chen and Matveyev on symplectic Lefschetz �brations.

In the remark above and the rest of the paper, by a product 4{manifold we
mean the product of S1 with a (compact, oriented, connected) 3{manifold.

In order to prove Theorem 1.1, besides other techniques, we use classi�cation re-
sults on complex surfaces and Lefschetz �bered 4{manifolds and apply them to
product manifolds. In particular, we get results on the classi�cation of product
4{manifolds which admit certain structures or �brations and interesting rela-
tions between the geometry of M and complex structures and Seifert �brations
on S1 �M .

Remark In their paper [9] on taut contact circles on 3{manifolds, Geiges
and Gonzalo classi�ed product 4{manifolds carrying complex structures with
respect to which the obvious circle action is holomorphic. Since we don’t require
this action to be holomorphic and we are mainly interested in the symplectic
structure on product manifolds, we prove di�erent type of results even though
we use similar methods.

Remark As a consequence of Theorem 1.1 we see that when M is a nonhyper-
bolic geometric 3{manifold Conjecture T holds. On the other hand, assuming
Thurston’s conjecture on the geometrization of 3{manifolds, if S1 �M admits
a symplectic structure, then M is prime (see [16] or [32]). So it might be
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interesting to try to prove Conjecture T (at least up to the geometrization con-
jecture) by �rst proving it when M is hyperbolic, then considering geometric
3{manifolds with boundary (disjoint union of tori) and �nally using Seiberg{
Witten theory of 4{manifolds glued along T 3 .

In the next section we recall de�nitions and some basic theorems on Lefschetz
�brations, complex surfaces, Seiberg{Witten invariants, Seifert �brations and
geometric structures on 3{ and 4{manifolds. In Section 3, we discuss nonsym-
plectic Lefschetz �brations on S1�M . By using the Seiberg{Witten theory of
symplectic 4{manifolds and S1{bundles over surfaces, we prove (L) of Theorem
1.1 in Section 4. In Section 5, product 4{manifolds which admit complex struc-
tures are considered and (K) is proved �rst. As a result of a slightly more careful
investigation we prove (C). Finally we consider Seifert �bered 4{manifolds and
prove (S). In the last section, we discuss the relation between various structures
and �brations on S1 �M and M .

In this paper, by a �ber bundle we mean a locally trivial one and an F {bundle
means a (locally trivial) �ber bundle with �ber F . All �brations (of any kind)
are oriented and all manifolds are compact, smooth, oriented and connected,
unless stated otherwise.

Acknowledgment The author is grateful to his thesis advisor Rob Kirby for
numerous discussions.

2 Background

Let us �rst state some topological information on S1 �M .

Lemma 2.1 Let M be a closed, oriented and connected 3{manifold. Then
X = S1 �M is a spin 4{manifold with �(X) = �(X) = 0, b�(X) = b1(M)
(in particular, b2(X) is even), where � , � and b� denote the signature, Euler
characteristic and the corresponding Betti number, respectively.

Proof Both S1 and M are spin, so X is spin. Since �(S1) = 0, the Euler
characteristic of X vanishes. The boundary of D2 �M is X , so �(X) = 0.
The facts about the Betti numbers follow easily from the de�nitions of � and
� in terms of Betti numbers.
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2.1 Lefschetz �brations and pencils

De�nition 2.2 A Lefschetz �bration on a compact, connected, oriented and
smooth 4{manifold X is a smooth map � : X −! �, where � is a compact,
connected, oriented surface and �−1(@�) = @X , such that each critical point of
� lies in the interior of X and has an orientation-preserving coordinate chart
on which �(z1; z2) = z2

1 + z2
2 relative to a suitable smooth chart on �.

De�nition 2.3 A Lefschetz pencil on a closed, connected, oriented, smooth
4{manifold X is a non-empty �nite subset B of X called the base locus, to-
gether with a smooth map � : X − B −! CP 1 such that each point b 2 B
has an orientation-preserving coordinate chart in which � is given by the pro-
jectivization C2 − f0g −! CP 1 , and each critical point has a local coordinate
chart as in the de�nition of a Lefschetz �bration above.

De�nition 2.4 A Lefschetz �bration is called relatively minimal if no �ber
contains an exceptional sphere, in other words it cannot be obtained by blowing
up another Lefschetz �bration.

De�nition 2.5 A Lefschetz �bration is called a symplectic Lefschetz �bration
if the total space admits a symplectic structure such that generic �bers are
symplectic submanifolds, otherwise it is called nonsymplectic.

Theorem 2.6 (Gompf) A Lefschetz �bration on a 4{manifold X is symplec-
tic if and only if the homologous class of the �ber is not torsion in H2(X;Z).

The close relation between Lefschetz �brations and symplectic structures is
stated in the following theorems.

Theorem 2.7 (Donaldson [5]) Every symplectic 4{manifold admits a Lef-
schetz pencil by symplectic surfaces.

Theorem 2.8 (Gompf [10]) If a 4{manifold admits a Lefschetz pencil (with
non-empty base locus), then it admits a symplectic structure.

It is necessary that the base locus is non-empty as we have examples of 4{
manifolds, e.g. S1 � S3 , which admit Lefschetz �brations over S2 but no sym-
plectic structure.

If a manifold admits a Lefschetz pencil, then one can blow-up the points of
the base locus and construct a Lefschetz �bration (over S2 ). So Donaldson’s
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theorem implies that every symplectic 4{manifold has a blow-up which admits
a Lefschetz �bration. Even though it is always possible to put a Lefschetz pencil
on a symplectic S1 �M it may not be possible to �nd a Lefschetz �bration on
it. Note that a blow-up of S1 �M can never be a product.

For more details on Lefschetz pencils and �brations see [10].

2.2 Seiberg{Witten invariants

Let X be a closed, oriented, connected and homology oriented 4{manifold with
b+(X) > 0. The Seiberg{Witten invariant SW of a Spinc structure on X was
�rst extracted from monopole equations by Witten in [35]. If b+(X) > 1, then
SW is an integer-valued di�eomorphism invariant of X . When b+(X) = 1 it
may depend on the chosen metric. The Seiberg{Witten invariant of a Spinc
structure � on X is denoted by SWX(�). We call � 2 H2(X;Z) a basic class
if there exists a Spinc structure � such that SWX(�) 6= 0 with c1(det(�)) = �,
where det(�) denotes the determinant (complex) line bundle of � . If there
is no 2{torsion in H2(X;Z), then there is a unique Spinc structure � with
c1(det(�)) = � for any characteristic class � 2 H2(X;Z). In general, the set
of isomorphism classes of Spinc structures on X is an a�ne space modeled on
H2(X;Z).

Seiberg{Witten invariants of 3{dimensional manifolds are de�ned similarly. As
we state in Section 4, Seiberg{Witten invariants of a 3{manifold M carry ex-
actly the same information as those of S1 �M at least when b1(M) > 1. The
reader is referred to [14] and [23] for the theory of Seiberg{Witten invariants in
dimension 3.

We have the following important theorem on the Seiberg{Witten invariants of
symplectic manifolds.

Theorem 2.9 (Taubes [25], [26]) Let X be a closed 4{manifold with b+ > 1
and a symplectic form ! . Then there is a canonical Spinc structure � on X
such that SWX(�) = �1 and det(�) is the canonical line bundle K of (X;!).

Moreover,
0 � j� � [!]j � jc1(K) � [!]j ;

where � is any basic class; 0 = � � [!] if and only if � = 0; j� � [!]j = jc1(K) � [!]j
if and only if � = �c1(K).

See [10], [18] and [14] for more details on Seiberg{Witten invariants of 4-
manifolds.
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2.3 Geometric structures and the geometrization conjecture

De�nition 2.10 A metric on a manifold is called locally homogeneous if any
pair of points can be mapped to each other by isometries of open neighborhoods.

De�nition 2.11 A manifold is called geometric if it admits a complete, locally
homogeneous metric.

De�nition 2.12 A simply connected geometric manifold together with the
isometry group corresponding to a complete (locally) homogeneous metric is
called a geometry.

Up to isometry, there are eight 3{dimensional and nineteen 4{dimensional ge-
ometries with compact quotients. These are classi�ed by Thurston and Filip-
kiewicz [7] respectively. See [24] and [33] for detailed discussions on 3{ and
4{dimensional geometries.

A manifold is called prime if it cannot be written as the connected sum of two
manifolds none of which is a sphere. In [17] Milnor showed that, up to home-
omorphism and the permutation of the summands, there is a unique way to
write a compact, oriented 3{manifold as the connected sum of prime manifolds.
There is also a reasonably canonical way to cut compact, prime 3{manifolds
along tori into pieces which no longer have embedded tori in them other than
their boundary components (up to homology). Thurston’s geometrization con-
jecture asserts that these pieces should all be geometric.

2.4 Seifert �bered spaces

A trivial �bered solid torus is S1 � D2 with the product foliation by circles.
A �bered solid torus is a solid torus with a foliation by circles that is �nitely
covered by a trivial �bered solid torus. It can be constructed by gluing two
ends D2 � f0g and D2 � f1g of D2 � I after a q=p rotation.

A Seifert �bered space is a 3{manifold with a decomposition into disjoint circles
such that each circle has a neighborhood isomorphic to a �bered solid torus. A
circle bundle over a surface is naturally a Seifert �bered space. By identifying
each of these circles with a point, we can consider a Seifert �bered space as a
�bration over a 2{orbifold base. Such a �bration is called a Seifert �bration.
Fibers of a Seifert �bration are obviously circles and singularities of the base
orbifold correspond to the �bers without trivial �bered solid torus neighbor-
hoods. A �ber is called regular if it projects to a nonsingular point of the base,
otherwise it is called a multiple �ber.
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Lemma 2.13 (cf. Lemma 3.2 in [24]) Suppose M admits a Seifert �bration
over a 2{orbifold X . Then there is a short exact sequence

1 −! G −! �1(M) −! �orb1 (X) −! 1 ;

where G denotes the cyclic subgroup of �1(M) generated by a regular �ber and
�orb1 (X) denotes the fundamental group of X as an orbifold. The subgroup G
is in�nite except in cases where M is covered by S3 .

Note that a presentation for �orb1 (X) is

〈
a1; b1; : : : ; ag; bg; x1; : : : ; xn

�� xpii = 1;
gY
i=1

[ai; bi] �
nY
i=1

xi = 1
�
;

where g is the genus of the underlying surface of X , assuming X is closed
and orientable with n singular points of multiplicities p1; : : : pn . The Euler
characteristic �(X) of such a 2{orbifold X is de�ned by

�(X) = 2− 2g −
nX
i=1

�
1− 1

pi

�
:

An orbifold is called spherical (Euclidean or hyperbolic) if its Euler character-
istic is positive (zero ornegative).

For more details on Seifert �bered spaces see [22] and [21]. For geometric
structures on Seifert �bered spaces see [24].

2.5 Seifert �bered 4{manifolds

A Seifert �bration on a 4{manifold is analogous to a Seifert �bration on a
3{manifold.

De�nition 2.14 A smooth map � : X −! � from a smooth 4{manifold X
to a surface � is called a Seifert �bration if there exists a �nite set of isolated
points B in � such that the restriction of � to �−1(� − B) is a torus bundle
and for each element b 2 B , �−1(b) has a tubular neighborhood di�eomorphic
to the product of a �bered solid torus with a circle.

A Seifert �bration can be thought of as a torus �bration over a 2{orbifold.
In the complex category it corresponds to an elliptic �bration without singular
�bers (possibly with multiple ones). If a 4{manifold admits a Seifert �bration it
is called a Seifert 4{manifold. We have analogous statements for Seifert �bered
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4{manifolds to most of the properties of Seifert �bered spaces, e.g. Lemma 2.13.
See [33] and [34] for geometric structures on elliptic surfaces without singular
�bers, [30] and [31] for a general picture of Seifert 4{manifolds in terms of
geometric structures.

3 Nonsymplectic Lefschetz �brations on S1 �M

In this section our aim is to show that nonsymplectic Lefschetz �brations on
S1 �M are in fact locally trivial torus bundles. We also investigate which of
these �brations have symplectic total spaces and which of them give rise to
�brations of M over S1 .

Theorem 3.1 (Chen-Matveyev [4]) Let � be a symplectic Lefschetz �bration
on S1 � M , where M is a closed, connected, oriented 3{manifold without
any fake 3{cells. Then there exists a �bration p on M over S1 . Moreover,
the symplectic structure with which � is compatible is deformation equivalent
(up to self-di�eomorphisms of S1 �M ) to the canonical symplectic structure
associated to the �bration Id� p : S1 �M ! S1 � S1 .

The symplectic form (canonical up to deformation equivalence) on the total
space of a surface bundle over a compact, oriented surface is obtained by ex-
tending a symplectic form on a �ber and adding a (su�ciently large) multiple of
the pullback of a symplectic form on the base to it (see [29] and [20] for details
and more general cases). The following lemma plays a crucial role in the proof
of the theorem above.

Lemma 3.2 [4] Let � be a symplectic Lefschetz �bration on S1�M , where
M is a closed, connected, oriented 3{manifold. Then � doesn’t have any critical
points.

First of all, we give the following generalization of this lemma.

Lemma 3.3 Let � be a Lefschetz �bration on S1 �M , where M is a closed,
connected, oriented 3{manifold. Then � is a �ber bundle. If � is not symplectic,
then it is a torus bundle.

Proof We only need to consider the case where � is not symplectic, i.e. �bers
are not symplectic submanifolds of X = S1 �M . By Theorem 2.6 the �ber
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class [F ] is torsion in H2(X;Z). This is possible only if F is a torus since
otherwise

0 6= �(F ) = he(TF ); [F ]i :

Note that e(TF ) extends to H2(X;Z) since TF is the pull-back (by the in-
clusion F ,! X ) of the vertical (with respect to �) subbundle of TX . On the
other hand, the Euler characteristic of the total space of a Lefschetz �bration
is equal to the product of the those of the base and the �ber plus the number
of vanishing cycles (assuming there is a unique singular point on each �ber). In
our case this leads to

0 = �(S1 �M) = �(T 2) � �(B) + #fvanishing cyclesg :

Hence there are no vanishing cycles. Therefore � is a torus bundle.

This lemma shows that nonsymplectic Lefschetz �brations on S1 �M are all
torus bundles over Riemann surfaces. We investigate these bundles in three
groups according to the genera of their bases.

Lemma 3.4 Let S1 �M be the total space of a nontrivial T 2{bundle over
S2 . Then S1 �M carries no symplectic form.

Proof Since the torus bundle is nontrivial, b1(S1 � M) < 2 and therefore
b2(S1�M) = 2�b1(M) = 0. Hence all closed 2{forms on S1�M are degenerate.

Remark As we mentioned before, a �bration of M over S1 induces a sym-
plectic form on S1�M . Therefore, when S1�M is as in the lemma M doesn’t
�ber over the circle.

We have a totally di�erent picture for T 2{bundles over T 2 .

Theorem 3.5 (Geiges [8]) Let X be the total space of an oriented T 2{bundle
over T 2 . Then X admits a symplectic structure. Moreover, there exists a sym-
plectic T 2{bundle over T 2 with total space X unless X is the total space of a
nontrivial S1{bundle over the total space of a nontrivial S1{bundle over T 2 .

Let X be an exception, i.e. a twisted circle bundle over a twisted circle bundle
over the torus. Then b1(X) = b2(X) = 2. Moreover, H1

DR(X;R) is generated
by [�] and [�], where � and � are closed 1{forms on X such that n��^� = dγ ,
where n is the Euler number of the (nontrivial) S1{bundle over T 2 and γ is
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a 1{form on X (see [6] for details). In particular, (H1(X;R))[2 = 0, where
(H1(X;R))[2 denotes the image of the cup product of H1(X;R) with itself.
On the other hand, H1(S1 �M ;R) �= H1(S1;R) � H1(M ;R) and obviously
(H1(S1 �M ;R))[2 6= 0. Therefore we have the following corollary.

Corollary 3.6 If S1 �M is the total space of a T 2{bundle over T 2 , then
S1 �M admits a symplectic Lefschetz �bration.

For T 2{bundles over higher genus surfaces we have

Lemma 3.7 Let S1 �M be the total space of a T 2{bundle over B , where
B is a closed, oriented surface of genus � 2. Also assume that M has no fake
3{cells. Then M �bers over the circle if and only if the torus bundle is trivial.

We are going to use the following lemma to prove the one above.

Lemma 3.8 (cf. [22] Theorem 7.2.4) Let M be a closed,oriented 3{manifold
which is the total space of a circle bundle over a closed, oriented surface B of
genus � 2. Then M �bers over the circle if and only if M = S1 �B .

Proof Recall that �1(M) has the presentation〈
a1; b1; : : : ; ag; bg; �

�� [ai; �] = [bi; �] = 1; [a1; b1] � � � [ag; bg] = �k
�
;

where g = genus(B) and k is the Euler number of the S1{bundle. In particular,
H1(M) �= Z2g+1 if k = 0 and H1(M) �= Z2g � Zjkj otherwise.

We also have the following commutative diagram of exact sequences

0 −−−! �1(S1)
j#−−−! �1(M) −−−! �1(B) −−−! 1??y�= ??y ??y

H1(S1)
j�−−−! H1(M) −−−! H1(B) −−−! 0

where vertical maps are Hurewicz epimorphisms. Note that the homomorphism
j� is injective if and only if Im(j#)\[�1(M) : �1(M)] = f1g. Now suppose that
F −! M −! S1 is a �bration. There exists a normal subgroup N �= �1(F )
in �1(M) such that �1(M)=N �= Z. Assume that there exists an element
u 2 Nnf1g such that u = j#(v). Then there is a normal in�nite cyclic subgroup
(generated by u) in N and this implies that F is a torus, but M cannot be
the total space of a torus bundle over the circle since b1(M) � 2g � 4 > 3.
Therefore Im(j#) \ N = f1g. On the other hand, [�1(M) : �1(M)] � N
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because �1(M)=N �= Z. So Im(j#) \ [�1(M) : �1(M)] = f1g, j� is injective
and we have the short exact sequence

0 −! H1(S1) −! H1(M) −! H1(B) −! 0

which clearly splits. Hence b1(M) = 2g + 1 and M is the product S1 �B .

Proof of Lemma 3.7 We have the homotopy sequence of the T 2{bundle

0 −! �1(T 2)
j#−! �1(S1 �M)

�#−−! �1(B) −! 1 : (1)

Let u be a generator of �1(S1 � pt). Assume that �#(u) = v 6= 1 2 �1(B).
Then v generates a normal cyclic subgroup in �1(B) and this contradicts the
fact that genus(B) � 2. Therefore u 2 ker(�#) = im(j#), where j is the
inclusion map. Let a be j−1

# (u). We can �nd another element b 2 �1(T 2) such
that the restriction of j# to the subgroup hbi generated by b gives the short
exact sequence

0 −! hbi −! �1(M) −! �1(B) −! 1 : (2)

By Theorem 11.10 in [11] M admits an S1{bundle over B (we use the assump-
tion that M has no fake 3{cells). Lemma 3.8 �nishes the proof.

We should note that the idea of extracting (2) from (1) was �rst used in [4].

Proposition 3.9 Suppose S1�M admits a nonsymplectic Lefschetz �bration,
where M is a closed, oriented 3{manifold. If the base space of the �bration
is a torus, then S1 �M admits a symplectic form and a symplectic Lefschetz
�bration. Otherwise M doesn’t �ber over S1 or it has a fake 3{cell.

Proof Let � be a nonsymplectic Lefschetz �bration on X = S1 �M . By
Lemma 3.3, � is relatively minimal, has no critical points and the �bers are
tori. It is a nontrivial bundle since otherwise it would be symplectic. If the base
space B is a torus, then X admits a symplectic Lefschetz �bration by Corollary
3.6. If B = S2 , then X doesn’t admit a symplectic structure by Lemma 3.4
and in particular, M doesn’t �ber over S1 since such a �bration would induce
a symplectic form on X . Finally, if genus(B) � 2 and M has no fake 3{cells,
then Lemma 3.7 implies that M doesn’t �ber over S1 .

Algebraic & Geometric Topology, Volume 1 (2001)



480 Tolga Etgü

4 Seiberg{Witten invariants of symplectic manifolds
and S1{bundles over surfaces

In this section we use Seiberg{Witten theory of symplectic manifolds and S1{
bundles over closed, oriented surfaces to prove the following theorem which in
turn implies that the existence of a symplectic form and a Lefschetz �bration
on S1�M is possible only if there is a symplectic Lefschetz �bration on S1�M
(Theorem 4.5). Statement (L) of Theorem 1.1 is a consequence of this.

Theorem 4.1 Let M be the total space of an oriented S1{bundle over a
Riemann surface B . Then X = S1 �M admits a symplectic structure if and
only if the bundle is trivial or B is a torus.

The following theorem follows from the work of Mrowka, Ozsv�ath and Yu on
the SW invariants of Seifert �bered spaces [19]. See [1] for a di�erent (and more
elementary) approach.

Theorem 4.2 Let M be the S1{bundle over a Riemann surface B of genus
g � 1 with Euler class n�, where � is the (positive) generator of H2(B;Z). If
n 6= 0, then all basic classes of M are in fk � ��(�) j 0 � k � jnj − 1g, where �
is the bundle projection. Moreover, we have

SWM (k � ��(�)) =
X

s�k (mod n)

SWS1�B(s � pr�2(�)) ; (3)

where pr2 is the projection S1 �B ! B .

It is well-known that the Seiberg{Witten invariants of S1 �B are given by

SWS1�B(t) = (t− t−1)2g−2 ;

where g is the genus of B and the coe�cient of tp on the right hand side
corresponds to the Seiberg{Witten invariant of the Spinc structure with de-
terminant line bundle L with c1(L) = p � pr�2(�). Therefore the sum of all
Seiberg{Witten invariants of S1�B is 0 if g > 1. This sum is preserved under
twisting of the S1{bundle as can be seen from (3).

Corollary 4.3 Let M be as in the previous theorem and g > 1. ThenX
�

SWM (�) = 0 ;

where the sum is over all Spinc structures on M .
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The following is also well-known and relates the Seiberg{Witten invariants of
S1 �M with those of M . For a proof see [23].

Theorem 4.4 If M is a closed, oriented 3{manifold, then

SWM (�) = SWS1�M (pr�2(�))

for any � 2 H2(M ;Z), where pr2 is the projection S1 �M ! M . Moreover,
if b+(S1 �M) = b1(M) > 1, then all basic classes of S1 �M are pull-backs of
basic classes of M .

Proof of Theorem 4.1 If the bundle is trivial then X = T 2 � B and there
is a symplectic form on X which is simply the sum of symplectic forms on T 2

and B .

If B is a torus, then X is a torus bundle over a torus and by Theorem 3.5 it
admits a symplectic structure.

If the bundle is nontrivial and B is a sphere, then X is a nontrivial T 2{bundle
over S2 and cannot be symplectic as we proved in Lemma 3.4.

From now on we will assume that the bundle is nontrivial and the genus of B
is at least 2.

By Corollary 4.3 and Theorem 4.4 (as b1(M) � 2b1(B) � 4)X
�

SWM (�) =
X
�

SWX(�) = 0 ; (4)

where sums are over all Spinc structures on M and X respectively.

Assume that X admits a symplectic form ! . First of all, by the conditions on
equality in Theorem 2.9, the canonical class K = c1(X;!) cannot be a nonzero
torsion class. On the other hand, Theorem 4.4 and the �rst part of Theorem
4.2 imply that all basic classes of X are torsion. Therefore the only basic class
of X is K = 0 and SWX(0) = �1, in particular,X

�

SWX(�) = �1 ;

where the sum is over all Spinc structures on X . This contradicts (4) hence
X does not admit a symplectic structure.

Theorem 4.5 Let M be a closed, oriented 3{manifold such that S1 � M
admits a Lefschetz �bration and a symplectic form. Then S1 �M admits a
symplectic Lefschetz �bration or M has a fake 3{cell.
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Proof Let X = S1 �M admit a Lefschetz �bration and a symplectic form.
Assume that there is no symplectic Lefschetz �bration on it. Then by Lemma
3.3 it admits a torus bundle over a Riemann surface B . Any such bundle should
be nontrivial since otherwise it would be symplectic. By Theorem 3.9, B is not
a torus, and it cannot be a sphere by Lemma 3.4. So genus(B) � 2. If M has
no fake 3{cells, then as we have seen in the proof of Lemma 3.7, M is the total
space of an S1{bundle over B and this contradicts Theorem 4.1.

This theorem (together with Theorem 3.1) �nishes the proof of statement (L)
of Theorem 1.1.

Remark Symplectic Lefschetz �brations on product 4{manifolds were classi-
�ed in [4]. As a result of our discussion, we see that nonsymplectic Lefschetz
�brations on nonsymplectic S1�M are nontrivial torus bundles over spherical
or hyperbolic surfaces. On the other hand, nonsymplectic Lefschetz �brations
on a symplectic S1�M are torus bundles over tori and by Proposition 3.9 any
such manifold admits a symplectic Lefschetz �bration.

5 Complex structures and Seifert �brations on the
product four{manifolds

In this section, we use the classi�cation of complex surfaces to prove statements
(K) and (C) of Theorem 1.1. To prove the latter, we also use an interesting
result in Seiberg{Witten theory of complex surfaces due to Biquard. Then we
consider Seifert �bered product 4{manifolds and prove that those which admit
symplectic structures also admit either Kähler structures or torus bundles over
tori. This observation �nishes the proof of Theorem 1.1.

At this point we know exactly when the existence of a Lefschetz �bration on
S1 �M is su�cient for M to �ber over the circle. Since our motivation is to
determine whether the existence of a symplectic structure on S1 �M is su�-
cient for M to �ber over the circle, it is quite natural to ask which symplectic
(product) 4{manifolds admit Lefschetz �brations. This question doesn’t seem
to be any easier than Conjecture T itself even though Donaldson proved that
every symplectic 4{manifold admits a Lefschetz pencil. In fact, statement (L)
of Theorem 1.1 implies that they are equivalent when M has no fake 3{cells.
On the other hand, allowing multiple �bers and considering Seifert �brations,
one can still get interesting results on Conjecture T. Seifert �bered product
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4{manifolds turn out to be closely related to complex surfaces and this is the
main reason of our discussion on complex structures on product 4{manifolds.

Now suppose that S1 � M is a closed complex surface. Since it is a spin
4{manifold its intersection form is even, so there is no exceptional sphere to
blow-down, thus it is a minimal complex surface. We are going to use the
Enriques{Kodaira classi�cation of compact complex surfaces (see [10] or [3]) to
prove the following theorem.

Theorem 5.1 (cf. Theorem 4.1 in [9]) Let S1 �M be a closed 4{manifold.

If S1�M admits a complex structure, then it is either an elliptic surface or of
Class VII0 .

If S1 �M is also symplectic, then the only possibilities are the following:

(i) S1 �M �= S2 � T 2 .

(ii) S1 �M admits a T 2{bundle over T 2 .

(iii) S1 �M admits a Seifert �bration over a hyperbolic orbifold.

Proof Let �(X) be the Kodaira dimension of X = S1 � M as a complex
surface.

Case 1: �(X) = −1 In this case X is either CP 2 or geometrically ruled or of
Class VII0 . The complex projective plane CP 2 is simply-connected, but X is
not. If X is a complex surface of ClassVII0 , then 0 = b1(X)−1 = b+(X) hence
it cannot be symplectic. If it is geometrically ruled, then it is the total space
of a CP 1{bundle over a Riemann surface B and 0 = �(X) = �(CP 1) � �(B),
hence B is a torus. Moreover, X is di�eomorphic to S2 � T 2 since the total
space of the nontrivial S2{bundle over T 2 is not spin.

Case 2: �(X) = 0 Any minimal complex surface of Kodaira dimension 0
is a K3 surface, an Enriques surface, a primary Kodaira surface, a secondary
Kodaira surface, a hyperelliptic surface or a complex torus. Since b1(X) � 1
X cannot be a K3 or an Enriques surface. In three of the other four cases,
X is di�eomorphic to the total space of a T 2{bundle over T 2 . When X is
a secondary Kodaira surface it admits an elliptic �bration over CP 1 (without
singular �bers) and b1(X) = 1. So in this case, X cannot be symplectic because
b+(X) = b1(X)− 1 = 0.

Case 3: �(X) = 1 In this case X is a (properly) elliptic surface. An elliptic
�bration on X cannot have singular �bers but only multiple �bers since the
Euler characteristic of X vanishes. In particular, X is a Seifert 4{manifold.

Algebraic & Geometric Topology, Volume 1 (2001)



484 Tolga Etgü

While investigating geometric structures on elliptic surfaces Wall (see [33] or
[34]) proves that the base orbifold of such a �bration must be hyperbolic if
�(X) = 1.

These are the only possibilities since every minimal surface of general type has
positive Euler characteristic, but�(X) = 0.

Remark By a well-known result of Bogomolov [28] a complex surface of Class
VII0 with vanishing second Betti number is either a Hopf surface or an Inoue
surface. Since the center of the fundamental group of an Inoue surface is trivial
(cf. Proposition 4.2 in [9]) no Inoue surface is a product. On the other hand,
Kato’s work on Hopf surfaces [12] implies that if a Hopf surface is di�eomor-
phic to a product, then it must be elliptic. In particular, it is Seifert �bered
since vanishing of the Euler characteristic implies that an elliptic �bration on
a product can have no singular �bers (but only multiple ones).

Recall that a closed complex surface is Kähler if and only if its �rst Betti
number is even. Therefore statement (K) of Theorem 1.1 is a consequence of
the following theorem.

Theorem 5.2 Let S1 �M be a closed, connected complex surface. If b1(M)
is odd and M has no fake 3{cells, then M is a Seifert �bered space which �bers
over S1 .

Proof Since b1(X) = b1(M) + 1 is even, X = S1 � M admits a Kähler
structure. By Theorem 5.1, X is di�eomorphic to S2 � T 2 or admits a T 2{
bundle over T 2 or a properly elliptic �bration without any singular (possibly
with multiple) �bers.

If X is di�eomorphic to S2 � T 2 , then M �bers over S1 by Theorem 3.1.
Moreover, the di�eomorphism between S1 �M and S1 � (S2 � S1) gives a
homotopy equivalence between M and S2� S1 and as they both �ber over S1

this homotopy equivalence must be a homeomorphism, in particular, M is a
Seifert �bered space.

If X admits a T 2{bundle over T 2 , then by Corollary 3.6 and Theorem 3.1 M
�bers over S1 with �ber a torus and in particular it is geometric. On the other
hand, by Theorem 3 in [8] the geometric type of M is E3 , where En is Rn
with its standard metric. This implies that M = T 3 (see p.446 in [24]). In
particular, M is Seifert �bered.

If X admits a Seifert �bration over a hyperbolic orbifold B , then it is geometric
and the geometric type of it must be E2 � H2 by Theorem 4.5 in [34] as X
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admits a Kähler structure, where H2 is the hyperbolic plane. It should be noted
that there is a mistake in [34] which was later corrected by Kotschick in [13];
since it concerns manifolds with nonvanishing Euler characteristic, it doesn’t
e�ect our discussion on product 4{manifolds. On the other hand, we get the
following exact sequence from the Seifert �bration

1 −! �1(F ) −! �1(S1 �M) −! �orb1 (B) −! 1 ;

where F is a regular �ber and �orb1 (B) denotes the fundamental group of B as
an orbifold. This exact sequence leads to another one

1 −! Z −! �1(M) −! �orb1 (B) −! 1 ;

just as in the proof of Lemma 3.7, since B is hyperbolic and its orbifold funda-
mental group doesn’t contain an in�nite cyclic normal subgroup. So there exists
an in�nite cyclic normal subgroup in �1(M) and M is a Seifert 3{manifold by
Corollary 12.8 in [11]. (Note that as b1(M) is odd it is nonzero and M is suf-
�ciently large.) In particular, M is geometric. Since S1 �M is type E2 �H2 ,
M must be type E1 � H2 , in other words the rational Euler class of a Seifert
�bration on M is 0. A generalization of Lemma 3.8 (e.g. Theorem 8.1 in [21])
implies that M �bers over S1 .

In order to prove statement (C) of Theorem 1.1 we use the following result of
Biquard (cf. Th�eor�eme 8.2 in [2]):

Theorem 5.3 A properly elliptic non{Kähler surface admits no symplectic
structure.

Proof of Statement (C) in Theorem 1.1 We have seen in Theorem 5.1
that if X = S1 �M admits a complex and a symplectic structure, then there
are three possibilities. The product S2�T 2 admits a Kähler structure hence if
X = S2�T 2 , then M �bers over S1 by Theorem 5.2. If X admits a T 2{bundle
over T 2 , then M �bers over S1 by Corollary 3.6 and Theorem 3.1. If X is
a properly elliptic surface, then it has to be Kähler by Theorem 5.3 hence M
�bers over S1 by Theorem 5.2.

The following is a well-known theorem. For a nice proof see [36].

Theorem 5.4 If M is a closed, oriented Seifert �bered space, then S1 �M
admits a complex structure.
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Proposition 5.5 Let M be a closed, oriented 3{manifold with no fake 3{cells.
Suppose S1 �M admits a symplectic structure and a Seifert �bration. Then
S1 �M admits a Kähler structure or a T 2{bundle over T 2 .

Proof We have the following short exact sequence coming from the Seifert
�bration

1 −! �1(F ) −! �1(S1 �M)
�#−−! �orb1 (B) −! 1 ;

where F is a generic �ber, �orb1 (B) denotes the fundamental group of B as an
orbifold and � is the projection map of the �bration. Let u be a generator of
�1(S1 � fptg) in �1(S1 �M) as in the proof of Lemma 3.7.

First assume that �#(u) is nontrivial in �orb1 (B). Then it generates an in�nite,
cyclic, normal subgroup (cf. proof of Lemma 3.7). Existence of such a subgroup
in �orb1 (B) is possible only if B is a nonsingular orbifold of genus 1, i.e. a torus.
So the Seifert �bration we have is in fact a T 2{bundle over T 2 .

Now assume u 2 ker(�#). Then as in the proof of Theorem 5.2 we have

1 −! Z −! �1(M) −! �orb1 (B) −! 1 :

In particular, there is an in�nite cyclic normal subgroup of �1(M). Since X
admits a symplectic structure b+(X) � 1 and so is b1(M). This implies that
M is su�ciently large. Therefore we can use Corollary 12.8 in [11] to conclude
that M is a Seifert �bered space. So S1 �M admits a complex structure by
Theorem 5.4, hence it admits a Kähler structure or a T 2{bundle over T 2 as in
the proof of statement (C).

This proposition (together with Theorem 5.2 and Corollary 3.6) �nishes the
proof of Theorem 1.1.

6 Geometry of M and structures on S1 �M

During the course of our proof of Theorem 1.1 we made observations on the
interaction between various structures and �brations on M and S1�M . In this
section, we recall some of those observations and use them to prove a couple of
theorems on the relation between the geometry of M and S1 �M .

Throughout this section we will assume that M is a closed, connected and
oriented 3{manifold with no fake 3{cells.

In the proof of Proposition 5.5 we used the existence of a symplectic structure
on S1 �M to conclude that b+(S1 �M) = b1(M) > 0. Note that b1(M) > 0
implies that M is su�ciently large.
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Theorem 6.1 If S1 �M is Seifert �bered and M is su�ciently large, then
M admits a nonhyperbolic geometric structure.

Proof As in the proof of Proposition 5.5 we look at the homotopy sequence
of the Seifert �bration. There are two di�erent cases depending on the image
of a generator u of �1(S1 � fptg) � �1(S1 �M):

If u is in the kernel, then we have an in�nite cyclic normal subgroup in �1(M).
Since M is su�ciently large, Corollary 12.8 in [11] implies that M is a Seifert
�bered space.

If u is not in the kernel, then S1�M admits a T 2{bundle over T 2 , in particular
it is symplectic. Hence (e.g. by (L) of Theorem 1.1) M �bers over the circle
with �ber a torus. By Theorem 5.5 in [24] M is geometric of type E3 , Nil3 or
Sol3 .

It is now clear that in any case M is geometric but not hyperbolic.

As we mentioned before if M is Seifert �bered, then S1�M admits a complex
structure. If M is geometric of type Sol3 , then S1�M is obviously geometric
of type E1 � Sol3 and as a consequence S1 �M doesn’t admit any complex
structure [33].

On the other hand, Theorem 5.1 says that if S1�M admits a complex structure,
then it is either of Class VII0 or an elliptic surface and in any case, by the
remark following Theorem 5.1 S1 �M is Seifert �bered.

This discussion leads us to the following conclusion which is a partial converse
of the well-known Theorem 5.4.

Theorem 6.2 If S1 �M admits a complex structure and M is su�ciently
large, then M is a Seifert �bered space.
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