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Abstract

The groups of link bordism can be identified with homotopy groups via
the Pontryagin–Thom construction. B.J. Sanderson computed the bordism
group of 3 component surface–links using the Hilton–Milnor Theorem, and
later gave a geometric interpretation of the groups in terms of intersections
of Seifert hypersurfaces and their framings. In this paper, we geometrically
represent every element of the bordism group uniquely by a certain standard
form of a surface–link, a generalization of a Hopf link. The standard forms
give rise to an inverse of Sanderson’s geometrically defined invariant.
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1 Introduction

By an n-component surface–link we mean a disjoint union F = K1∪ . . .∪Kn of
closed oriented surfaces K1, . . . ,Kn embedded in R4 locally flatly. Each Ki is
called a component, which may or may not be connected, and possibly empty.
Two n-component surface–links F = K1 ∪ . . . ∪ Kn and F ′ = K ′1 ∪ . . . ∪ K ′n
are bordant if there is a compact oriented 3-manifold W properly embedded
in R4 × [0, 1] such that W has n components W1, . . . ,Wn with ∂Wi = Ki ×
{0} ∪ (−K ′i) × {1}. Let L4,n be the abelian group of link bordism classes of
n-component surface–links. The sum [F ] + [F ′] of [F ] and [F ′] is defined by
the class of the split union of F and F ′ . The identity is represented by a trivial
n-component 2-link. The inverse of [F ] is represented by the mirror image of
F with the opposite orientation.
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300 Carter, Kamada, Saito and Satoh

Brian Sanderson [17] identified the bordism group L4,n of (oriented) n-
component surface–links with the homotopy group π4(∨n−1

i=1 S
2
i ) using a gener-

alized Pontryagin–Thom construction, and computed the group via the Hilton–
Milnor Theorem. Using the transversality theory developed in [2], Sanderson
[18] also gave an explicit interpretation of the invariants using Seifert hypersur-
faces.

Specifically, let F = K1 ∪ · · ·Kn be an n-component surface–link. It is known
(cf. [19]) that each Ki bounds a Seifert hypersurface Mi , i.e., an oriented com-
pact 3-manifold with ∂Mi = Ki . The double linking number, denoted by
Dlk(Ki,Kj), between two components Ki and Kj is the framed intersection
Mi ·Kj ∈ π4(S3) = Z2 . The triple linking number, denoted by Tlk(Ki,Kj ,Kk),
among three components Ki , Kj , and Kk , is the framed intersection Mi ·Kj ·
Mk ∈ π4(S4) = Z. Then Sanderson’s geometrically defined invariant

H: L4,n → A = (Z⊕ . . .⊕ Z︸ ︷︷ ︸
n(n−1)(n−2)

3

)⊕ (Z2 ⊕ . . . ⊕ Z2︸ ︷︷ ︸
n(n−1)

2

)

is given by

H([F ])=((Tlk(Ki,Kj ,Kk),Tlk(Kj ,Kk,Ki))1≤i<j<k≤n, (Dlk(Ki,Kj))1≤i<j≤n),

and it was shown [18] that this gives an isomorphism.

The purpose of this paper is to give an inverse map

G: A = (Z⊕ . . .⊕ Z︸ ︷︷ ︸
n(n−1)(n−2)

3

)⊕ (Z2 ⊕ . . . ⊕ Z2︸ ︷︷ ︸
n(n−1)

2

)→ L4,n

of H , by giving an explicit set of geometric representatives for a given value
of Sanderson’s invariant. The representatives are generalized Hopf links, called
Hopf 2-links (without or with beads), which are defined in Sections 2 and 3.

More specifically, we identify (Z⊕ . . .⊕ Z)⊕ (Z2 ⊕ . . . ⊕ Z2) with the abelian
group which is abstractly generated by a certain family F of Hopf 2-links
without or with beads and the homomorphism G maps each generator to its
bordism class. We prove that this homomorphism G is surjective. (It is clear
that H ◦G = ±1; just use the obvious Hopf solid link and/or normal 3-balls as
Seifert hypersurfaces when you evaluate H .) Then G is an isomorphism which
is an inverse of Sanderson’s homomorphism H (up to sign). The surjectivity is
a consequence of the following theorem.

Theorem 1.1 Any n-component surface–link F is bordant to a disjoint union
of Hopf 2-links without or with beads. More precisely, [F ] ≡ 0 modulo 〈F〉,
where 〈F〉 is the subgroup of L4,n generated by the classes of elements of F .
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Our proof constructs bordisms to unions of Hopf 2-links geometrically, and thus
gives a self-contained geometric proof of the Sanderson’s classification theorem,
without using the Hilton–Milnor theorem.

The paper is organized as follows. Section 2 contains the definition of a Hopf
2-link and its characterization in the bordism group. Hopf 2-links with beads
and their roles in the bordism group are given in Section 3, which also contains
the definition of the family F and a proof of the Theorem 1.1. We describe
alternate definitions of Dlk and Tlk in Section 4.

2 Hopf 2-Links

A Hopf disk pair is a pair of disks D1 and D2 in a 3-ball B3 such that there is
a homeomorphism from B3 to a 3-ball

{(x, y, z) | x2 + y2 + z2 ≤ 9}

which maps D1 to
{(x, y, z) | x2 + y2 ≤ 1, z = 0}

and D2 to
{(x, y, z) | (y − 1)2 + z2 ≤ 1, x = 0}

homeomorphically. The boundary of such a disk pair is a Hopf link in B3 .

A pair of solid tori V1, V2 in R4 is called a Hopf solid link if there is an embed-
ding f : B3×S1 → R4 such that f(Di×S1) = Vi for i = 1, 2. The boundary of
a Hopf solid link is called a Hopf 2-link , which is a pair of embedded tori in R4 .
A simple loop f((a point of B3)×S1) is called a core loop of the Hopf solid link
and the Hopf 2-link. Any simple loop α in R4 is ambient isotopic to a standard
circle in R3 ⊂ R4 . Since there are only two equivalence classes of framings of
α (or trivialization of N(α) ∼= B3 × S1 ), any Hopf 2-link is deformed by an
ambient isotopy of R4 so that the projection is one of the illustrations depicted
in Figure 1. If it is deformed into the illustration on the left side, it is called
a standard Hopf 2-link ; and if it is deformed into the illustration on the right
side, it is called a twisted Hopf 2-link .

We assume that a Hopf disk pair is oriented so that the boundary is a positive
Hopf link. If the core loop is oriented, a Hopf solid link and a Hopf 2-link are
assumed to be oriented by use of the orientation of the Hopf disk pair and the
orientation of the core loop. (In this situation, we say that the Hopf 2-link is
oriented coherently with respect to the orientation of the core loop.)
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Remark 2.1 Let F = T1 ∪ T2 be a Hopf 2-link whose core loop is α. Then
F is ambient isotopic to −F = −T1 ∪−T2 in N(α), where −F means F with
the opposite orientation. Let F ′ = −T1 ∪ T2 and −F ′ = T1 ∪ −T2 . Then F ′

and −F ′ are ambient isotopic in N(α). When α is oriented, one of F and F ′

is oriented coherently with respect to α, and the other is oriented coherently
with respect to −α. Since α and −α are ambient isotopic in R4 , F , −F , F ′

and −F ′ are ambient isotopic in R4 .

Figure 1

Lemma 2.2 For a Hopf 2-link F = T1 ∪ T2 , the following conditions are
mutually equivalent.

(1) F is standard.

(2) Dlk(T1, T2) = 0.

(3) F is null-bordant.

Proof Using a Hopf solid link, we see that for the left side of Figure 1,
Dlk(T1, T2) = 0 and for the right, Dlk(T1, T2) = 1. (This is also seen by
Remark 4.1.) Thus (1) and (2) are equivalent. Suppose (1). Attach 2-handles
to T1 and T2 . Then T1 and T2 change to 2-spheres which split by isotopy, and
hence F is null-bordant. Thus (1) ⇒ (3). It is obvious that (3) ⇒ (2).

Let α and α′ be mutually disjoint oriented simple loops in R4 , and let F =
T1 ∪ T2 and F ′ = T ′1 ∪ T ′2 be Hopf 2-links whose core loops are α and α′ such
that F and F ′ are oriented coherently with respect to the orientations of α and
α′ . Let α′′ be an oriented loop obtained from α ∪ α′ by surgery along a band
B attached to α ∪ α′ . Let E be a 4-manifold in R4 whose interior contains
α,α′ and B .

Lemma 2.3 In the above situation, there is a Hopf 2-link F ′′ = T ′′1 ∪T ′′2 whose
core loop is α′′ such that F ′′ is bordant in E to the 2-component surface–link
(T1 ∪ T ′1) ∪ (T2 ∪ T ′2).
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Proof Consider a tri-punctured sphere Σ embedded in E×[0, 1] whose bound-
ary is ∂Σ = ∂0Σ ∪ (−∂1Σ) with ∂0Σ = (α ∪ α′) × {0} and ∂1Σ = α′′ × {1}.
There exists an identification of a regular neighborhood N(Σ) in E × [0, 1]
with B3 × Σ such that the Hopf 2-links F and F ′ in E × {0} correspond to
(∂D1 ∪ ∂D2) × ∂0Σ, where D1 ∪D2 ⊂ B3 is an oriented Hopf disk pair. The
desired F ′′ is obtained as (∂D1 ∪ ∂D2)× ∂1Σ.

The transformation described in Lemma 2.3 is called fusion between two Hopf
2-links. The inverse operation of fusion is called fission of a Hopf 2-link.

Lemma 2.4 Let F = T1∪T2 be a twisted Hopf 2-link. The order of [F ] ∈ L4,2

is two.

Proof It is a consequence of Lemmas 2.2 and 2.3.

3 Hopf 2-Links with Beads and Proof of Theorem 1.1

Let α be a simple loop in R4 and let N(α) ∼= B3×α be a regular neighborhood.
We call a 3-disk B3×{∗} (∗ ∈ α) a meridian 3-disk of α, and the boundary a
meridian 2-sphere of α. Let D1 ∪D2 be a Hopf disk pair in a 3-disk B3 . Let
f : B3×S1 → R4 be an embedding, and let p1, . . . , pm be points of S1 . We call
the image f(∂D1×S1)∪ f(∂D2×S1)∪ f(∂B3×{p1})∪ . . .∪ f(∂B3×{pm}) a
Hopf 2-link with beads. Each meridian 2-sphere f(∂B3×{pi}) is called a bead .
We denote by S(i,j) a twisted Hopf 2-link (as an n-component surface–link) at
the ith and the j th component, and by S(i,j,k) a standard Hopf 2-link (as an
n-component surface–link) at the ith and the j th components with a bead at
the kth component, respectively. Let F denote a family of Hopf 2-links

{S(i,j,k) | i < j < k} ∪ {S(i,k,j) | i < j < k} ∪ {S(i,j) | i < j},

and 〈F〉 the subgroup of L4,n generated by the classes of elements of F .

Remark 3.1 Let F = T1 ∪ T2 ∪ S be a Hopf 2-link T1 ∪ T2 with a bead S
whose core is α. By Remark 2.1, −T1 ∪ T2 ∪ S and T1 ∪ −T2 ∪ S are ambient
isotopic in N(α). By an ambient isotopy of R4 carrying α to −α, −T1∪T2∪S
is carried to T1 ∪ T2 ∪ −S . Therefore, any Hopf 2-link with a bead obtained
from F by changing orientations of some components is ambient isotopic to
F = T1 ∪ T2 ∪ S or T1 ∪ T2 ∪−S .
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We denote by S−(i,j,k) the Hopf 2-link S(i,j,k) such that the orientation of the
bead is reversed. It is clear that [S−(i,j,k)] = −[S(i,j,k)] in L4,n (for example, use
Lemmas 2.2 and 2.3). Thus, in the following proof, we do not need to take care
of an orientation given to S(i,j,k) .

Proof of Theorem 1.1 (Step 1) Let M1 be a Seifert hypersurface for K1

which intersects K2, . . . ,Kn transversely. For each k (k = 2, . . . , n), let A1k be
the intersection M1∩Kk , which is the union of oriented simple loops in Kk (or
empty). Let N(Kk) = D2×Kk be a regular neighborhood of Kk in R4 . For a
component α of A1k , let V1(α) be a solid torus D2×α (⊂ D2×Kk = N(Kk))
in R4 and T1(α) the boundary of V1(α). They are oriented by use of the
orientation of a meridian disk D2 × {∗} of N(Kk) and the orientation of α.
Then [α] ∈ H1(Kk) corresponds to [T1(α)] ∈ H2(E(Kk)) by the isomorphism

H1(Kk) ∼= H1(Kk) ∼= H1(N(Kk)) ∼= H2(E(Kk))

obtained by the Poincaré and Alexander dualities, where E(Kk) is the exte-
rior of Kk . Put V1(A1k) =

⋃
α∈A1k

V1(α) and T1(A1k) =
⋃
α∈A1k

T1(α). The
surface K1 is bordant to

⋃n
k=2 T1(A1k) in R4\(

⋃n
k=2Kk), for they cobound a 3-

manifold Cl(M1\(
⋃n
k=2 V1(A1k))), where Cl denotes the closure. Thus, without

loss of generality, we may assume that K1 is
⋃n
k=2 T1(A1k).

Consider a Seifert hypersurface Mk for Kk . For a component α ∈ A1k , let
V2(α) = N1(α;Mk) be a regular neighborhood of α in Mk such that the union
V1(α)∪V2(α) forms a Hopf solid link in R4 with core α, see Figure 2 (the figure
shows a section transverse to α). Let N2(α;Mk) be a regular neighborhood
of α in Mk with N1(α;Mk) ⊂ intN2(α;Mk) and let C(α) be a 3-manifold
Cl(N2(α;Mk)\N1(α;Mk)). By C(α), the 2-component surface–link T1(α) ∪
Kk is bordant to T1(α) ∪ (∂V2(α) ∪ ∂(Cl(Mk\N2(α;Mk))). This 2-component
surface–link is ambient isotopic to ∂V1(α)′∪(∂V2(α)′∪Kk), where V1(α)′∪V2(α)′

is a Hopf solid link obtained from the Hopf solid link V (α)∪ V2(α) by pushing
out along N1(α;Mk) using C(α), see Figure 2. We denote by α′ a loop obtained
from α by pushing off along Mk so that α′ is disjoint from Mk and it is a core
of the Hopf solid link V1(α)′ ∪ V2(α)′ .

Put V1(A1k)′=
⋃
α∈A1k

V1(α)′ , V2(A1k)′=
⋃
α∈A1k

V2(α)′ , and A′1k=
⋃
α∈A1k

α′ .

The n-component surface–link F = K1 ∪ . . . ∪Kn is bordant to F (1) = K
(1)
1 ∪

. . . ∪K(1)
n such that K

(1)
1 =

⋃n
k=2 ∂V1(A1k)′,

K
(1)
j = ∂V2(A1j)′ ∪Kj for j = 2, . . . n.
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Figure 2

(Step 2) Let M2 be the Seifert hypersurface for K2 used in Step 1. By the
construction of A′12 , M2 ∩ A′12 = ∅. For each k with 3 ≤ k ≤ n, we may
assume that M2 intersects Kk and A′1k transversely. Using M2 , we apply a
similar argument to Step 1 to modify K2 up to bordism. For a component α of
A2k = M2∩Kk , let V1(α) be a solid torus D2×α (⊂ D2×Kk = N(Kk)) in R4

and V2(α) a solid torus N1(α;Mk). The intersection M2∩N(Kk) is V1(A2k) =⋃
α∈A2k

V1(α) and the intersection M2 ∩ N(A′1k) is a union of some meridian

3-disks of A′1k . Let F (2) be an n-component surface–link K
(2)
1 ∪ . . .∪K

(2)
n such

that 
K

(2)
1 =

⋃n
k=2 ∂V1(A1k)′,

K
(2)
2 = ∂V2(A12)′ ∪ (

⋃n
k=3 ∂V1(A2k)′),

K
(2)
j = ∂V2(A1j)′ ∪ ∂V2(A2j)′ ∪Kj for j = 3, . . . n.

By use of a 3-manifold which is M2 removed the above intersections, we see
that F (1) is bordant to an n-component surface–link F (2)′ which is the union
of F (2) and some meridian 2-spheres of A′1k with labels 2 for k = 3, . . . , n. The
meridian 2-spheres are the boundary of meridian 3-disks that are the intersec-
tion M2 ∩N(A′1k). The surface–link F (2)′ is bordant to the union of F (2) and
some standard Hopf 2-links S(1,k,2) or S−(1,k,2) whose core loops are small trivial
circles in R4 . Figure 3 is a schematic picture of this process (in projection in
R3 ), where an isotopic deformation and fission of a Hopf 2-link are applied.
Since [S(1,k,2)] belongs to 〈F〉, we see that F (2)′ is bordant to F (2) modulo
〈F〉.

(Step 3) Inductively, we see that F (i−1) is bordant to F (i) = K
(i)
1 ∪ . . . ∪K

(i)
n

modulo 〈F〉 such that
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Figure 3

K
(i)
j =

{
(
⋃j−1
k=1 ∂V2(Akj)′) ∪ (

⋃n
k=j+1 ∂V1(Ajk)′) for j with 1 ≤ j ≤ i,

(
⋃i
k=1 ∂V2(Akj)′) ∪Kj for j with i < j ≤ n.

Specifically, we see that F (i−1) is bordant to an n-component surface–link which
is a union of F (i) and some meridian 2-spheres of A′k1k2

such that k1 < i and
k2 6= i. These 2-spheres are the boundary of the meridian 3-disks that are the
intersection Mi ∩N(A′k1k2

). Since [Sk1,i,k2] belongs to 〈F〉, F (i−1) is bordant
to F (i) modulo 〈F〉.

Thus F is bordant to F (n) = K
(n)
1 ∪ . . . ∪K(n)

n modulo 〈F〉 such that

K
(n)
j = (

⋃j−1
k=1 ∂V2(Akj)′) ∪ (

⋃n
k=j+1 ∂V1(Ajk)′) for j = 1, . . . , n.

It is a union of Hopf 2-links and the link bordism class is in 〈F〉.

Recall that Sanderson’s homomorphism

H: L4,n → A = (Z⊕ . . .⊕ Z︸ ︷︷ ︸
n(n−1)(n−2)

3

)⊕ (Z2 ⊕ . . . ⊕ Z2︸ ︷︷ ︸
n(n−1)

2

)

is defined by

H([F ])= ((Tlk(Ki,Kj ,Kk),Tlk(Kj ,Kk,Ki))1≤i<j<k≤n, (Dlk(Ki,Kj))1≤i<j≤n)

for an n-component surface–link F = K1 ∪ . . . ∪ Kn . Let { eijk, e′ijk | i <
j < k } ∪ { fij | i < j } be a basis of A such that eijk = (0, . . . , 1, . . . , 0)
where 1 corresponds to Tlk(Ki,Kj ,Kk), e′ijk = (0, . . . , 1, . . . , 0) where 1 cor-
responds to Tlk(Kj ,Kk,Ki), and fij = (0, . . . , 1, . . . , 0) where 1 corresponds
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to Dlk(Ki,Kj). Give an orientation to each S(i,j,k) such that
Tlk(Si, Sj, Sk) = +1, Tlk(Sk, Sj , Si) = −1,
Tlk(Sj, Sk, Si) = 0, Tlk(Si, Sk, Sj) = 0,
Tlk(Sk, Si, Sj) = −1, Tlk(Sj , Si, Sk) = +1.

We consider a homomorphism G: A→ L4,n with G(eijk) = [S(i,j,k)], G(e′ijk) =
−[S(i,k,j)], and G(fij) = [S(i,j)], which is well-defined by Lemma 2.4. Then we
have H ◦G = id. Theorem 1.1 says that G is surjective.

Remark 3.2 In general, for any n-component surface–link F , it is known
(cf. [3]) that for any distinct i, j, k ,

Dlk(Ki,Kj) = Dlk(Kj ,Ki),
Tlk(Ki,Kj ,Kk) = −Tlk(Kk,Kj ,Ki),

Tlk(Ki,Kj ,Kk) + Tlk(Kj ,Kk,Ki) + Tlk(Kk,Ki,Kj) = 0.

From these formulas, it follows immediately from the condition H([F ]) =
H([F ′]) that Dlk(Ki,Kj)=Dlk(K ′i,K

′
j) and Tlk(Ki,Kj ,Kj)=Tlk(K ′i,K

′
j ,K

′
k)

for any distinct i, j, k .

4 Remarks on Linking Numbers

In this section we comment on different definitions and aspects of the generalized
linking numbers, Dlk and Tlk. To mention an analogy to projectional definition
of the classical linking number (cf. [14]), we start with a review of projections
of surface–links.

Let F = K1 ∪ · · · ∪Kn be an n-component surface– and let F ∗ = p(F ) be a
surface diagram of F with respect to a projection p: R4 → R3 . For details of
the definition of a surface diagram, see [4, 5, 15] for example. The singularity
set of F ∗ consists of double points and isolated branch/triple points. The
singularity set is a union of immersed circles and arcs in R3 , which is called
the set of double curves. Two sheets intersect along a double curve, which are
called upper and lower with respect to the projection direction. A double curve
is of type (i, j) if the upper sheet comes from Ki and the lower comes from
Kj . We denote by Dij the union of double curves of type (i, j). For distinct
i and j , Dij is the union of immersed circles. (If Dij contains an immersed
arc, its end-points are branch points. So the upper sheet with label i and
the lower sheet with label j along the arc come from the same component of

Algebraic & Geometric Topology, Volume 1 (2001)



308 Carter, Kamada, Saito and Satoh

F . This contradicts i 6= j .) Let D+
ij be the union of immersed circles in R3

obtained from Dij by shifting it in a diagonal direction that is in the positive
normal direction of the upper sheet and also in the positive normal direction
of the lower sheet of F ∗ along Dij so that Dij and D+

ij are disjoint. Let D̃ij

be a link (i.e., embedded circles) in R3 which is obtained from Dij by a slight
perturbation by a homotopy, and let D̃+

ij be a link in R3 which is obtained from
D+
ij similarly. Give D̃ij an orientation and D̃+

ij the orientation which is parallel
to that of D̃ij . The linking number between D̃ij and D̃+

ij does not depend on
the perturbations and the orientation of D̃ij , which we call the linking number
between Dij and D+

ij . Then we have

Remark 4.1 The double linking number Dlk(Ki,Kj) is equal to a value in
Z2 = {0, 1} that is the linking number between Dij and D+

ij modulo 2.

At a triple point in the projection, three sheets intersect that have distinct
relative heights with respect to the projection direction, and we call them top,
middle, and bottom sheets, accordingly. If the orientation normals to the top,
middle, bottom sheets at a triple point τ matches with this order the fixed
orientation of R3 , then the sign of τ is positive and ε(τ) = 1. Otherwise the
sign is negative and ε(τ) = −1. (See [3, 5].) A triple point is of type (i, j, k) if
the top sheet comes from Ki , the middle comes from Kj , and the bottom comes
from Kk . The following projectional interpretation of triple linking numbers
was extensively used in [3] for invariants defined from quandles.

Remark 4.2 The triple linking number Tlk(Ki,Kj ,Kk) is (up to sign) the
sum of the signs of all the triple points of type (i, j, k).

Let f : F1∪F2∪F3 → R4 denote an embedding of the disjoint union of oriented
surfaces Fi representing F = K1 ∪K2 ∪K3 . Define a map L: F1 × F2 × F3 →
S3 × S3 by

L(x1, x2, x3) =
(

f(x1)− f(x2)
||f(x1)− f(x2)|| ,

f(x2)− f(x3)
||f(x2)− f(x3)||

)
for x1 ∈ F1 , x2 ∈ F2 and x3 ∈ F3 . In [12] it is observed that the degree of L
is (up to sign) the triple linking number Tlk(K1,K2,K3).

For further related topics, refer to [1, 6, 7, 8, 9, 10, 11, 13, 16].
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