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APPROXIMATIONS FOR UNIFORMLY
CONTINUOUS FUNCTIONS ON GROUPOIDS

Madalina Roxana Buneci

Abstract. The purpose of this paper is to prove an approximation/extension theorem for
a family of partial functions on a groupoid satisfying a uniform compatibility condition. In the
particular case of a trivial groupoid G = X x X and a singleton family we recover the well-known
result of Katétov: every bounded uniformly continuous real-valued function f defined on a subspace
of a uniform space X has a bounded uniformly continuous extension to X.

1 Introduction

The notion of groupoid generalizes the notion of group by replacing the binary
operation with a partial function. More precise, a groupoid is a set G endowed with
partial product operation (x,y) — zy [: G® — G] (where G®) € G x G) and an
inversion operation z +— 27! [: G — G] satisfying appropriate versions of the group
axioms:

G1 If (z,y) € G? and (y,2) € G, then (zy,2z) € G?, (z,y2) € G® and
(zy) 2 = x (yz).

G2 (x_l)_l =gz for all z € G.
G3 For all x € G, (w,x_l) e G?, and if (z,2) € G®@ | then (zz)z~! = 2.

G4 For all z € G, (ZL'_l,ZL‘) € G, and if (z,y) € G®, then ! (zy) = ¥.

We use the same definition, notation and terminology concerning groupoids as
in [2]: r(z) =2z !, d(z) = 2z 'z, GO = r(G) = d(G), G* = r ' ({u}), G, =
d~t({u}), G* = G* N G,.

Definition 1 ( [2, Definition 2.1]). Let G be a groupoid. By a G-uniformity we
mean a collection {W }y, oy, of subsets of G satisfying the following conditions:
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1. GO cW C G for al WeW.

2. If Wi, Wo € W, then there is W3 C W1 N Wy such that W3 € W.
3. For every W1 € W there is Wo € W such that WoWy C Wh.

4. W =W-tfor all W € W.

Let us remark that for G = X x X (viewed as a trivial groupoid under the
operations: (z,y) (y,2) = (2, 2) and (z,y) " = (y,z)) a G-uniformity is a fundamental
system of symmetric entourages of a uniform structure on X.

Definition 2 ([2, Definition 3.2]). Let G be a groupoid endowed with a G-uniformity
W, AC G and E be a Banach space. A function h: A — E is said to be uniformly
continuous on fibres if and only if for each € > 0 there is W. € W such that:

|h(x) — h(szt)|| <e forall s,t €W, andz € AN Gfg:)) such that sxt € A.

Obviously, if f, g : G — R are uniformly continuous on fibres, then |f|, f, f+g are
uniformly continuous on fibres. If f,g : G — R are bounded uniformly continuous
on fibres functions, then fg is a bounded uniformly continuous on fibres function.

The purpose of this paper is to prove an approximation/extension theorem for
a family of partial functions {f},cp satisfying a uniform compatibility condition
(fz: Sy = R, where S, C G forall x € H and G is a groupoid). As a particular case,
we obtain that if S is a subspace of a groupoid GG endowed with a G-uniformity, then
every bounded uniformly continuous on fibres real-valued function f: S — R has a
bounded uniformly continuous on fibres extension to G. Furthermore if G = X x X
(viewed as the trivial groupoid on X), we recover the well-known result of Katétov
[3, Theorem 3.

2 Approximations for uniformly continuous on fibres
functions
We shall use a consequence of the following theorem proved in [2]:

Theorem 3 ( [2, Theorem 2.5]). Let G be a groupoid, W be a G-uniformity (in the
sense of Definition 1) and let
1

Let us consider an I-indexed family {W;},.; satisfying the following properties:

1. Wy €W forallie 1.
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2. W/Z-W/Z-CngforalliEI,igé.

Then for every subset A of G there is a function f = faw, : G — [0, 1] satisfying
the following conditions:

L IfneN,n>2 z€G andy € WijpgmaWyjon, then |f (z) — f (y)] < 2%2
Consequently, f is uniformly continuous on fibres (in the sense of Definition
f(z) =0 forall x € A.

f(z)=1 forallx ¢ WAW.

If A= A" then f(z)=f (x_l) forall x € G.

Cro o e

If G is endowed with a topology such that W; I/V,k Wi A Wi L Wy W,
is open for all i1, io, ..., ix €I, i < ip_1 < ... < i1 < 1 then f is upper

semi-continuous.

6. For alln € N, , n > 2, we have Wy gnt1 AW} jgni1 C {x f(x) < 2%} C
Wl/zn—l AWl/Qn—l .

7. If A= GO, then f (zy) < 3f (x) + f (y) for all (x,y) € GP.
8 If A= GO, then f (zy) <2(f (z) + f (y)) for all (z,y) € GP.

9. If A= GO, then f (z129...xp) < 3(f (z1) + f (x2) + ... + f (z,)) for alln € N
and 1,2, ...,y € G such that d (z;) = r (zi41) for alli € {1,2,....,.n — 1}.

10. If A= GO and for every x € G\ G(O) there is i, € I such that x ¢ W;_ (or
equivalently, (YW jon = GO), then =1 ({0}) = GO,

Corollary 4. Let G be a groupoid endowed with a G-uniformity VW (in the sense
of Definition 1). If A and B are two subsets of G with the property that there
is W € W such that WAW C B, then there is a uniformly continuous on fibres
function f : G — [0, 1] such that f(x) =1 for all z € A and f(x) = 0 for all
x ¢ B.

Proof. Let C' = G\ B and notice that C € G\ WAW. By Theorem 3 there is a
uniformly continuous on fibres function f : G — [0,1] such that f(z) = 1 for all
z € Aand f(x) =0 for all x ¢ WAW and thus for all z € C. O

Lemma 5. Let G be a groupoid endowed with a G-uniformity VW (in the sense of
Definition 1). Let S C G and f : S — R be a function that is uniformly continuous
on fibres. Let a < b be two real constants and let

A = {ze€S:f(x)<a}
B = {ze8: f(x)>0b}.
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Then there is W € W such that WAW N B = 0.

Proof. Since f is uniformly continuous on fibres, there is W € W such that O

|f () = f (sat)] < (b—a) forall s,t€ W andz € ANGL;).

d(s)
r(t)’

f(sxt) = f(sat)— f(zx)+ f(z) <b—a+a=b.

Consequently, szt ¢ B.

Thus if s,te Wandz € ANG then

Theorem 6. Let G be a groupoid endowed with a G-uniformity W (in the sense of
Definition 1). Let {S;},cp be a family of subsets of G and {f.} .y be a family of
functions f, : Sy — R satisfying the following conditions:

cl. sup,cysup,eg, |fz (2)] < oo .

c2. Thereis a family {H.}, . of subsets of H and there is a family {W }
such that (.o He # 0 and

|[fy (s2t) — fa (2)| < e

W

z—:>0

for all z,y € H, s,t € W andz € G ((ts)) NS, with the property that szt € S,.

If ¢ > 0 is such that ¢ > sup,cpy sup,eg, |f (2)], then there is a bounded uniformly

continuous on fibres function h : G — R such that

1. |h| < conG.

2. For all positive integers n and all x € ﬂ?;rll Hyicygi, |fo —h| < 232121 on Sy.

8. For all xg € (\osg He, h = fz, on Sy,.

Proof. We use a similar reasoning as in the proof of Tietze Extension Theorem (see
https://proofwiki.org/wiki/Tietze_Extension_Theorem for instance). Let ¢ > 0 be
such that ¢ > sup,cpy sup,eg, |f (2)|. Let us denote Jo = Hy./3 and let

Cc

Ay = U:ceJo {z €8y fz(2) < —g}
B = U, {e5: =5}
There is Wy = WQEC[ /3 € W such that

1y (520) = fo (] <
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for all s,t € Wy, z,y € Jg and z € S; N G%f)) such that szt € Sy. Thus if x,y € Jy,

s,t € Wy and z € Ay N Gfgf)) NS, is such that szt € Sy, then

2¢c ¢ c

fy (SZt) = fy (SZt> - fa: (2) + f:v (Z) < ? — g = §

Hence saxt ¢ By. Consequently, WoAoWy N By = (. By Corollary 4 there is a
uniformly continuous on fibres function fo : G — [0, 1] such that fy (z) = 0 for all
x € Ag and fo(x) = 1 for all x € By. Let go : G — R be defined by go () =
Lfo(x)—Sforallz € G. Then —£ < go < &, g(x) = =% for z € Ag and go () = £
for x € By. Hence

C
lgo| < 3 on G

2
gc on S, for all z € J.

IN

‘fac - 90‘

Since go is uniformly continuous on fibres, there is W, . € W such that

90 (s2) = g0 (2)] < 5

for all s, € W, and z € Gf(s). Thus if z,y € Hy.y3 N Jo, s, € Wg/g NWye

®)
and z € Ag N Gf((ts)) NS, is such that szt € Sy, then we have

£y (528) = go (szt) = (fa (2) =90 (2))] < |fy (s28) = fo (2)] + |90 (s21) = g0 (2)]

% e,
3 3

Hence the family {fz — go},c J, satisfies the hypotheses of the theorem. Let us repeat

the procedure with the family {f; —go},c;, instead of {fi},cp , {H2€/3 N ‘]O}a
instead of {H.}, and % instead of c. We obtain a function g; : G — R such that

2c
| £ S onG
9
4c
lfo—g90—q1] < 9 on S; for all x € J; = Hycj9 N Jo.
Thus we can inductively generate functions gg, g1, ..., gn, .... such that
2"c
lgn| < gt on G
2n+lc
lfo—go—g1— . —gn] < Sor1 0P Sy for all z € Hont1./3n41 N .
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2" ¢

swg for all n, it follows that the series ) g, converges absolutely

n>0
and uniformly on G to a real-valued function h satisfying |h| < ¢ on G. Since all
gn are uniformly continuous on fibres, h is uniformly continuous on fibres. For all

z € Han+1./3n+1 N Jp, we have

Since |gn| <

o0 ntle ontle  gntZe
\fo=hl <|fe—g0— 91— — gul + Zk:nH 96l < S + et = e

and consequently, f;, = h on Sy, for all zg € (.., He. Moreover

>0

sup |h (x)] < ec.
el

O]

Corollary 7. Let G be a groupoid endowed with a G-uniformity VW (in the sense
of Definition 1). Let S C G and f : S — R be a bounded function that is
uniformly continuous on fibres. Then there is a bounded uniformly continuous on

fibres function h : G — R such that h (x) = f(x) for all x € S. Moreover h can be
chosen such that sup,cg f (z) = sup,cq |h (z)].

Proof. The family for which the only one element is { f : S — R} satisfies the hypotheses
of Theorem 6. U

Corollary 8. Let X be a uniform space and let U be a fundamental system of

symmetric entourages of the uniformity on X. Let {gj}jeJ be a family of functions

gj + S; = R, where S; C X for all j € J. Let us assume that the family {gj}jeJ
satisfies the following conditions:

cl. supje;supjeg, |9 (2)| < 0.

c2. There is a family {J.}.., of subsets of J and there is a family {UeJ}5>0 cu

such that (\.~oJe # 0 and

l9j () —gr (y)| < e

for all j,k € J. and (z,y) € U with the property that x € S; and y € Sy.

If ¢ > 0 is such that ¢ > sup,ep sup,eg, | f (2)|, then there is a bounded uniformly
continuous on fibres function h : X — R such that

1. |h| <con X.
.. . . 1 n+2
2. For all positive integers n and all j € (i Jaicszis 195 — h| < % on Sj.
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8. For all jo € (oo Jer h = gj, on Sj,.

Proof. Let us consider the trivial groupoid G = X x X. Then U satisfies conditions
1 — 4 from Definition 1. Thus i/ is G-uniformity on the groupoid G = X x X. Let
rxeX.

For each j € J, let f; : {x} x S; — R be defined by f; (z,y) = g; (y) for all
(z,y) € {z} x Sj. Then

5 (2, 2) (2, 2) (2,9)) = fu (@, 2)] = |95 (y) — 9x (2)] <€

for all j,k € J. and (z,y) € U/ with the property that y € S; and 2z € S. Thus
the family {f; }j ¢y satisfies the hypotheses of Theorem 6. O

Remark 9. If X is a uniform space and g : S — R is a bounded uniformly
continuous function, where S C X is endowed with the uniform structure coming
from X, then, applying the preceding corollary to the singleton family {g}, there is
a bounded uniformly continuous function h : X — R such that h (z) = f (x) for all
x € S. Moreover h can be chosen such that sup,cg |f (z)| = sup,eq |h (z)|. Thus
we obtain [3, Theorem 3].

A topological groupoid is a groupoid G together with a topology on G such that
the product operation (z,y) — zy [: G® - G] (where G® ¢ G x G is endowed
with the topology induced by the product topology on G x G) and the inversion
operation x > ! [: G — (] are continuous functions.

Lemma 10. Let G be a topological groupoid and W be a family of neighborhoods of
GO . Let us assume that topology on G has the property that for each x € G and
each neighborhood V' of x there is W € W and there is a neighborhood U of x such
that WUW C V. Then for each W1 € W and each x € G, there is Wo € W and
there is a neighborhood V of x such that V"WV C Wi,

Proof. For each Wi € W and each x € G, there is a neighborhood Vi of x such
that VflVl C Wi. Furthermore there is Wy € W and there is a neighborhood
V of x such that WoVWy C Vi. Hence (WoVWo) ' WoVW,y C Vi1V € Wi
Consequently, V'WoV ¢ W, 'V Wy tWo VW, € Vi tvy € . O

Remark 11. FEvery locally Hausdorff, locally compact groupoid G (in the sense
of [4, p. 6]) satisfies the hypothesis of the preceding lemma ([4, Lemma 2.10],[4,
Lemma 2.14]) with W a fundamental system of diagonally compact ([4, p. 10])
neighborhoods of G().

Proposition 12. Let G be a topological groupoid and W be a family of neighborhoods
of GO satisfying conditions 1 — 4 in Definition 1. Let us assume that the topology
of G has the property that for each x € G and each neighborhood V of x there is
W € W and there is a neighborhood U of x such that WUW C V. Let g € G,
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let Vy be a neighborhood of o and let f : G¥V0) 5 R be a bounded function that is
uniformly continuous on fibres with respect to the G-uniformity W. For each x € Vj,
let us define f, : G'® = R, f.(y) = f (x_ly) for all y € G™®) . Then there is a
bounded uniformly continuous on fibres function h : G — R (with respect to the
G-uniformity W) such that

1. sup,cq |h(2)| < sup,cgavy |f (2)].
2. h= fy on GT®@),

3. For each € > 0 there is a neighborhood U, C Vy of xo such that for all x € Ug,
|fe —h| <& on G"@).

Proof. Since f is uniformly continuous on fibres, it follows that for each € > 0, there
is Wy, € W such that |f (szt) — f (2)| < e for all s,t € Wy, and z € Gfgf)) N Gatvo),
Furthermore there is Wy, oo € W (Wi, C Wye) and there is a neighborhood
V. € Vy of xg such that Vg_le,ngE C Wye. For all x,y € V., s,t € Wiy,

and z € Gfg:)) N G"(*) with the property that szt € G"®), we have
Ify (s2t) — fo (2)] = ‘f (y_lszt) —f (:r_lz)| = ‘f (y_ls:mc_lzt) —f (x_lz)‘ =
= ‘f (slx_lzt) —f (:c_lz)‘ <e

because s’ =y~ tsx € V.1 Wy. . Ve C Wy and t € Wy py C Wye. Thus {feteevs
satisfies the hypotheses of Theorem 6 with H = V, H. = V_, WEH = Wye, and
¢ = sup,qavp) |f (2)]. Consequently, there is a bounded uniformly continuous on

fibres function A : G — R such that

i) |h| <conG.
ii) For all positive integers n and all z € ()} Vaicygis [ fo — bl < 2;"7? on G"(®@),
iii) For all € ..o Ve, h = f, on G"@).

Since x¢ € [\, V-, it follows that h = f;, on G"(@0) Let & > 0 and let n. be a
positive integer such that 2;%1210 <e.lfxelU =NE! Vaicszi then [fz —h| < e

on G"(®). O

Remark 13. Any topological groupoid that is paracompact admits a fundamental
system W of neighborhoods that is a G-uniformity compatible with the topology of
fibres [5]. The same is true for a topological groupoid with paracompact unit space

/1],
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