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SPECTRUM OF A FAMILY OF OPERATORS

Simona Macovei

Abstract. Having as start point the classic definitions of resolvent set and spectrum of a linear
bounded operator on a Banach space, we introduce the resolvent set and spectrum of a family of
linear bounded operators on a Banach space. In addition, we present some results which adapt to

asymptotic case the classic results.

1 Introduction

Let X be a complex Banach space and L(X) the Banach algebra of linear bounded
operators on X. Let T be a linear bounded operator on X. The norm of T is
1T = sup {|Tz||| = € X, [la] <1},

The spectrum of an operator T' € L(X) is defined as the set
Sp (T) =C\r(T),
where r(T") is the resolvent set of T and consists in all complex numbers A € C for
which the operator AI — T is bijectiv on X.
It is an important fact that the resolvent function A — (A — T)_1 is an analytic
function from r(7T') to L(X) and for A € r(T") we have
1
d\r(T) > ——— .
Jor=n]

Moreover, for A € r(T), the resolvent operator R (A, T) € L(X) is defined by the
relation R (X, T) = (A\] —T)"" and satisfied the resolvent equation

for all A\, u € r(T"). Therefore, in particular, R (A\,T") and R (¢, T) commute.

We say that an infinite series of operators )  T), is absolutely convergent if the series
STy || is convergent in L(X) and ||> 1| < > |70/

If |T]| < 1, then

M-T)'=) 1"
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138 S. Macovei

and it is absolutely convergent. A consequence of this is the fact that 7(7") is an
open set of C.

Theorem 1. Theorem 1.1. Let T' € L(X) be a linear bounded operator on X. Then
Sp (T) is a non-empty compact subset of C.
The spectral radius of an operator T € L(X) is the positive number equal with

supesp(ry |l -

Theorem 2. Let T' € L(X). Then

sup |A| = lim |77 .
XeSp(T) n—00

Let Q2 be an open neighborhood of Sp (T') and let H(QY) denote the space of all complex
valued analytic functions defined on 2. The application f — f(T): H(Q2) — L(X)
defined by the relation

f<T>:./f<A>R<A,T>dA,

where v is a contour which envelopes Sp(T") in 2, is called the holomorphic functional
calculi of T.

Theorem 3. Let T € L(X) and suppose that Q is an open neighborhood of Sp (T').
Then, for all f € H(Q2), we have

f(Sp(T)) = Sp(f (T)).

We also remember that two operators T', S € L(X) are quasinilpotent equivalent if

1 1
an@—swl" " =0,

n—oo

= lim |5 =)

n—o0

where (T — §)" = S (=)™ FepTkS™k for any n € N.
The quasinilpotent equivalence relation is reflexive and symmetric. It is also transitive

on L(X).

Theorem 4. Theorem 1.4. Let T,S € L(X) be two quasinilpotent equivalent
operators. Then

Sp(T) = Sp(S).
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Spectrum of a Family of Operators 139

2 Asymptotic equivalence and asymptotic quasinilpotent
equivalence

Definition 5. We say that two families of operators {Sp}, {In} C L(X), with
h € (0,1], are asymptotic equivalent if

lim||Sy, —Tn|| =0 .
lim |15y — T

Two families of operators {Sp}, {Tn} C L(X), with h € (0,1], are asymptotic
quasinilpotent equivalent if

3=

lim limsup H(Sh — Th)[n]H " = lim limsup H(Th — Sh)[n]H =0.

N0 h—0 o0 h—0

Proposition 6. The asymptotic (quasinilpotent) equivalence between two families of
operators {Sy}, {In} C L(X) is an equivalence relation (i.e. reflexive, symmetric
and transitive) on L (X).

Proof. 1t is evidently that the asymptotic equivalence is reflexive and symmetric.
Let {Sn}, {Tn}, {Un} C L(X) be families of linear bounded operators such that
{Sn}, {Th} and {Un}, {11} are respectively asymptotic equivalent. Then

lim sup ||Sh - Uh”
h—0

= limsup ”Sh - Th + Th — Uh” S lim HSh — Th” + lim ”Th — UhH
h—0 h—0 h—0

=0.

The asymptotic quasinilpotent equivalence is also reflexive and symmetric.

In order to prove that it is transitive, let {Sp}, {Tn}, {Prn} C L(X) such that
{T1}, {Pn} and {S,}, {Pn} be respectively asymptotic quasinilpotent equivalent.
Then for any € > 0 there exists a ne € N such that

(Th — Ph)[j] < Ej
and '
(Ph—Sp)" 7 < e,

for every j,n — j > n. and h € (0,1].
Taking
| @ =2 |2 = s
M. = max . , ; ,1

1<j<ne el el
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we obtain ' ‘
H(Th — Ph)m H < EJME

and
H(Ph - Sh)mH < &/ M.,

for every j € Nand h € (0,1].
In view of above inequality and the following equality

(=) = 3 (1T — ) (P — ),
k=0

for every n € N and P € L(X), it results that

H(Th — Sy

IN

>t |- p |- s
k=0

n
< Z Ckeken—hpy 2

k=0
= (2e)"M.2,
for every n € N and h € (0,1].
Therefore
lim sup H(Th — 5 H < (26)"M.2
h—0
and thus .
lim sup H(Th — S < 2eM 2,
h—0
Consequently
lim lim sup H(Th - Sh)[n} " < 2,
n=o0  p0
for any € > 0.

1
" =0. O

Analogously we prove that lim,, o limsup;,_,q H (Sh — Th)["}
Proposition 7. Let {Sy}, {Th} C L(X) be asymptotic equivalent.
i) If{Sn} is a bounded family of operators, then {Ty} is also bounded and conversely;
ii) {Sn}, {In} are asymptotic commuting (i.e. limp—o ||ShTh — ThSHIl =0 );
iii) Let {Up} C L(X) be a bounded family of operators such that
Lim [|SpUn = US| = 0.
Then limp—o ||UpTh — TRU,|| =0 .
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Spectrum of a Family of Operators 141

Proof. 1) If {Si,} is a bounded family of operators, then there is lim sup;,_,o ||Sx|| <
00. Since

lim ||S), — T =0,

h—0

it follows that
limsup ||T3| = limsup ||Th — S + S|
h—0 h—0
< lim ||Sp, — Th|| + limsup ||Sh|| < oo.
h—0 h—0
Therefore {T},} is a bounded family of operators.

Analogously we can prove that if {T},} is a bounded family of operators, than {S;}
is a bounded family of operators.

i)
limsup || SpTy, — TpSy|| = limsup HShTh — 8,24+ 5,2 — ThShH <
h—0 h—0

limsup ||Sk (Sy, — T3)|| + limsup |[(Sp, — T3) Shl|<
0 h—0

h—
2limsup [[Sp| [|Sp — Tnl <O0.
h—0

iii)

limsup [|TRUp, — UpTL|| =
h—0

limsup | T, Uy, — SpUp, + SpUR, — UpSy, + UpSy, — UpTh || <
h—0

limsup || T,Up, — SpUR|| + limsup [|SpU — UpSy|| + limsup | UL Sy, — UpTy| <
h—0 h—0 h—0

2limsup |Un| [T — Sill-
h—0

Since {U}, } is a bounded family of operators, then there is lim sup;,_,o ||Ux|| < oo.
So
lim | U T}, — TaUp|l = 0.
h—0

O

Proposition 8. Let {S,}, {Th} C L(X) be two bounded families of operators such
that limp_o ||SpTh — ThSh|| = 0. Then

i) limp—o |SETY — TS|l =0, for any n,m € N;
ii) limp o H(Sh - Th)MH = limp0 |(Sp — Tn)" |l , for any n € N;
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iii) limpo ||(SpTH)" — SPTR|| =0, for any n € N.

Proof. i) We prove that limy,_,q ||S;Th, — T3S} || = 0, for any n € N. For n = 2 we
have

lim sup HS,%T}L - ThS}%H =
h—0
liIfILI sup HSh (ShTh) — Sh (ThSh) + (ShTh) Sh — (ThSh)ShH <
—0

2lim sup || (SpTh) — (ThSw)| |Sn]| = 0.
h—0

For n = 3 we have

limsup || Sy T, — ThSi|| =
h—0
111}111 s})lp HSh (S%Th) - Sh (ThS;QL) + (STh) S}% - (ThSh)SI%H <
—)

limsup || S3Th — ThSi|| [1Sall + lim [|Su T — ThSill [|S7]| = 0.
h—0 h—0

Considering relation limy,_q [|S;'T}, — T3S} = 0 true we prove that

lim [[S34T, = TuSp | = 0.

lim sup HS;}HT;L — ThS,?Jrl H =

h—0
1ir}€18(1)1p 1Sk (SRTh) — Sh (ThSy) + (SkTh) Sy — (ThSh) Syl <
ﬁ.
< limsup |[SyTh — TrSy || ||Shll + limsup [|SpTh — ThSh| || Sy = 0.
h—0 h—0

Applying above relation to S}’ and T}, it follows that
lim || SETR" — T3 Sp]| = 0
h—0

for every n,m € N.
ii) and iii) can be proved analogously 1). O

Proposition 9. Let {Sp}, {Tn} C L(X) be two bounded families of operators.

i) If {Sn}, {Tn} are asymptotic equivalent, then are asymptotic quasinilpotent
equivalent.
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i) If limy o | SnTh — TaShll = 0 and limy,_eo limsupy,_q H(Sh —| & =,

then {Sp}, {Tn} are asymptotic quasinilpotent equivalent, i.e.

1
lim limsup H(Th — Sy =o.

N0 h—0

iii) Let {Ap} C L(X) be a bounded families of operators. If {Sp}, {In} are
asymptotic quasinilpotent equivalent and limp_,q ||ShAn — ApSk|| = 0, then
it is not necessary that limy, o ||ThAn — ApTh|| = 0.

Proof. i) We prove that

i s 7] = iy -] <.

for any n € N.
Since (T — S)"1 = 7(T — 5\ — (T — §)[" 3, for any n € N, taking n = 2, it
follows that

lim sup H(Th — 5P H = limsup |7y, (Th, — Sn) — (Th — Sn) Sull <
h—0 h—0

limsup || Ty, (T, — Sp)|| + limsup ||(Ty, — Sk) Skl <
h—0 h—0

limsup || T3 || [|(Th — Sp)l| +limsup [[(T — Sk)|| [|Sk| < 0.
h—0 h—0

=0, then

By induction, we prove that if limy_. H (T, — Sh)["]

5 5] =0

lim sup H(Th — )t H =

h—0
lim sup HTh(Th — Sp)l — (1, - Sh)[n]ShH <
h—0
lim sup HTh(Th - Sh)[n] + lim sup H(Th - Sh)[n}ShH <
h—0 h—0
lim sup || T}, || H(Th — SN+ lim sup H(Th — SN 18, < 0.
h—0 h—0
Similarly we can show that limy_.q H(Sh — Th)[n} =0, for any n € N.
When n — oo, we obtain
1 1
lim limsupH(Sh —T)M " = lim limsupH(Th — ST =o.
n—00  p_. n=00  h0
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ii) We remember that for any two bounded linear operators T and S, we have

n n—1
_ Z (—1)n_kC£TkSn_k _ (S _ T)[n]+z (_1)n—1—kC’7§z(TkSn—k _ Sn—ka)7
k=0

where n € N.
Applying above relation to Sy si Tj, when h — 0, we obtain

lim sup H(Th - Sh)[n]

h—0
n—1
lim sup (Sh—Th Z ) 1= kC"( WESE TR — SR Ry <
h—0 k=0
n—1
limsupH(S’h—Th)[n}‘ + lim sup Z( DR kSR — 5 kTR || <
h—0 h—0 k=0

limsupH Sh—Th hmsupHThkSh” k_ g,k k H

h—0

In view of Proposition 8 ii), it follows

lim sup H(Th - S’h)[n]H < limsup H(Sh - Th)[n]H,
h—0 h—0

for any n € N.
Analogously we can prove that lim sup;,_, H (Sp — Tp)™ H < limsupy,_, H (T, — Sp) H

iii) We suppose that the relation limp g |74 — ApTh|| = 0 is true. Then,
taking Ay, = Sp, for any h € (0, 1], since
lim ||.Sp% — SK2|| =0
iy 5% - 512 — 0.
it follows
lim ||ShTh — ThShH = 0,
h—0
fact that is not true. ]

Proposition 10. Let {S,}, {T)} C L(X) be two asymptotic quasinilpotent equivalent
families and {Ap} C L(X) a bounded family. Then

i) The families {Sn + An}, {Tn + An} are asymptotic quasinilpotent equivalent;

ii) If {An} C L(X) is a bounded family such that limy,_,¢ ||ShAn — ApSy|| = 0 and
limp o [|Th AR — ARTH|| = 0, the families {SpAr}, {ThAn} are asymptotic
quasinilpotent equivalent.
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Proof. 1) Since {Sp}, {11} are asymptotic quasinilpotent equivalent, i.e.

[un

= lim limsup H(Sh — )" H

= 0,

lim lim sup H(Th — 5

then

1
lim lim sup H((Th + Ap) — (Sh + Ah))[n} !

n—oo h—0

= lim limsup H((Sh + Ap) — (Th + Ah))[n]

n—=00 140

:()7

so {Sy + An}, {Th + Ap} are asymptotic quasinilpotent equivalent.
ii) Since limy,_q ||ShAn — ApSy|| = 0 and limy,_o || TR A — ART|| = 0, taking
into account Proposition 9, it follows

lim sup H(ThAh — ShAh)[n] —(T), — Sh)[n]Ahn

h—0
limsup || (=1)" CR(TnAR) (S An)" ™" = D (=1)" T ORT S, A"
h—0 k—0 e
lim sup Z ) RCR (T AR)F (S AR)™F — THES, R AR AR || <
h—0 e

Zc tim s | (75,41 (541)"~* — T AR, T AR
h—

k=0

ThkAhkShni Ahnfk - ThkshnkahkAhnfk:H <

n

Z Cy, limsup H (ThAR)" (SpAn)" " - ThkAhkShn_kAhnka—i-
k=0 h—0

3

Z C lim sup HThkAhkShn_kAhn_k — Thkshn_kAhkAhn_kH <
h—0

3

>y ch 11msup||(ThAh) (SpAR)"F — (Th AR S, F A4,k
h—

k=0

(ThAh)kShn—k:Ahn—k _ ThkAhkShn_kAhn_kH—l—

30 1] s = e <
—0
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3

<Y CF limsup H (ThAR)F (S AR)™ ™ — (T, Ap)F Sk Ak H +
k=0 h—0

Z Cﬁ lim sup H(ThAh)kShnkahnik — ThkAhkShnikAhnikH <
k=0 h—0

ch hmsupH (ThAp) H H (SpAR)" Sh”_kAh”_kH_|—

ch thllp H ThAh)k o ThkAhkShnfk’Ahn*kH HShn*kH HAhn*k’H = 0.
h—0

Having in view that {Sp}, {Ix} are asymptotic quasinilpotent equivalent and
taking into account the above relation, it results

1
lim lim sup H(ThAh - ShAh)M H "

n—o0 h—0

= lim limsup H(Th - Sh)[n}Ah"

N0 p—0

1
< Jlim tsup (75— s 147"
n—oo
< lim lim H(Th _ 5, . limsup || An|| = 0.
n—00 h—0 h—0
1
Analogously we can prove that lim,, . lim sup;,_,q H(ShAh - ThAh)[n] H "=
O]

3 Spectrum of a family of operators
Let be the sets

{v:(0,1] = B(X)|p(h) =T} such that ¢ is countinous and bounded} =

{{Th}he ©01] € B(X)‘ {Th}ne (0,1 is a bounded family, i.e. sup [Tyl < oo}
’ he (0,1]

and

Co (0.1, B(X) = {9 € G (.11, B () fim ()] =0 § =

{ e © B0 i 170 =0}
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Cy ((0,1], B(X)) is a Banach algebra non-commutative with norm

I{TnH = suppe o, 1Tl ,
and Cy ((0,1], B (X)) is a closed bilateral ideal of Cy, ((0,1], B (X)). Therefore the
quotient algebra Cj ((0,1], B (X)) /Co((0,1], B(X)), which will be called from
now B, is also a Banach algebra with quotient norm

(T3] = inf e ecncon, Booy HTRY +{UM = inf gy IESHI.
Then

(T3] = inf sy, o ety IHSIHI < IESRH = supne o, IS4
for any {Sh}pe 01] € {T},}. Moreover,

[{T0}| = inf g5y, o ey HSIHI = inf gy oy supne o 1]

If two bounded families {7}, } ;¢ (o 1)» {Sh}pe (0,1) C B(X) are asymptotically equivalent,
then limy, o [[Sp — Thl| = 0, i.e. {Th — Sp}pe 1) € Co ((0,1], B(X)).
Let {Th}he 0,17 {Sn}ne0.1] € Cb ((0,1], B (X)) be asymptotically equivalent. Then

limsup ||Sy|| = limsup ||T3]|| -
h—0 h—0

Since
limsup [|Sp|| < suppe (0,17 1Sl
h—0

results that
. _ o <
llr}?jgp 1Sull = infig,y, (0,1]e{Th}hr,?j§p 1Sl <
inf{sh}he (0.1 €{Tn} Pre (0,1] I15kll = H{Th}H ’

for any {Sh}pe 01] € {T}.
In particular

li T [ T3] < {75} < IHT0 ] = supne o) I1Thl -
—0
Definition 11. We call the resolvent set of a family of operators
{Sh} € Cb((oa ]-] , B (X))
the set
r({Sn}) ={ A€ C|I{R(\,Sh)} € C,((0,1], B(X)), }llii%H()\I— Sp)R (N, Sp) — 1| =
lim [|R (A, Sp) (AL = Sp) —I|| =0}
h—0
We call the spectrum of a family of operators {Sp} € Cy ((0,1], B (X)) the set
Sp ({Sn}) =C\r ({Sn}) -
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Remark 12. i) If A\ € r(S},) for any h € (0,1], then X\ € r({Sy}). Therefore
Mhecoay 7 (Sn) S ({Sk});

ii) If A € Sp({Sh}), then |A| <limsupy o [[Sall} ;
iii) If |Sp|| < |A| for any h € (0,1], then A € r ({Sh});
iv) 7 ({Sn}) is an open set of C' and Sp ({Sy}) is a compact set of C.

Proof. iv) Let A € r ({Sh}). From Definition 11, it follows that there is {R(X, Sp)} €
Cy ((0,1], B(X)) such that

lim [|(AL — Sp) R (A, Sp) — I = lim R (A, Sp) (AL — Sp) —I]| =0.
70 70

1
Let € DA farsup,omronsr ) S0

1
lim supy,_o [R (A, Sp)|| -

A —nl <
According to ii), it follows 1 € r ({(A — u)R (X, S)}), therefore there is
{R(L, (A=) R (A, )} € Gy ((0,1], B(X))
such that
Lim [[(1 = (A = )R (A, Sp)) R (1, (A = )R (X, Sp)) = 1] =
Lim R (1, (A = )R (X Sp)) (I = (A = )R (X, Sp)) = I =0.

Having in view the above relation, it results

timsup (1 = $1) R (A, 1) R (L (A = 1) R (. 5))) ~ I|| =

hr;?j:)lp [ (A = Sp) R (A, Sp) R (1, (A= ) R (A, Sh)) —

A=) RASh)R (1, (A= p) R (X, Sh)
limsup || (AL = Sp) R (A, Sn) = I) R (1, (A = 1) R (A, Sn)

h—0
A=) RAS)RA, (A= wRASh) -1 <
hr}flljélpn(()‘l_sh)R()\aSh)_I)R( s (A=) RSk +

I =

)1l =
JAR (L (A= 1) R (A Sn)) —

fimsup [ (1, (A= 1) R (A, 1)) — (A= ) R S) R (L (A= R (A, 5)) ~ 1| <

1ir;lj(1)1p (AL = Sn) R (A, Sh) = DIHIR (1, (A = ) R (A S +

lim (7 = (A= 1)) RO\ Si)R (1, (A= )R (A, S)) = T =0,
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so € 1 ({Sh}), for every p € D(A, limsuph%l“R(/\Sh)” ).
Therefore, for any A € 7 ({Sh}), there is an open disk D(A, Frmsupn olHR(/\ Sl )

1
such that D(A, s oIS ) C 7 ({Sh}).
If {Sh} is a bounded family, from ii) we have

|A| < limsup||Sk|| < oo,
h—0

for any A € Sp({Sn}), so Sp({Sh}) is a compact set. O

Proposition 13. Let {S,} € Cy((0,1], B (X)) be a family of operators and \ €
r ({Sn}). Then, for any {R (X,Sh)} € Cp ((0,1], B(X)) such that

lim [|(AM — Sp) R (A, Sp) — I|| = lim R (A, Sp) (A = Sp) = I|| =0,
h—0 h—0

we have

lim [|SyR (A, Sp) — R (A, Sk) S|l =0.
h—0

Proof. Let A € v ({Sr}) and {R (A, S)} € Cp ((0,1], B (X)) such that
Lim [[(AL = Sp) R (A, Sp) = 1|l = lim [[R (A, Sp) (AL = Sp) —II| =0.
— —

Using this relation we have

limsup [|S4R (A, Si) = R (A, Sh) S| =

h—0
limsup [|R (X, Sp) (A = Sp) — (AL = Sp) R(A, Sp)|| =
h—0
limsup ||R (X, Sp) (A — Sp) — I+ 1 — (A —Sp)R (N, Sh)| <
h—0

lim [|(\ — ) R (A, Sp) = I]| + lim [R (A, Sp) (A — Sp) = I|| =0
h—0 h—0

O]

Proposition 14. (resolvent equation - asymptotic) Let {Sy} € Cy ((0,1], B (X))
be a bounded family and A, € 7({Sn}). Then

}ILIE}% HR ()" Sh) -R (H, Sh) - (:U’ - )‘) R (>‘7 Sh) R (Mv Sh)” =0.

Proof. Since {R(\,S)} and {R(A, S)} are bounded, we have
hr}? Sgp HR ()‘7 Sh) -R (Ma Sh) - (M - )‘) R ()‘7 Sh) R (:uv Sh)” =
N

ligljgp IR (A, Sh) (I = uR (1, Sk)) = (I = AR (A, Sn)) R (1, Su)|| =

lir}rllsgp IR (A, Sn) (I = (1 — Sp)R (1, Sp)) — (I = R (A, Sp) (AL = Sp)) R (1, Sn)|| <
—
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< lir;lasgp IR (A, Sk) (I — (pd — Sp)R (1, Sp)) || +
ﬁ
lirl?sgp (I =R (XN, Sh) (M = Sp)R (1, Sp)|| <
—

111;1118(1)11) IR A ST = (1] = Sn)R (2, Sp) | +
—>

lir}rllsgp 11 =R (A, Sn) A = Su)[[ IR (1, Su)|| < 0.
*)

O]

Corollary 15. Let {Sp} € Cy((0,1], B(X)) be a bounded family and A\, u €
r({Sn}) be not-equal. Then
lim [[R (0, $1) R (1 51) ~ R (1, $1) R (A Sy)]| =0.

Proof.
hr}? Sélp ||R ()" Sh) R (:U’v Sh) -R (:U’v Sh) R ()‘7 Sh)” =
%
1 .
limsup [|(A — ) R (A, Sp) R (1, Sn) + (1 — MR (1, Sp) R (A, Sp)|| =
R 71 A

L timsup | [R (A, S) — R (1, 54) — (5~ N R (A Sn) R (1 $1)] +
A= pl w0

[R (1 Sn) = R (A, Sp) = (A= )R (1, Sp) R (A, Sp)] || <

’ | hm H[ (A7 Sh) -R (M? Sh) - (:u - )‘) R (/\7 Sh) R (:ua Sh)]” +

1
lim [[[R (11, Sn) = R (A Sn) — (A = )R (1, Sn) R (A Sw)lll = 0.
‘)\ — ,u,\ h—0
O
Proposition 16. Let {Sp} € Cy((0,1], B(X)) be a bounded family. If X €

r ({Sn}) and {R; (\,Sp)} € Cy ((0,1], B(X)), i =1,2 such that
Lim [|(A = Sp) Ri (A, Sp) = 1]l = lim [[Ri (A, Sp) (M = Sp) = I]| =0

fori — 1,2, then
lim [|R1 (A, Sh) — Ra (A, Sk)|| = 0.
h—0

Proof. Let A € r ({Sr}) and {R; (A, Sp)} € Cy ((0,1], B(X)), i =1,2, such that
Lim [[(AL = Sp) Ri (A, Sp) = I = lim [[Ri (A, Sp) (M = Sp) = 1] =0
— —

Therefore
limsup [[R1 (A, Sp) — Ra (A, Sh)|| =
h—0
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Surveys in Mathematics and its Applications 6 (2011), 137 — 159
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma

Spectrum of a Family of Operators 151

liI}Ill Sup [R1 (A, Sk) — R2 (A, Sh) — (A= A) Ra (A, Sk) Ra (A, Sp)l| =
_>

lirl? S:)lp IR1 (A, Sh) (I — AR2 (A, Sh)) — (L — AR1 (A, Sh)) Ra (A, Sh)|| =
%

m}xlljgp [R1 (A, Sh) (I — (ML = Sp) R2 (A, Sk)) — (I = Ra (A, Sh) (AL — Sk)) Ra (A, S| <

lir}? sup [[R1 (A, Sn) (I — (AL = Sp) Ra (A, Sn))|l +
—0

liI}ILl sup [|(I — R1 (A, Sp) (AT = Sp)) Ra (A, Sp)|| <
—0

111}?51113 [R1 (A, Sp)[ I = (AT = Sp) Rz (A, Sp)|| +
—0

—Hir}?sup I —R1 (A, Sh) (AL = Sp)|| [[R2 (A, Sp)|| <0
—0

O]

Proposition 17. Let {S,} € C, ((0,1], B (X)) be a bounded family, X € r ({Sh})
and {R(\,Sp)} € Cy ((0,1], B(X)) such that

lim [(AL = Sp) R (A, Sp) = Il = lim [|R (A, Sp) (M = Sp) = I|| =0.
h—0 h—0

If {Ry} € Cy((0,1], B(X)) is a bounded family such that it is asymptotic
equivalent with {R(\, Sp)} € Cy ((0,1], B (X)), then

lim H()\I — Sh) Rh — IH = lim HRh (/\I - Sh) — IH = 0.
h—0 h—0

Proof. Let XA € v ({S}). It results
limsup ||(A] — Sp) Ry, — I|| =
h—0

= limsup [[(AM — Sp) R, — (AL — Sp) R (N, Sp) + (AL — Sp) R (N, Sp) —I|| <
h—0

limsup ||(AL — Sk) Ry, — (AL — Sp) R (A, Sp) ||+ limsup [[(AL — Sp) R (N, Sp) —I]| <
h—0 h—0

< limsup [[AT = Sp[| [ Rp = R (X, Sn)|| <0.
h—0
Analogously we can prove that limy,_g || Ry (M — Sp) — I]| =0. O

Proposition 18. Let {S,} € Cy((0,1], B (X)), A € r({Sn}) and {R(\,Sh)} €
Cy ((0,1], B(X)) such that

lim [[(AI = Sp) R (A, Sp) — I = lim [[R (A, Sp) (M = Sp) = I|| = 0.
h—0 h—0

Then
lim sup | R (A, Si)]| 0 .
h—0
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Proof. Suppose that limsupj,_,q||R (A, Sr)|| = 0. Since
L= T} < |(AM = Sp) R (A, Sn) = I + [(AL = Sp) R (X, Sp)|

And taking into account that {S,} € C ((0,1], B (X)), it follows that
1 <limsup [[(M — Sp) R (A, Sp) — I|| + limsup |[(A] — Sp) R (A, Sp)|| <
h—0 h—0
limsup || A — Si|| IR (N, Sp)|| < (\)\] + limsup || S|l ) limsup || R (A, Sp)|| =0,
h—0 h—0 h—0

contradiction. O
Proposition 19. Let {Sp} € Cy ((0,1], B(X)). If A\, u € r({Sr}) such that there
are {R(A,Sn)}, {R(w,Sn)} € Cy((0,1], B (X)) with property
R

lim [[R (A, Sp) = R (w, Sp)l| =0,
h—0

then A\ = p.

Proof. For X\ € r ({S}) let {R(X,Sh)} € C, ((0,1], B (X)) such that
Lim [[(AL = Sp) R (A, Sp) = Il = lim [[R (A, Sp) (AL = Sp) — 1] =0
— —

and for pe v ({Sk}) let {R(p, Sn)} € Cp ((0,1], B (X)) such that
Lim [[(uf = Sp) R (, Sn) = 1|l = lim IR (1, Sp) (0] = Sp) = I|| = 0.

If
lim HR (/\7 Sh) -R (M? Sh)” =0,
h—0

Having in view Proposition 17, we obtain
lim [|(ud = Sp) R (A, Sp) — I|| = lim |R (A, Sp) (I — Sp) — I|| =0.
h—0 h—0

Hence
111;1 sup (A = Sp) R (N, Sp) — (ud — Sp) R (A, Sh)|| <
%
limsup [[(A = Sp) R (A, Sp) = 1| + lim [[(ud = Sp) R (A, Sp) —I|| =0.
h—0 h—0
Therefore

A= p| limsup [R (A, Sp)l| =0
h—0

And according to Proposition 18 ( limsupj,_,q [|[R (A, Sp)|| # 0 ) it follows A = p. O
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Lemma 20. If two bounded families {Sr}, {ITn} € Cy ((0,1], B (X)) are asymptotic
equivalent and there is {Ry (A\)} € Cy ((0,1], B (X)) such that

lim [|(A = Sp) Ry (A) — I|| = lim |[Rp, (A) (M = Sp) —I|| =0,

h—0 h—0

then
lim [(AM —Th) Ry (A) = 1I|| = lim [[Rp, (A) (M —T,) —I|| =0.
h—0 h—0

Proof. Since the two families {Sy}, {1} € Cy((0,1], B (X)) are asymptotically
equivalent, i.e. limy_,q [|Sy, — T3|| = 0 , we have

limsup || (AT — T) Ro (\) — I|| =
h—0

= limsup [V = T4) By (A) = (M = ) R () + (A = $1) R () 1] <

limsup [|(AI = T,) Ry (A) — (AL = Sp) Ry (V)| + lirf?sgp [(AL = Sp) Rp (N) = I|| =
4>

h—0

limsup | TRy, (A) — SR (V]| < limsup [T, — Sull | By (V]| < 0.
h—0 h—0

O

Remark 21. Since Boo = Cy, ((0,1], B(X))/Co((0,1], B(X)) is a Banach algebra,
then make sense

r({sh}) = {reCI3{B) € B air (MI} - {h}) {Ba} = {1} = {Ba} (M1} - {Si}) }
and
$p ({Sh}) =C\ r ({8h}) -

Let {Sp} € Cy ((0,1], B(X)) and X € r({Sk}). Fie {R(X, Sp)} € Cyp ((0,1], B (X))
such that
Jim [(AL = Sp) R (A, Sp) — 1| = Jim R (A, Sp) (AL = Sp) — If| =0.

By Proposition 17, it results that for any {R'(\, Sn)} € {R(X, Sp)}, we have
lim [|(AT = Sp) R (A, Sp) = I|| = lim [[R"(A, Sn) (AT = Sp) = I|| = 0.
— —

Moreover, for every {8y} € {Sh}, by Lemma 20 we have
lim | (A= 5') R (A $1) = 1| = Jim [R (O $) (A = 8') 1] =0,
— —

Therefore every representative of class {72()\', Sh)} € Boo is an Vinverse” for any
representative of class {Sh}.

Theorem 22. Let {S,} € Cp ((0,1], B(X)). Then
Sp ({Su}) = Sp S
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Proof. Let A€ r ({Sh}> Then there is {Rh} € By such that
(M} = {Su}) {Rn} = {1} = {Bn} (M1} — {Sh}).
Taking into account the algebraic relations of the Banach algebra B, it results
{1} = (MI} = {Si}) {Br} = {1 = SuHE} = (M = Sp)Ri).

Therefore {(A — Sp) Ry, — I} € B, i.e.
lim ||(A] — Sp) Ry — I]| =0.
h—0

Analogously we can show that limy,_g ||Rp (AI — Sp,) — I|| = 0. Then A € r ({S}).
Conversely, let A € r({Sr}). Then there is {R(\,Sy)} € Cy ((0,1], B(X)) such
that

lim || (A = S3) R (X, 83) = I]| = lim | R (X, Sp) (A = Sp) = I|| = 0.
h—0 h—0

Let {Ry} € {R(X,Sp)}. Then
lim ||(AM — Sp) Ry — I|| = lim ||Rp, (AT = Sp) —I|| =0
h—0 h—0

and {(/\I — Sh) Ry, — I} , {Rh ()\I — Sh) — I} € B, i.e.
(MI} = £80}) L} = {M =S Ra} = {1}

and

[} (M} = {Sh}) = (BT = S} = {1},

Therefore A € r ({Sh}) . O

Remark 23. Let {S,} € Cy((0,1], B(X)) and X € r({Sn}). Then there is
{R(\,Sh)} € Cy ((0,1), B(X)) such that
lim [|(AL = Sp) R (X, Sp) — I = Lm R (X, Sp) (AL = Sp) —1I]| = 0.
h—0 h—0
if and only if
(MI} = {80}) {R (X, S)} = {1} = {R (X, 8} (M} = {Sh})
Proposition 24. Let {Sy}, {11} € Cy((0,1], B (X)) be two families. If
lim || T3Sy — SpTh|| =0,
h—0
then limp_ ||R(A, Th)Sy — ShR(A, Th)|| =0, for any X € r({T}}).
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Proof. If X € r({1},}), then there is {R(X\,T,)} € C, ((0,1], B (X)) such that
}llin% (AL =Th) RN, T)) —I|| = }llin% RN\, T},) (M —1Ty) —I|| =0.
— —

Therefore _ _ _ _
lim 1ThSh — SuThll =0 < {Sp}H{Th} = {Th}{Sh} &

{SLHRAT))} = {R\T),)HSh} < ,llz_% |R(X, Th)Sh — SpR(A, Ty)|| = 0.
O

Remark 25. i) Let {Sp}, {Tn} € Cy((0,1], B (X)) such that Sy, is asymptotically
equivalent with Ty, Vh € (0,1]. Then

it) Let {Sn}, {ITn} € Cy((0,1], B (X)) be asymptotically equivalent. Then
Sp({T}) = Sp({Sy})-

Theorem 26. Let {Sp}, {Trn} € Cy ((0,1], B (X)) be two asymptotic quasinilpotent

equivalent families. Then
Sp({T}) = Sp({Sy})-

Proof. Let \ € r({Th}) Then there is {R(X,T))} € Boo such that

(M} = 173}) {RNT} = (RO} (MI} - {T)}) = ().
Since B, is a Banach algebra, the map A — {R(\, Tj,)} r({Th}) — By is analytic.
Let D1 = {/\ € (C| ‘)\ - )\0| < 7‘1} - T({Th}) and Dy = {)\ S (C| |)\ — )\0| < 7"0} with

r1 > 1o.
Set . ) .
(R ()} = 2 (R T))Wn € N,
and )
miny =Y s, -,

neN

{R (1 Th)}, H , it follows that H{Rn()\)}H < (miMlnﬂ

r1—70)

Deriving the relation ()\{I} — {Th}) {R()\., Th)} = {I} by n times, we obtain

If we set My = sup,,ep,

m n—1

(M)~ 173)) TR (T} = —n kR (AL T)).
Moreover, since

h_. [ - h\Lh — Ph _ h — ©h " h(—
{(T Sh)”“]} {T(T Sl — (13 S)”S}

= {Th}{(Th —.Sh)[n}} - {(Th —'Sh)[n]}{gh}avn €N,
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we have

(=1)"
!

n:

(A~ 15) (R = 7 =50 3 S (s - m) i ) =

nenN

- ¥ Sl s{s - m e o) -

neN
= > 5y (8- o s ) =
neN )
=3 %{ (1 =) = (A1 = 1) (M = Sp) — (M — Ty)l" (AT - 7)) MR ()} =
neN
(O™ g g e ey
=3 = TR} + (MT} — (T {R (A, T} -
n=0

-3 SV (-t} (M) - 7)) S (ROLT)) -

(_1)n+1

{(S= T LR} + (AT}~ (53) (R (X To)) -

)n n—1

0 (g el I
- Z{n— 18- ]}dxn—l{R(A’Th)} N

_yeu” [(S1 - TR ) + (MI) - (3)) (R (LT3} -

n!

- 7(1__1):! {(Sh *'Th)[n] }{Rnf'l()‘)}’
n=1

Therefore A € 7({S,,}).
Analogously we can prove the other inclusion. By Theorem 22, it results that

Sp({T,}) = Sp({T,}) = Sp({S,,}) = Sp({S,,})

O]

Theorem 27. Let {T),} € Cy ((0,1], B (X)) and 2 be an open set which contains
Une 0,1] Sp(Ty). Then for any analytic function f: Q — C we have

Sp({f (Tw)}) = f(Sp({Th}))-
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Proof. If {Ty} € Cy ((0,1], B(X)), then there is a M < oo such that ||T}] < M,
Vh € (0,1]. Therefore Sp(T),) C D(0,M) Vh € (0,1], so that e o1 Sp(Th) is a
bounded set.

7D” Let f:Q — C be an analytic function and A € Sp({T}}). For £ € ), we define

the function FEO—FN)
%7 f 7é )\

Hence g : @ — C is analytic and
F(@h) = fNI= g(Th) (Th — M) = (Tr, = M) g (Th) ,

for any h € (0, 1].
We suppose that f(A) € 7 ({f (Th)}). Then there is {R(f(N\), f(Th))} C B(X)
such that

lim [(F ()T = F(B)R( ), F(T)— 1] =
lim (R (f (\), f (Tw) (F )T = f(T) — 1] =0.

Having in view the last relation, we have

lim [|(Th — AL g (Th) R (f (A), f(Th) — Il =
lim [[R(f (A), f(Th)) g (Th) (Th = ML) = 1| = 0.(+)

Since
g (Tw) Ty, = Thg (Th) ,

for any h € (0,1], according to the properties of holomorphic functional calculi it
follows

9 (Th) f(Th) = f(Th)g (Th),

for every h € (0,1]. Applying Proposition 21, we obtain
lim flg (Tn) R (£ (), f (Th)) = R(F (A, f(Th) g (Tu)ll =0

Hence
lim [lg (Th) R (f (A), f (Th) (Th = AD) = I =

lim [lg (TR (f (V) £ (Tn) (T = D =R (f (V) £ (Th)) g (Th) (Th = M)+

f
FR(F (N, (1) g (Th) (Th — AD) — || <
< Jim lg (T R(f (V) f(T) = R(F ), £ (T) g (T)| I1Th = M| +
i R (N), £ (Ti) g (Ta) (T = AD) = T|| = 0.(s3)
From (*) and (**), it results

fim [[(Th = AL) g (Tn) R (F (A), f(Th)) —IIl =
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lim lg (T) R (F (\), f (Th) (Ti = AD) — T|] =0,

so A € r ({T}}), contradiction with A € Sp ({T},}). Therfore f (\) € Sp({f(Th)}).

"C7 Let A€ Sp({f(Th)})- A & f(Sp({Th})), then A # f(&) for any £ € Sp ({Th}).
Let Q" an open neighborhood (Jj,c (0,11 5P(Th) and

h(é)zif@_/\,

for every £ € Q. Then h is an analytic function and applying the holomorphic
functional calculi, we obtain

h(Th) (f (Th) = M) = (f (Th) = M) h(Th) = I,

for any h € (0,1]. Therefore A € r(f(1})), for any h € (0,1]. Since (V¢ (o7 (f(Th)) €
r({f(Th)}) (Remark 12 1)), it follows A € r ({f(1})}), contradiction with A €

Sp({f(Ty)}). Hence A € f(Sp({Th}))-
O

Definition 28. A family {U,} C L(X) is calling asymptotic quasinilpotent operator
if

lim limsup ||UL"|| n =0

Theorem 29. A family {U,} € Cy ((0,1], B (X)) is an asymptotic quasinilpotent
operator if and only if Sp ({Un}) = {0}.

Proof. Let {Uy} € Cy((0,1], B(X)) be an asymptotic quasinilpotent operator.
Then {Uy} is asymptotically spectral equivalent with {0},,c (o 1] € Cb ((0,1], B (X)).
By Theorem 26 it follows that

Sp ({Un}) = Sp ({0}) = {0}

Consequently, suppose that Sp ({U}) = {0}. By Theorem 22, we have
Sp ({Un}) = Sp({UW}) = {0}

Then the spectral radius of {U,}, which we will call from now Tsp ({Uh}>, is zero.
Since

ra (6) = Jim [ (6)']"

n—oo

it follows that

i [ (16)"* 0.

n—o0

But, on the other hand, we have

kst sk ok sk ok ok s ok sk sk ok ok sk sk ok sk sk sk s ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk ok s sk sk sk ok ok sk sk ok sk sk sk s sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk sk ok ok sk ok

Surveys in Mathematics and its Applications 6 (2011), 137 — 159
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma

Spectrum of a Family of Operators 159

1
n

. . nnt
= lim inf ey 1ORYF =

n—o0

i (1)

n—0o0
L nyiL o ny
Jminf e RO = Bm ind g e iy 5uPhe 0.y U1 2

1 1
810 e, e WU = g Hmsup D7)

h—

By the above relations, we obtain

1
lim limsup [|[U"|| » =0,
N0 h—0
so that {U} is an asymptotic quasinilpotent operator. ]
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