Legendre polynomials correspond to the trivial weight function and the choice
in
Eqs. (9.28
, 9.29
, 9.30
). The eigenvalues are
Chebyshev polynomials correspond to the choice ,
and
in Eqs. (9.28
, 9.29
, 9.30
). In particular, the eigenvalues are
Both Eq. (9.47) and Eq. (9.50
) lead to the normalization
From the explicit expression (9.47), it can be noticed that the roots
of
are
Chebyshev polynomials satisfy a rather remarkable property in the context of interpolation. In Section 8.1
we pointed out that the error in polynomial interpolation of a function at
nodal points
satisfies [cf. Eq. (8.5
)]
When doing global interpolation, that is, keeping the endpoints fixed and increasing
, it
is not true that the error converges to zero even if the function is
. For example, for each
,
could remain bounded as a function of
,
Example 53. Runge phenomenon (see, for instance, [154]).
Consider the function
The error (8.5) can be decomposed into two terms, one related to the behavior of the derivatives of
,
, and another related to the distribution of the nodal points,
. We assume
in what follows that
and that
. The analogue results for an arbitrary
interval can easily be obtained by a shifting and rescaling of coordinates. It can then be shown that, for all
choices of nodal points,
In other words, using Chebyshev points, that is, the roots of the Chebyshev polynomials, as
interpolating nodes, minimizes the maximum error associated with the nodal polynomial term. Notice that,
in this case, the nodal polynomial is given by .
http://www.livingreviews.org/lrr-2012-9 |
Living Rev. Relativity 15, (2012), 9
![]() This work is licensed under a Creative Commons License. E-mail us: |