![]() |
1 | Abarbanel, S., Chertock, A.E. and Yefet, A., “Strict stability of high-order compact implicit
finite-difference schemes: the role of boundary conditions for hyperbolic PDEs, II”, J. Comput.
Phys., 160, 67–87, (2000). [![]() |
![]() |
2 | Abrahams, A.M., Anderson, A., Choquet-Bruhat, Y. and York Jr, J.W., “Einstein and
Yang-Mills theories in hyperbolic form without gauge fixing”, Phys. Rev. Lett., 75, 3377–3381,
(1995). [![]() ![]() |
![]() |
3 | Abrahams, A.M., Anderson, A., Choquet-Bruhat, Y. and York Jr, J.W., “Geometrical
hyperbolic systems for general relativity and gauge theories”, Class. Quantum Grav., 14,
A9–A22, (1997). [![]() |
![]() |
4 | Abrahams, A.M. et al. (Binary Black Hole Grand Challenge Alliance Collaboration),
“Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching”,
Phys. Rev. Lett., 80, 1812–1815, (1998). [![]() ![]() ![]() |
![]() |
5 | Agranovich, M.S., “Theorem of matrices depending on parameters and its application to
hyperbolic systems”, Funct. Anal. Appl., 6, 85–93, (1972). [![]() |
![]() |
6 | Alcubierre, M., “Appearance of coordinate shocks in hyperbolic formalisms of general
relativity”, Phys. Rev. D, 55, 5981–5991, (1997). [![]() ![]() |
![]() |
7 | Alcubierre, M., “Hyperbolic slicings of space-time: Singularity avoidance and gauge shocks”,
Class. Quantum Grav., 20, 607–624, (2003). [![]() ![]() |
![]() |
8 | Alcubierre, M., “Are gauge shocks really shocks?”, Class. Quantum Grav., 22, 4071–4082,
(2005). [![]() ![]() |
![]() |
9 | Alcubierre, M., Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, 140, (Oxford University Press, Oxford; New York, 2008). |
![]() |
10 | Alcubierre, M., Allen, G., Brügmann, B., Seidel, E. and Suen, W.-M., “Towards an
understanding of the stability properties of the 3+1 evolution equations in general relativity”,
Phys. Rev. D, 62, 124011, (2000). [![]() |
![]() |
11 | Alcubierre, M., Brügmann, B., Diener, P., Koppitz, M., Pollney, D., Seidel, E. and Takahashi,
R., “Gauge conditions for long-term numerical black hole evolutions without excision”, Phys.
Rev. D, 67, 084023, (2003). [![]() |
![]() |
12 | Alcubierre, M., Brügmann, B., Miller, M.A. and Suen, W.-M., “Conformal hyperbolic
formulation of the Einstein equations”, Phys. Rev. D, 60, 064017, (1999). [![]() ![]() |
![]() |
13 | Alcubierre, M., Corichi, A., González, J.A., Núñez, D. and Salgado, M., “Hyperbolicity
of the Kidder-Scheel-Teukolsky formulation of Einstein’s equations coupled to a modified
Bona-Masso slicing condition”, Phys. Rev. D, 67, 104021, (2003). [![]() |
![]() |
14 | Alekseenko, A.M., “Well-posed initial-boundary value problem for a constrained evolution
system and radiation-controlling constraint-preserving boundary conditions”, J. Hyperbol.
Differ. Equations, 4, 587–612, (2007). [![]() |
![]() |
15 | Alekseenko, A.M., “Constraint-preserving boundary conditions for
the linearized Baumgarte-Shapiro-Shibata-Nakamura Formulation”, Abstr. Appl. Anal., 2008,
742040, (2008). [![]() |
![]() |
16 | Alpert, B., Greengard, L. and Hagstrom, T., “Rapid evaluation of nonreflecting boundary
kernels for time-domain wave propagation”, SIAM J. Numer. Anal., 37, 1138–1164, (2000).
[![]() |
![]() |
17 | Alpert, B., Greengard, L. and Hagstrom, T., “Nonreflecting boundary conditions for the
time-dependent wave equation”, J. Comput. Phys., 180, 270–296, (2002). [![]() |
![]() |
18 | Alvi, K., “First-order symmetrizable hyperbolic formulation of Einstein’s equations including
lapse and shift as dynamical fields”, Class. Quantum Grav., 19, 5153–5162, (2002). [![]() |
![]() |
19 | Amorim, P., Bernardi, C. and LeFloch, P.G., “Computing Gowdy spacetimes via spectral
evolution in future and past directions”, Class. Quantum Grav., 26, 025007, (2009). [![]() ![]() |
![]() |
20 | Anderson, A., Abrahams, A.M. and Lea, C., “Curvature based gauge invariant perturbation
theory for gravity: A New paradigm”, Phys. Rev. D, 58, 064015, (1998). [![]() |
![]() |
21 | Anderson, A., Choquet-Bruhat, Y. and York Jr, J.W., “Einstein–Bianchi hyperbolic system for
general relativity”, Topol. Methods Nonlinear Anal., 10, 353–373, (1997). [![]() |
![]() |
22 | Anderson, A. and York Jr, J.W., “Fixing Einstein’s equations”, Phys. Rev. Lett., 82,
4384–4387, (1999). [![]() |
![]() |
23 | Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D.,
Palenzuela, C. and Tohline, J.E., “Magnetized Neutron-Star Mergers and Gravitational-Wave
Signals”, Phys. Rev. Lett., 100, 191101, (2008). [![]() ![]() ![]() |
![]() |
24 | Anderson, M., Hirschmann, E., Liebling, S.L. and Neilsen, D., “Relativistic MHD with
adaptive mesh refinement”, Class. Quantum Grav., 23, 6503–6524, (2006). [![]() ![]() ![]() |
![]() |
25 | Andersson, L. and Moncrief, V., “Elliptic-Hyperbolic Systems and the Einstein Equations”,
Ann. Henri Poincare, 4, 1–34, (2003). [![]() |
![]() |
26 | Andersson, L. and Moncrief, V., “Future Complete Vacuum Spacetimes”, in Chruściel, P.T.
and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational
Fields: 50 Years of the Cauchy Problem in General Relativity, pp. 299–330, (Birkhäuser, Basel;
Boston, 2004). [![]() |
![]() |
27 | Andersson, L. and Moncrief, V., “Einstein spaces as attractors for the Einstein flow”, J. Differ.
Geom., 98, 1–47, (2009). [![]() |
![]() |
28 | Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, Donatella, L., “Unified Analysis of
Discontinuous Galerkin Methods for Elliptic Problems”, SIAM J. Numer. Anal., 39, 1749–1779,
(2001). [![]() |
![]() |
29 | Arnold, D.N. and Tarfulea, N., “Boundary conditions for the Einstein-Christoffel formulation of
Einstein’s equations”, in Graef, J. et al., ed., Sixth Mississippi State Conference on Differential
Equations and Computational Simulations, Starkville, Mississippi, USA, May 13 – 14, 2005,
Electron. J. Diff. Eqns., Conf., 15, pp. 11–27, (Texas State University, San Marcos, TX, 2007).
[![]() ![]() |
![]() |
30 | Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten,
L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York;
London, 1962). [![]() ![]() ![]() |
![]() |
31 | Aylott, B. et al., “Testing gravitational-wave searches with numerical relativity waveforms:
Results from the first Numerical INJection Analysis (NINJA) project”, Class. Quantum Grav.,
26, 165008, (2009). [![]() ![]() |
![]() |
32 | Babiuc, M.C., Bishop, N.T., Szilágyi, B. and Winicour, J., “Strategies for the characteristic
extraction of gravitational waveforms”, Phys. Rev. D, 79, 084011, (2009). [![]() ![]() ![]() |
![]() |
33 | Babiuc, M.C., Kreiss, H.-O. and Winicour, J., “Constraint-preserving Sommerfeld conditions
for the harmonic Einstein equations”, Phys. Rev. D, 75, 044002, (2007). [![]() ![]() ![]() |
![]() |
34 | Babiuc, M., Szilágyi, B., Hawke, I. and Zlochower, Y., “Gravitational wave extraction based
on Cauchy-characteristic extraction and characteristic evolution”, Class. Quantum Grav., 22,
5089–5107, (2005). [![]() ![]() ![]() |
![]() |
35 | Babiuc, M.C., Szilágyi, B. and Winicour, J., “Harmonic Initial-Boundary Evolution in General
Relativity”, Phys. Rev. D, 73, 064017, (2006). [![]() |
![]() |
36 | Babiuc, M.C., Szilágyi, B. and Winicour, J., “Testing numerical evolution with the shifted
gauge wave”, Class. Quantum Grav., 23, S319–S341, (2006). [![]() |
![]() |
37 | Babiuc, M.C., Szilágyi, B., Winicour, J. and Zlochower, Y., “Characteristic extraction tool
for gravitational waveforms”, Phys. Rev. D, 84, 044057, (2011). [![]() ![]() ![]() |
![]() |
38 | Baker, J.G., Centrella, J.M., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Binary black
hole merger dynamics and waveforms”, Phys. Rev. D, 73, 104002, (2006). [![]() ![]() ![]() |
![]() |
39 | Baker, J.G. and van Meter, J.R., “Reducing reflections from mesh refinement interfaces in
numerical relativity”, Phys. Rev. D, 72, 104010, (2005). [![]() ![]() |
![]() |
40 | Bardeen, J.M. and Buchman, L.T., “Numerical tests of evolution systems, gauge conditions,
and boundary conditions for 1D colliding gravitational plane waves”, Phys. Rev. D, 65, 064037,
(2002). [![]() |
![]() |
41 | Bardeen, J.M. and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math.
Phys., 14, 7–19, (1973). [![]() |
![]() |
42 | Bardeen, J.M., Sarbach, O. and Buchman, L.T., “Tetrad formalism for numerical relativity on
conformally compactified constant mean curvature hypersurfaces”, Phys. Rev. D, 83, 104045,
(2011). [![]() ![]() |
![]() |
43 | Bartnik, R. and Norton, A.H., “Numerical Methods for the Einstein Equations in Null
Quasi-Spherical Coordinates”, SIAM J. Sci. Comput., 22, 917–950, (2000). [![]() |
![]() |
44 | Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equations”,
Phys. Rev. D, 59, 024007, (1998). [![]() ![]() ![]() |
![]() |
45 | Baumgarte, T.W. and Shapiro, S.L., Numerical Relativity: Solving Einstein’s Equations on the
Computer, (Cambridge University Press, Cambridge; New York, 2010). [![]() ![]() |
![]() |
46 | Bayliss, A. and Turkel, E., “Radiation boundary conditions for wave-like equations”, Commun.
Pure Appl. Math., 33, 707–725, (1980). [![]() ![]() |
![]() |
47 | Beig, R., “Concepts of Hyperbolicity and Relativistic Continuum Mechanics”, in Frauendiener,
J., Giulini, D.J.W. and Perlick, V., eds., Analytical and Numerical Approaches to
Mathematical Relativity, 319th WE-Heraeus Seminar ‘Mathematical Relativity: New Ideas and
Developments’, Bad Honnef, Germany, March 1 – 5, 2004, Lecture Notes in Physics, 692, pp.
101–116, (Springer, Berlin; New York, 2006). [![]() |
![]() |
48 | Berger, M.J. and Oliger, J., “Adaptive mesh refinement for hyperbolic partial differential
equations”, J. Comput. Phys., 53, 484–512, (1984). [![]() |
![]() |
49 | Beyer, F., “Investigations of solutions of Einstein’s field equations close to λ-Taub–NUT”,
Class. Quantum Grav., 25, 235005, (2008). [![]() ![]() |
![]() |
50 | Beyer, F., “A spectral solver for evolution problems with spatial S3-topology”, J. Comput.
Phys., 228, 6496–6513, (2009). [![]() ![]() |
![]() |
51 | Beyer, H.R., Beyond Partial Differential Equations: On Linear and Quasi-Linear Abstract Hyperbolic Evolution Equations, Lecture Notes in Mathematics, 1898, (Springer, Berlin, 2007). |
![]() |
52 | Beyer, H.R. and Sarbach, O., “Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura
formulation of Einstein’s field equations”, Phys. Rev. D, 70, 104004, (2004). [![]() ![]() ![]() |
![]() |
53 | Bishop, N.T., Gómez, R., Isaacson, R.A., Lehner, L., Szilágyi, B. and Winicour,
J., “Cauchy-characteristic matching”, in Bhawal, B. and Iyer, B.R., eds., Black Holes,
Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara,
Fundamental Theories of Physics, pp. 383–408, (Kluwer, Dordrecht; Boston, 1999). [![]() ![]() |
![]() |
54 | Bishop, N.T., Gómez, R., Lehner, L. and Winicour, J., “Cauchy-characteristic extraction in
numerical relativity”, Phys. Rev. D, 54, 6153–6165, (1996). [![]() ![]() ![]() |
![]() |
55 | Bishop, N.T., Pollney, D. and Reisswig, C., “Initial data transients in binary black hole
evolutions”, Class. Quantum Grav., 28, 155019, (2011). [![]() ![]() ![]() |
![]() |
56 | Bona, C. and Bona-Casas, C., “Constraint-preserving boundary conditions in the 3+1
first-order approach”, Phys. Rev. D, 82, 064008, (2010). [![]() ![]() ![]() |
![]() |
57 | Bona, C. and Bona-Casas, C., “Gowdy waves as a test-bed for constraint-preserving boundary
conditions”, J. Phys.: Conf. Ser., 229, 012022, (2010). [![]() |
![]() |
58 | Bona, C., Bona-Casas, C. and Palenzuela, C., “Action principle for Numerical Relativity
evolution systems”, Phys. Rev. D, 82, 124010, (2010). [![]() ![]() |
![]() |
59 | Bona, C., Ledvinka, T. and Palenzuela, C., “3+1 covariant suite of numerical relativity
evolution systems”, Phys. Rev. D, 66, 084013, (2002). [![]() ![]() |
![]() |
60 | Bona, C., Ledvinka, T., Palenzuela, C. and
Žaček, M., “General covariant evolution formalism for numerical relativity”, Phys. Rev. D,
67, 104005, (2003). [![]() ![]() |
![]() |
61 | Bona, C., Ledvinka, T., Palenzuela, C. and Zacek, M., “Constraint-preserving boundary
conditions in the Z4 Numerical Relativity formalism”, Class. Quantum Grav., 22, 2615–2634,
(2005). [![]() |
![]() |
62 | Bona, C., Massó, J., Seidel, E. and Stela, J., “New Formalism for Numerical Relativity”, Phys.
Rev. Lett., 75, 600–603, (1995). [![]() |
![]() |
63 | Bona, C., Massó, J., Seidel, E. and Stela, J., “First order hyperbolic formalism for numerical
relativity”, Phys. Rev. D, 56, 3405–3415, (1997). [![]() |
![]() |
64 | Bona, C. and Palenzuela, C., “Dynamical shift conditions for the Z4 and BSSN hyperbolic
formalisms”, Phys. Rev. D, 69, 104003, (2004). [![]() ![]() |
![]() |
65 | Bonazzola, S., Gourgoulhon, E., Grandclément, P. and Novak, J., “Constrained scheme for
the Einstein equations based on the Dirac gauge and spherical coordinates”, Phys. Rev. D, 70,
104007, (2004). [![]() ![]() ![]() |
![]() |
66 | Bonazzola, S. and Marck, J.-A., “Pseudo-spectral technique applied to numerical solutions for
stellar collapse”, Astron. Astrophys., 164, 300–309, (1986). [![]() |
![]() |
67 | Bonazzola, S. and Marck, J.-A., “Three-dimensional gas dynamics in a sphere”, J. Comput.
Phys., 87, 201–230, (1990). [![]() ![]() |
![]() |
68 | Bonazzola, S. and Marck, J.-A., “A 1D exact treatment of shock waves within spectral methods
in plane geometry”, J. Comput. Phys., 97, 535–552, (1991). [![]() ![]() |
![]() |
69 | Boyd, J.P., “A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid”, J. Comput. Phys., 103, 243–257, (1992). |
![]() |
70 | Boyd, J.P., Chebyshev and Fourier Spectral Methods, (Dover Publications, Mineola, NY, 2001),
2nd rev. edition. [![]() |
![]() |
71 | Boyle, M., Brown, D.A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Cook,
G.B. and Teukolsky, S.A., “High-accuracy comparison of numerical relativity simulations with
post-Newtonian expansions”, Phys. Rev. D, 76, 124038, (2007). [![]() ![]() ![]() |
![]() |
72 | Boyle, M. and Mroué, A.H., “Extrapolating gravitational-wave data from numerical
simulations”, Phys. Rev. D, 80, 124045, (2009). [![]() ![]() |
![]() |
73 | Brady, P.R., Creighton, J.D.E. and Thorne, K.S., “Computing the merger of black-hole binaries:
The IBBH problem”, Phys. Rev. D, 58, 061501, (1998). [![]() |
![]() |
74 | Brodbeck, O., Frittelli, S., Hubner, P. and Reula, O.A., “Einstein’s equations with
asymptotically stable constraint propagation”, J. Math. Phys., 40, 909–923, (1999). [![]() |
![]() |
75 | Brodbeck, O., Heusler, M. and Sarbach, O., “The generalization of the Regge-Wheeler equation
for selfgravitating matter fields”, Phys. Rev. Lett., 84, 3033–3036, (2000). [![]() |
![]() |
76 | Brown, J.D., “The Midpoint rule as a variational-symplectic integrator. I. Hamiltonian
systems”, Phys. Rev. D, 73, 024001, (2006). [![]() ![]() |
![]() |
77 | Brown, J.D., “Covariant formulations of BSSN and the standard gauge”, Phys. Rev. D, 79,
104029, (2009). [![]() |
![]() |
78 | Brown, J.D., “Strongly Hyperbolic Extensions of the ADM Hamiltonian”, in Henneaux, M.
and Zanelli, J., eds., Quantum Mechanics of Fundamental Systems: The Quest for Beauty
and Simplicity. Claudio Bunster Festschrift, pp. 71–90, (Springer, New York, 2009). [![]() ![]() ![]() |
![]() |
79 | Brown, J.D., “Action principle for the generalized harmonic formulation of general relativity”,
Phys. Rev. D, 84, 084014, (2011). [![]() |
![]() |
80 | Brown, J.D., Diener, P., Sarbach, O., Schnetter, E. and Tiglio, M., “Turduckening black holes:
an analytical and computational study”, Phys. Rev. D, 79, 044023, (2009). [![]() |
![]() |
81 | Brown, J.D., Sarbach, O., Schnetter, E., Tiglio, M., Diener, P., Hawke, I. and Pollney, D.,
“Excision without excision”, Phys. Rev. D, 76, 081503, (2007). [![]() |
![]() |
82 | Brown, J.D. et al., “Numerical simulations with a first-order BSSN formulation of Einstein’s
field equations”, Phys. Rev. D, 85, 084004, (2012). [![]() |
![]() |
83 | Brügmann, B., “A pseudospectral matrix method for time-dependent tensor fields on a
spherical shell”, arXiv, e-print, (2011). [![]() |
![]() |
84 | Brügmann, B., González, J.A, Hannam, M., Husa, S., Sperhake, U. and Tichy, W.,
“Calibration of moving puncture simulations”, Phys. Rev. D, 77, 024027, (2008). [![]() |
![]() |
85 | Bruhat, Y., “Cauchy problem”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 130–168, (Wiley, New York; London, 1962). |
![]() |
86 | Buchman, L.T. and Bardeen, J.M., “Hyperbolic tetrad formulation of the Einstein equations
for numerical relativity”, Phys. Rev. D, 67, 084017, (2003). [![]() |
![]() |
87 | Buchman, L.T., Pfeiffer, H.P. and Bardeen, J.M., “Black hole initial data on hyperboloidal
slices”, Phys. Rev. D, 80, 084024, (2009). [![]() ![]() |
![]() |
88 | Buchman, L.T. and Sarbach, O., “Towards absorbing outer boundaries in general relativity”,
Class. Quantum Grav., 23, 6709–6744, (2006). [![]() ![]() |
![]() |
89 | Buchman, L.T. and Sarbach, O., “Improved outer boundary conditions for Einstein’s field
equations”, Class. Quantum Grav., 24, S307–S326, (2007). [![]() ![]() |
![]() |
90 | Buonanno, A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P. and Taracchini, A., “Reducing
orbital eccentricity of precessing black-hole binaries”, Phys. Rev. D, 83, 104034, (2010).
[![]() |
![]() |
91 | Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T. and Kidder, L.E.,
“Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of
nonspinning, equal-mass black holes”, Phys. Rev. D, 79, 124028, (2009). [![]() ![]() |
![]() |
92 | Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using
Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971). [![]() ![]() |
![]() |
93 | Butcher, J.C., “On Runge-Kutta processes of high order”, J. Aust. Math. Soc., 5, 179–194,
(1964). [![]() |
![]() |
94 | Butcher, J.C., “On the attainable order of Runge-Kutta methods”, Math. Comput., 19,
408–417, (1965). [![]() |
![]() |
95 | Butcher, J.C., “The non-existence of ten stage eighth order explicit Runge-Kutta methods”,
BIT, 25, 521–540, (1985). [![]() |
![]() |
96 | Butcher, J.C., Numerical Methods for Ordinary Differential Equations, (Wiley, Chichester; Hoboken, NJ, 2003). |
![]() |
97 | Cadonati, L. et al., “Status of NINJA: The Numerical INJection Analysis project”, Class.
Quantum Grav., 26, 114008, (2009). [![]() ![]() |
![]() |
98 | Calabrese, G., Constraint preserving boundary conditions for the linearized Einstein equations,
Ph.D. thesis, (Louisiana State University, Baton Rouge, 2003). Online version (accessed 6 April
2011): ![]() |
![]() |
99 | Calabrese, G., “Exact boundary conditions in numerical relativity using multiple grids: scalar
field tests”, Class. Quantum Grav., 23, 5439–5450, (2006). [![]() |
![]() |
100 | Calabrese, G., Gundlach, C. and Hilditch, D., “Asymptotically null slices in numerical
relativity: mathematical analysis and spherical wave equation tests”, Class. Quantum Grav.,
23, 4829–4845, (2006). [![]() |
![]() |
101 | Calabrese, G., Hinder, I. and Husa, S., “Numerical stability for finite difference approximations
of Einstein’s equations”, J. Comput. Phys., 218, 607–634, (2006). [![]() ![]() |
![]() |
102 | Calabrese, G., Lehner, L., Neilsen, D., Pullin, J., Reula, O.A., Sarbach, O. and Tiglio,
M., “Novel finite-differencing techniques for numerical relativity: application to black-hole
excision”, Class. Quantum Grav., 20, L245–L252, (2003). [![]() ![]() |
![]() |
103 | Calabrese, G., Lehner, L., Reula, O.A., Sarbach, O. and Tiglio, M., “Summation by parts and
dissipation for domains with excised regions”, Class. Quantum Grav., 21, 5735–5758, (2004).
[![]() ![]() |
![]() |
104 | Calabrese, G., Lehner, L. and Tiglio, M., “Constraint-preserving boundary conditions in
numerical relativity”, Phys. Rev. D, 65, 104031, (2002). [![]() ![]() ![]() |
![]() |
105 | Calabrese, G. and Neilsen, D., “Spherical excision for moving black holes and summation by
parts for axisymmetric systems”, Phys. Rev. D, 69, 044020, (2004). [![]() ![]() |
![]() |
106 | Calabrese, G., Pullin, J., Reula, O.A., Sarbach, O. and Tiglio, M., “Well posed
constraint-preserving boundary conditions for the linearized Einstein equations”, Commun.
Math. Phys., 240, 377–395, (2003). [![]() ![]() ![]() |
![]() |
107 | Calabrese, G., Pullin, J., Sarbach, O. and Tiglio, M., “Convergence and stability in numerical
relativity”, Phys. Rev. D, 66, 041501(R), (2002). [![]() ![]() |
![]() |
108 | Calabrese, G. and Sarbach, O., “Detecting ill posed boundary conditions in general relativity”,
J. Math. Phys., 44, 3888–3899, (2003). [![]() |
![]() |
109 | Campanelli, M., Lousto, C.O., Zlochower, Y. and Merritt, D., “Large merger recoils and
spin flips from generic black-hole binaries”, Astrophys. J. Lett., 659, L5–L8, (2007). [![]() ![]() |
![]() |
110 | Campiglia, M., Di Bartolo, C., Gambini, R. and Pullin, J., “Uniform discretizations: A new
approach for the quantization of totally constrained systems”, Phys. Rev. D, 74, 124012, (2006).
[![]() ![]() |
![]() |
111 | Canizares, P. and Sopuerta, C.F., “Efficient pseudospectral method for the computation of the
self-force on a charged particle: Circular geodesics around a Schwarzschild black hole”, Phys.
Rev. D, 79, 084020, (2009). [![]() ![]() |
![]() |
112 | Canizares, P. and Sopuerta, C.F., “Simulations of Extreme-Mass-Ratio Inspirals Using
Pseudospectral Methods”, J. Phys.: Conf. Ser., 154, 012053, (2009). [![]() ![]() |
![]() |
113 | Canizares, P. and Sopuerta, C.F., “Tuning time-domain pseudospectral computations of
the self-force on a charged scalar particle”, Class. Quantum Grav., 28, 134011, (2011).
[![]() |
![]() |
114 | Canizares, P., Sopuerta, C.F. and Jaramillo, J.L., “Pseudospectral collocation methods for the
computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black
hole”, Phys. Rev. D, 82, 044023, (2010). [![]() ![]() |
![]() |
115 | Carpenter, M.H. and Gottlieb, D., “Spectral methods on arbitrary grids”, J. Comput. Phys.,
129, 74–86, (1996). [![]() |
![]() |
116 | Carpenter, M.H., Gottlieb, D. and Abarbanel, S., “The stability of numerical boundary
treatments for compact high-order finite-difference schemes”, J. Comput. Phys., 108, 272–295,
(1993). [![]() |
![]() |
117 | Carpenter, M.H., Gottlieb, D. and Abarbanel, S., “Time-Stable Boundary Conditions for
Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to
High-Order Compact Schemes”, J. Comput. Phys., 111, 220–236, (1994). [![]() |
![]() |
118 | Carpenter, M.H., Nordström, J. and Gottlieb, D., “A stable and conservative interface
treatment of arbitrary spatial accuracy”, J. Comput. Phys., 148, 341–365, (1999). [![]() |
![]() |
119 | Carpenter, M.H., Nordström, J. and Gottlieb, D., “Revisiting and Extending Interface
Penalties for Multi-domain Summation-by-Parts Operators”, J. Sci. Comput., 45, 118–150,
(2010). [![]() |
![]() |
120 | Cécere, M., Lehner, L. and Reula, O.A., “Constraint preserving boundary conditions for the
Ideal Newtonian MHD equations”, Comput. Phys. Commun., 179, 545–554, (2008). [![]() |
![]() |
121 | Cécere, M., Parisi, F. and Reula, O.A., “Numerical treatment of interfaces for second-order
wave equations”, arXiv, e-print, (2011). [![]() |
![]() |
122 | Centrella, J.M., Baker, J.G., Kelly, B.J. and van Meter, J.R., “Black-hole binaries, gravitational
waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069–3119, (2010). [![]() ![]() |
![]() |
123 | Chakraborty, D., Jung, J.-H. and Khanna, G., “A multi-domain hybrid method for head-on
collision of black holes in particle limit”, Int. J. Mod. Phys. C, 22, 517–541, (2011). [![]() ![]() |
![]() |
124 | Chawla, S., Anderson, M., Besselman, M., Lehner, L., Liebling, S.L., Motl, P.M. and Neilsen,
D., “Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion,
and Fallback”, Phys. Rev. Lett., 105, 111101, (2010). [![]() ![]() ![]() |
![]() |
125 | Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”,
Phys. Rev. Lett., 70, 9–12, (1993). [![]() ![]() |
![]() |
126 | Choquet-Bruhat, Y., General Relativity and the Einstein Equations, Oxford Mathematical
Monographs, (Oxford University Press, Oxford; New York, 2009). [![]() |
![]() |
127 | Choquet-Bruhat, Y. and Geroch, R., “Global aspects of the Cauchy problem in general
relativity”, Commun. Math. Phys., 14, 329–335, (1969). [![]() |
![]() |
128 | Choquet-Bruhat, Y. and Ruggeri, T., “Hyperbolicity of the 3+1 System of Einstein Equations”,
Commun. Math. Phys., 89, 269–275, (1983). [![]() |
![]() |
129 | Christodoulou, D. and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, (Princeton University Press, Princeton, NJ, 1993). |
![]() |
130 | Chu, T., Pfeiffer, H.P. and Cohen, M.I., “Horizon dynamics of distorted rotating black holes”,
Phys. Rev. D, 83, 104018, (2011). [![]() |
![]() |
131 | Chu, T., Pfeiffer, H.P. and Scheel, M.A., “High accuracy simulations of black hole binaries:
Spins anti-aligned with the orbital angular momentum”, Phys. Rev. D, 80, 124051, (2009).
[![]() ![]() |
![]() |
132 | Cohen, M.I., Pfeiffer, H.P. and Scheel, M.A., “Revisiting Event Horizon Finders”, Class.
Quantum Grav., 26, 035005, (2009). [![]() ![]() |
![]() |
133 | Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5,
(2000). [![]() ![]() http://www.livingreviews.org/lrr-2000-5. |
![]() |
134 | de Donder, T., La Gravifique Einsteinienne, (Gunthier-Villars, Paris, 1921). |
![]() |
135 | Deadman, E. and Stewart, J.M., “Linearized perturbations of the Kerr spacetime and outer
boundary conditions in numerical relativity”, Class. Quantum Grav., 28, 015003, (2011). [![]() |
![]() |
136 | Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T. and Wesenberg, M.,
“Hyperbolic divergence cleaning for the MHD equations”, J. Comput. Phys., 175, 645–673,
(2002). [![]() |
![]() |
137 | Dettoria, L. and Yang, B., “On the Chebyshev penalty method for parabolic and hyperbolic
equations”, Math. Model. Numer. Anal., 30, 907–920, (1996). Online version (accessed 6 April
2011): ![]() |
![]() |
138 | Deuflhard, P. and Hohmann, A., Numerical Analysis in Modern Scientific Computing: An
Introduction, Texts in Applied Mathematics, 43, (Springer, New York, 2003), 2nd edition.
[![]() |
![]() |
139 | Di Bartolo, C., Gambini, R. and Pullin, J., “Consistent and mimetic discretizations in general
relativity”, J. Math. Phys., 46, 032501, (2005). [![]() ![]() |
![]() |
140 | Diamessis, P.J., Domaradzki, J.A. and Hesthaven, J.S., “A spectral multidomain penalty
method model for the simulation of high Reynolds number localized incompressible stratified
turbulence”, J. Comput. Phys., 202, 298–322, (2005). [![]() |
![]() |
141 | Diener, P., Dorband, E.N., Schnetter, E. and Tiglio, M., “New, efficient, and accurate high
order derivative and dissipation operators satisfying summation by parts, and applications
in three-dimensional multi-block evolutions”, J. Sci. Comput., 32, 109–145, (2007). [![]() ![]() |
![]() |
142 | Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M. and Müller, E., “Combining spectral
and shock-capturing methods: A new numerical approach for 3D relativistic core collapse
simulations”, Phys. Rev. D, 71, 064023, (2005). [![]() ![]() ![]() |
![]() |
143 | d’Inverno, R.A., Dubal, M.R. and Sarkies, E.A., “Cauchy-characteristic matching for a family of
cylindrical vacuum solutions possessing both gravitational degrees of freedom”, Class. Quantum
Grav., 17, 3157–3170, (2000). [![]() ![]() ![]() |
![]() |
144 | Don, W.S. and Gottlieb, D., “The Chebyshev-Legendre Method: Implementing Legendre
Methods on Chebyshev Points”, SIAM J. Numer. Anal., 31, 1519–1534, (1994). [![]() |
![]() |
145 | Dorband, E.N., Berti, E., Diener, P., Schnetter, E. and Tiglio, M., “Numerical study of the
quasinormal mode excitation of Kerr black holes”, Phys. Rev. D, 74, 084028, (2006). [![]() ![]() |
![]() |
146 | Dormand, J.R. and Prince, P.J., “A family of embedded Runge-Kutta formulae”, J. Comput.
Appl. Math., 6, 19–26, (1980). [![]() |
![]() |
147 | Douglas Jr, J. and Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, 58, (Springer, Heidelberg, 1976). |
![]() |
148 | Dubal, M.R., d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes.
V. Cauchy-characteristic matching for a spherical space-time containing a perfect fluid”, Phys.
Rev. D, 58, 044019, (1998). [![]() |
![]() |
149 | Duez, M.D., Foucart, F., Kidder, L.E., Ott, C.D. and Teukolsky, S.A., “Equation of state effects
in black hole-neutron star mergers”, Class. Quantum Grav., 27, 114106, (2010). [![]() ![]() ![]() |
![]() |
150 | Duez, M.D., Foucart, F., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A. and Teukolsky, S.A.,
“Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite
difference methods”, Phys. Rev. D, 78, 104015, (2008). [![]() ![]() ![]() |
![]() |
151 | “Einstein Toolkit”, project homepage, Louisiana State University. URL (accessed 4 April 2011):
![]() |
![]() |
152 | Engel, K.-J. and Nagel, R., One-Parameter Semigroups for Linear Evolution Equations,
Graduate Texts in Mathematics, 194, (Springer, New York; Berlin, 2000). [![]() |
![]() |
153 | Engquist, B. and Majda, A., “Absorbing boundary conditions for the numerical simulation of
waves”, Math. Comput., 31, 629–651, (1977). [![]() ![]() |
![]() |
154 | Epperson, J.F., “On the Runge Example”, Am. Math. Mon., 94, 329–341, (1987). [![]() |
![]() |
155 | Estabrook, F.B., Robinson, R.S. and Wahlquist, H.D., “Hyperbolic equations for vacuum
gravity using special orthonormal frames”, Class. Quantum Grav., 14, 1237–1247, (1997). [![]() |
![]() |
156 | Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L. and Baumgarte, T.W., “Filling the holes:
Evolving excised binary black hole initial data with puncture techniques”, Phys. Rev. D, 76,
101503, (2007). [![]() |
![]() |
157 | Etienne, Z.B., Liu, Y.T. and Shapiro, S.L., “Relativistic magnetohydrodynamics in dynamical
spacetimes: A new adaptive mesh refinement implementation”, Phys. Rev. D, 82, 084031,
(2010). [![]() ![]() |
![]() |
158 | Evans, C.R., “An approach for calculating axisymmetric gravitational collapse”, in Centrella,
J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of the Workshop held
at Drexel University, October 7 – 11, 1985, pp. 3–39, (Cambridge University Press, Cambridge;
New York, 1986). [![]() |
![]() |
159 | Evans, C.R. and Hawley, J.F., “Simulation of magnetohydrodynamic flows: a constrained
transport method”, Astrophys. J., 332, 659–677, (1988). [![]() |
![]() |
160 | Evans, E., Iyer, S., Schnetter, E., Suen, W.-M., Tao, J., Wolfmeyer, R. and Zhang, H.-M.,
“Computational relativistic astrophysics with adaptive mesh refinement: Testbeds”, Phys. Rev.
D, 71, 081301, (2005). [![]() ![]() |
![]() |
161 | Evans, L.C., Partial Differential Equations, Graduate Studies in Mathematics, 19, (American
Mathematical Society, Providence, RI, 2010), 2nd edition. [![]() |
![]() |
162 | Field, S.E., Hesthaven, J.S. and Lau, S.R., “Discontinuous Galerkin method for computing
gravitational waveforms from extreme mass ratio binaries”, Class. Quantum Grav., 26, 165010,
(2009). [![]() ![]() |
![]() |
163 | Field, S.E., Hesthaven, J.S., Lau, S.R. and Mroué, A.H., “Discontinuous Galerkin method for
the spherically reduced BSSN system with second-order operators”, Phys. Rev. D, 82, 104051,
(2010). [![]() ![]() |
![]() |
164 | Fischer, A. and Marsden, J., “The Einstein evolution equations as a first-order quasi-linear
symmetric hyperbolic system, I”, Commun. Math. Phys., 28, 1–38, (1972). [![]() |
![]() |
165 | Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”,
Living Rev. Relativity, 11, lrr-2008-7, (2008). [![]() http://www.livingreviews.org/lrr-2008-7. |
![]() |
166 | Fornberg, B., “Calculation of Weights in Finite Difference Formulas”, SIAM Rev., 40, 685–691,
(1998). [![]() |
![]() |
167 | Fornberg, B., A Practical Guide to Pseudospectral Methods, Cambridge Monographs on
Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998). [![]() |
![]() |
168 | Foucart, F., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Black hole-neutron star mergers:
effects of the orientation of the black hole spin”, Phys. Rev. D, 83, 024005, (2011). [![]() ![]() ![]() |
![]() |
169 | Fourès-Bruhat, Y., “Théorème d’existence pour certains systèmes d’équations aux
dérivées partielles non linéaires”, Acta Math., 88, 141–225, (1952). [![]() |
![]() |
170 | Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the
vacuum Einstein equations. II. The Evolution equations”, Phys. Rev. D, 58, 064003, (1998).
[![]() |
![]() |
171 | Frauendiener, J., “Discretizations of axisymmetric systems”, Phys. Rev. D, 66, 104027, (2002).
[![]() ![]() |
![]() |
172 | Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL
(accessed 6 April 2011): http://www.livingreviews.org/lrr-2004-1. |
![]() |
173 | Frauendiener, J., “Discrete differential forms in general relativity”, Class. Quantum Grav., 23,
S369–S385, (2006). [![]() |
![]() |
174 | Frauendiener, J., “The applicability of constrained symplectic integrators in general relativity”,
J. Phys. A: Math. Theor., 41, 382005, (2008). [![]() ![]() |
![]() |
175 | Frauendiener, J. and Hein, M., “Numerical evolution of axisymmetric, isolated systems in
general relativity”, Phys. Rev. D, 66, 124004, (2002). [![]() ![]() |
![]() |
176 | Friedrich, H., “On The Regular And Asymptotic Characteristic Initial Value Problem For
Einstein’s Vacuum Field Equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981).
[![]() |
![]() |
177 | Friedrich, H., “Cauchy problems for the conformal vacuum field equations in general relativity”,
Commun. Math. Phys., 91, 445–472, (1983). [![]() ![]() |
![]() |
178 | Friedrich, H., “On the hyperbolicity of Einstein’s and other gauge field equations”, Commun.
Math. Phys., 100, 525–543, (1985). [![]() ![]() |
![]() |
179 | Friedrich, H., “On purely radiative space-times”, Commun. Math. Phys., 103, 35–65, (1986).
[![]() |
![]() |
180 | Friedrich, H., “On the existence of n-geodesically complete or future complete solutions of
Einstein’s field equations with smooth asymptotic structure”, Commun. Math. Phys., 107,
587–609, (1986). [![]() |
![]() |
181 | Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de-Sitter-type
space-times”, J. Geom. Phys., 17, 125–184, (1995). [![]() |
![]() |
182 | Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13,
1451–1469, (1996). [![]() ![]() |
![]() |
183 | Friedrich, H., “Conformal Einstein Evolution”, in Friedrich, H. and Frauendiener, J., eds., The
Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Lecture Notes in Physics,
604, pp. 1–50, (Springer, Berlin; New York, 2002). [![]() ![]() |
![]() |
184 | Friedrich, H., “Is general relativity ‘essentially understood’?”, Ann. Phys. (Berlin), 15, 84–108,
(2005). [![]() |
![]() |
185 | Friedrich, H., “On the nonlinearity of the subsidiary systems”, Class. Quantum Grav., 22,
L77–L82, (2005). [![]() |
![]() |
186 | Friedrich, H., “Initial boundary value problems for Einstein’s field equations and geometric
uniqueness”, Gen. Relativ. Gravit., 41, 1947–1966, (2009). [![]() |
![]() |
187 | Friedrich, H. and Nagy, G., “The initial boundary value problem for Einstein’s vacuum field
equations”, Commun. Math. Phys., 201, 619–655, (1999). [![]() ![]() |
![]() |
188 | Friedrich, H. and Rendall, A.D., “The Cauchy Problem for the Einstein Equations”, in Schmidt,
B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in
Honour of Jürgen Ehlers, Lecture Notes in Physics, 540, pp. 127–223, (Springer, Berlin; New
York, 2000). [![]() ![]() |
![]() |
189 | Friedrichs, K.O., “Symmetric Positive Linear Differential Equations”, Commun. Pure Appl.
Math., 11, 333–418, (1958). [![]() |
![]() |
190 | Frittelli, S., “Note on the propagation of the constraints in standard 3+1 general relativity”,
Phys. Rev. D, 55, 5992–5996, (1997). [![]() |
![]() |
191 | Frittelli, S. and Gómez, R., “Boundary conditions for hyperbolic formulations of the Einstein
equations”, Class. Quantum Grav., 20, 2379–2392, (2003). [![]() |
![]() |
192 | Frittelli, S. and Gómez, R., “Einstein boundary conditions for the 3+1 Einstein equations”,
Phys. Rev. D, 68, 044014, (2003). [![]() ![]() ![]() |
![]() |
193 | Frittelli, S. and Gómez, R., “Einstein boundary conditions for the Einstein equations in the
conformal-traceless decomposition”, Phys. Rev. D, 70, 064008, (2004). [![]() |
![]() |
194 | Frittelli, S. and Gómez, R., “Einstein boundary conditions in relation to constraint
propagation for the initial-boundary value problem of the Einstein equations”, Phys. Rev. D,
69, 124020, (2004). [![]() |
![]() |
195 | Frittelli, S. and Reula, O.A., “First-order symmetric-hyperbolic Einstein equations with
arbitrary fixed gauge”, Phys. Rev. Lett., 76, 4667–4670, (1996). [![]() |
![]() |
196 | Frittelli, S. and Reula, O.A., “Well-posed forms of the 3+1 conformally-decomposed Einstein
equations”, J. Math. Phys., 40, 5143–5156, (1999). [![]() |
![]() |
197 | Funaro, D., Polynomial Approximation of Differential Equations, (Springer, Heidelberg, 1992). |
![]() |
198 | Funaro, D. and Gottlieb, D., “A New Method of Imposing Boundary Conditions in
Pseudospectral Approximations of Hyperbolic Equations”, Math. Comput., 51, 599–613,
(1988). [![]() |
![]() |
199 | Funaro, D. and Gottlieb, D., “Convergence Results for Pseudospectral Approximations of
Hyperbolic Systems by a Penalty-Type Boundary Treatment”, Math. Comput., 57, 585–596,
(1991). [![]() |
![]() |
200 | Gambini, R., Ponce, M. and Pullin, J., “Consistent discretizations: the Gowdy spacetimes”,
Phys. Rev. D, 72, 024031, (2005). [![]() ![]() |
![]() |
201 | Gambini, R. and Pullin, J., “Consistent discretizations as a road to Quantum Gravity”,
in Oriti, D., ed., Approaches to Quantum Gravity: Toward a New Understanding of Space,
Time and Matter, pp. 378–392, (Cambridge University Press, Cambridge; New York, 2009).
[![]() |
![]() |
202 | Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev.
D, 65, 044029, (2002). [![]() ![]() ![]() |
![]() |
203 | Garfinkle, D. and Gundlach, C., “Symmetry-seeking spacetime coordinates”, Class. Quantum
Grav., 16, 4111–4123, (1999). [![]() ![]() |
![]() |
204 | Garfinkle, D., Gundlach, C., Isenberg, J. and Ó Murchadha, N., “Existence, uniqueness and
other properties of the BCT (minimal strain lapse and shift) gauge”, Class. Quantum Grav.,
17, 3899–3904, (2000). [![]() |
![]() |
205 | Geroch, R., “Partial Differential Equations of Physics”, in Hall, G.S. and Pulham, J.R.,
eds., General Relativity, Proceedings of the Forty Sixth Scottish Universities Summer
School in Physics, Aberdeen, July 1995, p. 19, (SUSSP; IOP, Edinburgh; Bristol, 1996).
[![]() |
![]() |
206 | Givoli, D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94, 1–29, (1991). [![]() ![]() |
![]() |
207 | Givoli, D., “High-order nonreflecting boundary conditions without high-order derivatives”, J.
Comput. Phys., 170, 849–870, (2001). [![]() |
![]() |
208 | Givoli, D. and Neta, B., “High-order non-reflecting boundary scheme for time-dependent
waves”, J. Comput. Phys., 186, 24–46, (2003). [![]() |
![]() |
209 | Gottlieb, D., “The Stability of Pseudospectral-Chebyshev Methods”, Math. Comput., 36,
107–118, (1981). [![]() |
![]() |
210 | Gottlieb, D., Lustman, L. and Tadmor, E., “Convergence of spectral methods of hyperbolic
initial-boundary value systems”, SIAM J. Numer. Anal., 24, 532–537, (1987). [![]() |
![]() |
211 | Gottlieb, D., Lustman, L. and Tadmor, E., “Stability analysis of spectral methods for hyperbolic
initial-boundary value systems”, SIAM J. Numer. Anal., 24, 241–256, (1987). [![]() |
![]() |
212 | Gottlieb, D. and Tadmor, E., “The CFL Condition For Spectral Approximations To Hyperbolic
Initial-Boundary Value Problems”, Math. Comput., 56, 565–588, (1991). [![]() |
![]() |
213 | Gourgoulhon, E., “1D numerical relativity applied to neutron star collapse”, Class. Quantum
Grav., 9, S117–S125, (1992). [![]() ![]() |
![]() |
214 | Gourgoulhon, E., 3+1 Formalism in General Relativity: Bases of Numerical Relativity, Lecture
Notes in Physics, 846, (Springer, Berlin; New York, 2012). [![]() ![]() |
![]() |
215 | Grandclément, P. and Novak, J., “Spectral Methods for Numerical Relativity”, Living Rev.
Relativity, 12, lrr-2009-1, (2009). [![]() http://www.livingreviews.org/lrr-2009-1. |
![]() |
216 | Gregory, R. and Laflamme, R., “Black strings and p-branes are unstable”, Phys. Rev. Lett.,
70, 2837–2840, (1993). [![]() ![]() |
![]() |
217 | Gregory, R. and Laflamme, R., “The instability of charged black strings and p-branes”, Nucl.
Phys. B, 428, 399–434, (1994). [![]() ![]() |
![]() |
218 | Guès, O., “Problème mixte hyperbolique quasi-linéaire charactéristique”, Commun. Part. Diff. Eq., 15, 595–645, (1990). |
![]() |
219 | Gundlach, C. and Martín-García, J.M., “Symmetric hyperbolic form of systems of
second-order evolution equations subject to constraints”, Phys. Rev. D, 70, 044031, (2004).
[![]() ![]() ![]() |
![]() |
220 | Gundlach, C. and Martín-García, J.M., “Symmetric hyperbolicity and consistent boundary
conditions for second-order Einstein equations”, Phys. Rev. D, 70, 044032, (2004). [![]() ![]() ![]() |
![]() |
221 | Gundlach, C. and Martín-García, J.M., “Hyperbolicity of second-order in space
systems of evolution equations”, Class. Quantum Grav., 23, S387–S404, (2006). [![]() ![]() |
![]() |
222 | Gundlach, C. and Martín-García, J.M., “Well-posedness of formulations of the Einstein
equations with dynamical lapse and shift conditions”, Phys. Rev. D, 74, 024016, (2006). [![]() ![]() ![]() |
![]() |
223 | Gundlach, C. and Martín-García, J.M., “Critical Phenomena in Gravitational Collapse”,
Living Rev. Relativity, 10, lrr-2007-5, (2007). [![]() http://www.livingreviews.org/lrr-2007-5. |
![]() |
224 | Gundlach, C., Martín-García, J.M., Calabrese, G. and Hinder, I., “Constraint damping in
the Z4 formulation and harmonic gauge”, Class. Quantum Grav., 22, 3767–3774, (2005). [![]() ![]() |
![]() |
225 | Gundlach, C., Martín-García, J.M. and Garfinkle, D., “Summation by parts methods for
the spherical harmonic decomposition of the wave equation in arbitrary dimensions”, arXiv,
e-print, (2010). [![]() |
![]() |
226 | Gustafsson, B., “On the implementation of boundary conditions for the method of lines”, BIT,
38, 293–314, (1998). [![]() |
![]() |
227 | Gustafsson, B., High Order Difference Methods for Time Dependent PDE, Springer Series in
Computational Mathematics, 38, (Springer, Berlin; New York, 2008). [![]() ![]() |
![]() |
228 | Gustafsson, B., Kreiss, H.-O. and Oliger, J., Time Dependent Problems and Difference Methods,
Pure and Applied Mathematics, (Wiley, New York, 1995). [![]() |
![]() |
229 | Gustafsson, B., Kreiss, H.-O. and Sundström, A., “Stability Theory of Difference
Approximations for Mixed Initial Boundary Value Problems. II”, Math. Comput., 26, 649–686,
(1972). [![]() |
![]() |
230 | Hairer, E., Nørsett, S.P. and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff
Problems, Springer Series in Computational Mathematics, 8, (Springer, Berlin, 1993), 2nd
edition. [![]() ![]() |
![]() |
231 | Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, (Springer,
Berlin, 1996), 2nd edition. [![]() ![]() |
![]() |
232 | Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [![]() |
![]() |
233 | Hennig, J. and Ansorg, M., “A Fully Pseudospectral Scheme for Solving Singular Hyperbolic
Equations on Conformally Compactified Space-Times”, J. Hyperbol. Differ. Equations, 6, 161,
(2009). [![]() ![]() |
![]() |
234 | Hern, S.D., “Coordinate singularities in harmonically sliced cosmologies”, Phys. Rev. D, 62,
044003, (2000). [![]() |
![]() |
235 | Hesthaven, J.S., “A Stable Penalty Method for the Compressible Navier–Stokes Equations:
II. One-Dimensional Domain Decomposition Schemes”, SIAM J. Sci. Comput., 18, 658–685,
(1997). [![]() |
![]() |
236 | Hesthaven, J.S., “Spectral penalty methods”, Appl. Numer. Math., 33, 23–41, (2000). [![]() |
![]() |
237 | Hesthaven, J.S., Gottlieb, S. and Gottlieb, D., Spectral Methods for Time-Dependent Problems,
Cambridge Monographs on Applied and Computational Mathematics, (Cambridge University
Press, Cambridge; New York, 2007). [![]() |
![]() |
238 | Hesthaven, J.S. and Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis and Applications, Texts in Applied Mathematics, 54, (Springer, New York, 2008).
[![]() |
![]() |
239 | Hicken, J.E. and Zingg, D.W., “Superconvergent Functional Estimates from
Summation-By-Parts Finite-Difference Discretizations”, SIAM J. Sci. Comput., 33, 893–922,
(2011). [![]() |
![]() |
240 | Higdon, R.L., “Absorbing Boundary Conditions for Difference Approximations to the
Multi-Dimensional Wave Equation”, Math. Comput., 47, 437–459, (1986). [![]() |
![]() |
241 | Higdon, R.L., “Initial-Boundary Value Problems for Linear Hyperbolic Systems”, SIAM Rev.,
28, 177–217, (1986). [![]() |
![]() |
242 | Hildebrand, F.B., Introduction to Numerical Analysis, (Dover, New York, 1987), 2nd edition.
[![]() |
![]() |
243 | Hilditch, D. and Richter, R., “Hyperbolic formulations of General Relativity with Hamiltonian
structure”, arXiv, e-print, (2010). [![]() |
![]() |
244 | Holst, M., Lindblom, L., Owen, R., Pfeiffer, H.P., Scheel, M.A. and Kidder, L.E., “Optimal
Constraint Projection for Hyperbolic Evolution Systems”, Phys. Rev. D, 70, 084017, (2004).
[![]() ![]() |
![]() |
245 | Hübner, P., “A scheme to numerically evolve data for the conformal Einstein equation”, Class.
Quantum Grav., 16, 2823–2843, (1999). [![]() |
![]() |
246 | Hughes, T.J.R., Kato, T. and Marsden, J.E., “Well-posed Quasi-Linear Second-order
Hyperbolic Systems with Applications to Nonlinear Elastodynamics and General Relativity”,
Arch. Ration. Mech. Anal., 63, 273–294, (1977). [![]() |
![]() |
247 | Husa, S., Schneemann, C., Vogel, T. and Zenginoğlu, A., “Hyperboloidal data and evolution”,
in Mornas, L. and Diaz Alonso, J., eds., A Century of Relativity Physics: XXVIII Spanish
Relativity Meeting (ERE 2005), Oviedo, Asturias, Spain, 6 – 10 September 2005, AIP
Conference Proceedings, 841, pp. 306–313, (American Institute of Physics, Melville, NY, 2006).
[![]() |
![]() |
248 | Iriondo, M.S., Leguizamón, E.O. and Reula, O.A., “Einstein’s equations in Ashtekar’s
variables constitute a symmetric hyperbolic system”, Phys. Rev. Lett., 79, 4732–4735, (1997).
[![]() |
![]() |
249 | Iriondo, M.S. and Reula, O.A., “On free evolution of selfgravitating, spherically symmetric
waves”, Phys. Rev. D, 65, 044024, (2002). [![]() |
![]() |
250 | John, F., Nonlinear Wave Equations, Formation of Singularities, University Lecture Series, 2,
(American Mathematical Society, Providence, RI, 1990). [![]() |
![]() |
251 | Kato, T., “The Cauchy problem for quasi-linear symmetric hyperbolic systems”, Arch. Ration.
Mech. Anal., 58, 181–205, (1975). [![]() |
![]() |
252 | Kato, T., Perturbation Theory for Linear Operators, (Springer, Berlin; New York, 1995). [![]() |
![]() |
253 | Kidder, L.E., Lindblom, L., Scheel, M.A., Buchman, L.T. and Pfeiffer, H.P., “Boundary
conditions for the Einstein evolution system”, Phys. Rev. D, 71, 064020, (2005). [![]() ![]() |
![]() |
254 | Kidder, L.E., Scheel, M.A. and Teukolsky, S.A., “Extending the lifetime of 3-D black hole
computations with a new hyperbolic system of evolution equations”, Phys. Rev. D, 64, 064017,
(2001). [![]() ![]() |
![]() |
255 | Kidder, L.E., Scheel, M.A., Teukolsky, S.A., Carlson, E.D. and Cook, G.B., “Black
hole evolution by spectral methods”, Phys. Rev. D, 62, 084032, (2000). [![]() ![]() ![]() |
![]() |
256 | Korobkin, O., Abdikamalov, E.B., Schnetter, E., Stergioulas, N. and Zink, B., “Stability of
general-relativistic accretion disks”, Phys. Rev. D, 83, 043007, (2010). [![]() ![]() |
![]() |
257 | Kreiss, H.-O., “Über Matrizen die beschränkte Halbgruppen erzeugen”, Math. Scand., 7, 71–80, (1959). |
![]() |
258 | Kreiss, H.-O., “Initial Boundary Value Problems for Hyperbolic Systems”, Commun. Pure
Appl. Math., 23, 277–298, (1970). [![]() |
![]() |
259 | Kreiss, H.-O. and Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations,
Pure and Applied Mathematics, 136, (Academic Press, San Diego, 1989). [![]() |
![]() |
260 | Kreiss, H.-O. and Oliger, J., “Comparison of accurate methods for the integration of hyperbolic
equations”, Tellus, 24, 199–215, (1972). [![]() |
![]() |
261 | Kreiss, H.-O. and Ortiz, O.E., “Some Mathematical and Numerical Questions Connected
with First and Second Order Time-Dependent Systems of Partial Differential Equations”, in
Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry,
Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4
April 2001, Lecture Notes in Physics, 604, pp. 359–370, (Springer, Berlin; New York, 2002).
[![]() ![]() ![]() |
![]() |
262 | Kreiss, H.-O., Ortiz, O.E. and Petersson, N.A., “Initial-boundary value problems for second
order systems of partial differential equations”, arXiv, e-print, (2010). [![]() ![]() |
![]() |
263 | Kreiss, H.-O., Reula, O.A., Sarbach, O. and Winicour, J., “Well-posed initial-boundary value
problem for the harmonic Einstein equations using energy estimates”, Class. Quantum Grav.,
24, 5973–5984, (2007). [![]() ![]() ![]() |
![]() |
264 | Kreiss, H.-O., Reula, O.A., Sarbach, O. and Winicour, J., “Boundary conditions for coupled
quasilinear wave equations with applications to isolated systems”, Commun. Math. Phys., 289,
1099–1129, (2009). [![]() ![]() ![]() |
![]() |
265 | Kreiss, H.-O. and Scherer, G., “Finite element and finite difference methods for hyperbolic partial differential equations”, in De Boor, C., ed., Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of a symposium conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 1 – 3, 1974, (Academica Press, New York, 1974). |
![]() |
266 | Kreiss, H.-O. and Scherer, G., On the existence of energy estimates for difference approximations for hyperbolic systems, (Dept. of Scientific Computing, Uppsala University, Uppsala, 1977). |
![]() |
267 | Kreiss, H.-O. and Winicour, J., “Problems which are well-posed in a generalized sense with
applications to the Einstein equations”, Class. Quantum Grav., 23, S405–S420, (2006). [![]() ![]() ![]() |
![]() |
268 | Kreiss, H.-O. and Wu, L., “On the stability definition of difference approximations for the
initial boundary value problem”, Appl. Numer. Math., 12, 213–227, (1993). [![]() |
![]() |
269 | Lanczos, K., “Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen”, Phys. Z., 23, 537–539, (1922). |
![]() |
270 | Lau, S.R., “Rapid evaluation of radiation boundary kernels for time-domain wave propagation
on black holes: implementation and numerical tests”, Class. Quantum Grav., 21, 4147–4192,
(2004). [![]() |
![]() |
271 | Lau, S.R., “Rapid evaluation of radiation boundary kernels for time-domain wave propagation
on blackholes: theory and numerical methods”, J. Comput. Phys., 199, 376–422, (2004). [![]() |
![]() |
272 | Lau, S.R., “Analytic structure of radiation boundary kernels for blackhole perturbations”, J.
Math. Phys., 46, 102503, (2005). [![]() |
![]() |
273 | Lau, S.R., Lovelace, G. and Pfeiffer, H.P., “Implicit-explicit (IMEX) evolution of single black
holes”, Phys. Rev. D, 84, 084023, (2011). [![]() ![]() |
![]() |
274 | Lau, S.R., Pfeiffer, H.P. and Hesthaven, J.S., “IMEX evolution of scalar fields on curved
backgrounds”, Commun. Comput. Phys., 6, 1063–1094, (2008). [![]() |
![]() |
275 | Lax, P.D. and Phillips, R.S., “Local Boundary Conditions for Dissipative Symmetric Linear
Differential Operators”, Commun. Pure Appl. Math., 13, 427–455, (1960). [![]() |
![]() |
276 | Lax, P.D. and Richtmyer, R.D., “Survey of the stability of linear finite difference equations”,
Commun. Pure Appl. Math., 9, 267–293, (1956). [![]() |
![]() |
277 | Lehner, L., Liebling, S.L. and Reula, O.A., “AMR, stability and higher accuracy”, Class.
Quantum Grav., 23, S421–S446, (2006). [![]() ![]() ![]() |
![]() |
278 | Lehner, L., Neilsen, D., Reula, O.A. and Tiglio, M., “The Discrete energy method in numerical
relativity: Towards long-term stability”, Class. Quantum Grav., 21, 5819–5848, (2004). [![]() ![]() |
![]() |
279 | Lehner, L. and Pretorius, F., “Black Strings, Low Viscosity Fluids, and Violation of Cosmic
Censorship”, Phys. Rev. Lett., 105, 101102, (2010). [![]() ![]() |
![]() |
280 | Lehner, L. and Pretorius, F., “Final state of Gregory–Laflamme instability”, in Horowitz, G.T.,
ed., Black Holes in Higher Dimensions, pp. 44–68, (Cambridge University Press, Cambridge;
New York, 2012). [![]() |
![]() |
281 | Lehner, L., Reula, O.A. and Tiglio, M., “Multi-block simulations in general relativity: high order
discretizations, numerical stability, and applications”, Class. Quantum Grav., 22, 5283–5322,
(2005). [![]() ![]() |
![]() |
282 | Levy, D. and Tadmor, E., “From the semidiscrete to fully discrete: Stability of Runge-Kutta
schemes by the energy method”, SIAM Rev., 40, 40–73, (1998). [![]() |
![]() |
283 | Lindblad, H. and Rodnianski, I., “Global existence for the Einstein vacuum equations in wave
coordinates”, Commun. Math. Phys., 256, 43–110, (2005). [![]() |
![]() |
284 | Lindblad, H. and Rodnianski, I., “The global stability of the Minkowski space-time in harmonic
gauge”, Ann. Math. (2), 171, 1401–1477, (2010). [![]() ![]() |
![]() |
285 | Lindblom, L. and Scheel, M.A., “Dynamical gauge conditions for the Einstein evolution
equations”, Phys. Rev. D, 67, 124005, (2003). [![]() |
![]() |
286 | Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R. and Rinne, O., “A new generalized
harmonic evolution system”, Class. Quantum Grav., 23, S447–S462, (2006). [![]() ![]() ![]() |
![]() |
287 | Lindblom, L., Scheel, M.A., Kidder, L.E., Pfeiffer, H.P., Shoemaker, D. and Teukolsky, S.A.,
“Controlling the growth of constraints in hyperbolic evolution systems”, Phys. Rev. D, 69,
124025, (2004). [![]() ![]() |
![]() |
288 | Lovelace, G., “Reducing spurious gravitational radiation in binary-black-hole simulations by
using conformally curved initial data”, Class. Quantum Grav., 26, 114002, (2009). [![]() ![]() |
![]() |
289 | Lovelace, G., Scheel, M.A. and Szilágyi, B., “Simulating merging binary black holes with
nearly extremal spins”, Phys. Rev. D, 83, 024010, (2011). [![]() ![]() |
![]() |
290 | Lovelace, G. et al., “Momentum flow in black-hole binaries. II. Numerical simulations of
equal-mass, head-on mergers with antiparallel spins”, Phys. Rev. D, 82, 064031, (2010). [![]() ![]() |
![]() |
291 | Ma, H., “Chebyshev–Legendre Spectral Viscosity Method for Nonlinear Conservation Laws”,
SIAM J. Numer. Anal., 35, 869–892, (1998). [![]() |
![]() |
292 | Ma, H., “Chebyshev–Legendre Super Spectral Viscosity Method for Nonlinear Conservation
Laws”, SIAM J. Numer. Anal., 35, 893–908, (1998). [![]() |
![]() |
293 | Majda, A. and Osher, S., “Initial-boundary value problems for hyperbolic equations with
uniformly characteristic boundary”, Commun. Pure Appl. Math., 28, 607–675, (1975). [![]() |
![]() |
294 | Martel, K. and Poisson, E., “Gravitational perturbations of the Schwarzschild spacetime: A
Practical covariant and gauge-invariant formalism”, Phys. Rev. D, 71, 104003, (2005). [![]() |
![]() |
295 | Martí, J.M. and Müller, E., “Numerical Hydrodynamics in Special Relativity”, Living Rev.
Relativity, 6, lrr-2003-7, (2003). URL (accessed 6 April 2011): http://www.livingreviews.org/lrr-2003-7. |
![]() |
296 | Mattsson, K., “Boundary Procedures for Summation-by-Parts Operators”, J. Sci. Comput.,
18, 133–153, (2003). [![]() |
![]() |
297 | Mattsson, K. and Carpenter, M.H., “Stable and Accurate Interpolation Operators for
High-Order Multiblock Finite Difference Methods”, SIAM J. Sci. Comput., 32, 2298, (2010).
[![]() |
![]() |
298 | Mattsson, K., Ham, F. and Iaccarino, G., “Stable and accurate wave-propagation in
discontinuous media”, J. Comput. Phys., 227, 8753–8767, (2008). [![]() |
![]() |
299 | Mattsson, K., Ham, F. and Iaccarino, G., “Stable Boundary Treatment for the Wave Equation
on Second-Order Form”, J. Sci. Comput., 41, 366–383, (2009). [![]() |
![]() |
300 | Mattsson, K. and Nordström, J., “Summation by parts operators for finite difference
approximations of second derivatives”, J. Comput. Phys., 199, 503–540, (2004). [![]() |
![]() |
301 | Mattsson, K. and Nordström, J., “High order finite difference methods for wave propagation
in discontinuous media”, J. Comput. Phys., 220, 249–269, (2006). [![]() |
![]() |
302 | Mattsson, K. and Parisi, F., “Stable and accurate second-order formulation of the shifted wave
equation”, Commun. Comput. Phys., 7, 103–137, (2010). [![]() |
![]() |
303 | Mattsson, K., Svärd, M. and Nordström, J., “Stable and Accurate Artificial Dissipation”, J.
Sci. Comput., 21, 57–79, (2004). [![]() |
![]() |
304 | Meier, D.L., “Constrained transport algorithms for numerical relativity. I. Development of a
finite-difference scheme”, Astrophys. J., 595, 980–991, (2003). [![]() ![]() |
![]() |
305 | Moncrief, V. and Rinne, O., “Regularity of the Einstein Equations at Future Null Infinity”,
Class. Quantum Grav., 26, 125010, (2009). [![]() |
![]() |
306 | Mroué, A.H., Pfeiffer, H.P., Kidder, L.E. and Teukolsky, S.A., “Measuring orbital eccentricity
and periastron advance in quasi-circular black hole simulations”, Phys. Rev. D, 82, 124016,
(2010). [![]() ![]() |
![]() |
307 | Nagar, A. and Rezzolla, L., “Gauge-invariant non-spherical metric perturbations of
Schwarzschild black-hole spacetimes”, Class. Quantum Grav., 22, R167–R192, (2005). [![]() ![]() ![]() |
![]() |
308 | Nagy, G., Ortiz, O.E. and Reula, O.A., “Strongly hyperbolic second order Einstein’s evolution
equations”, Phys. Rev. D, 70, 044012, (2004). [![]() |
![]() |
309 | Nagy, G. and Sarbach, O., “A minimization problem for the lapse and the initial-boundary
value problem for Einstein’s field equations”, Class. Quantum Grav., 23, S477–S504, (2006).
[![]() |
![]() |
310 | Neilsen, D., Lehner, L., Sarbach, O. and Tiglio, M., “Recent Analytical and Numerical
Techniques Applied to the Einstein Equations”, in Frauendiener, J., Giulini, D.J.W. and
Perlick, V., eds., Analytical and Numerical Approaches to Mathematical Relativity, 319th
WE-Heraeus Seminar ‘Mathematical Relativity: New Ideas and Developments’, Bad Honnef,
Germany, March 1 – 5, 2004, Lecture Notes in Physics, 692, pp. 223–249, (Springer, Berlin; New
York, 2006). [![]() ![]() |
![]() |
311 | Nordström, J. and Carpenter, M.H., “Boundary and interface conditions for high-order
finite-difference methods applied to the Euler and Navier–Stokes equations”, J. Comput. Phys.,
148, 621–645, (1999). [![]() |
![]() |
312 | Nordström, J. and Carpenter, M.H., “High-order finite difference methods, multidimensional
linear problems, and curvilinear coordinates”, J. Comput. Phys., 173, 149–174, (2001). [![]() |
![]() |
313 | Novak, J., “Spherical neutron star collapse in tensor-scalar theory of gravity”, Phys. Rev. D,
57, 4789–4801, (1998). [![]() ![]() |
![]() |
314 | Novak, J. and Bonazzola, S., “Absorbing boundary conditions for simulation of gravitational
waves with spectral methods in spherical coordinates”, J. Comput. Phys., 197, 186–196, (2004).
[![]() ![]() |
![]() |
315 | Núñez, D. and Sarbach, O.,
“Boundary conditions for the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s
field equations”, Phys. Rev. D, 81, 044011, (2010). [![]() ![]() ![]() |
![]() |
316 | Ohme, F., Hannam, M., Husa, S. and Ó Murchadha, N., “Stationary hyperboloidal
slicings with evolved gauge conditions”, Class. Quantum Grav., 26, 175014, (2009). [![]() ![]() |
![]() |
317 | Olsson, P., “Summation by parts, projections, and stability. I”, Math. Comput., 64, 1035–1065,
(1995). [![]() |
![]() |
318 | Olsson, P., “Summation by parts, projections, and stability. II”, Math. Comput., 64, 1473–1493,
(1995). [![]() |
![]() |
319 | Olsson, P., “Supplement to summation by parts, projections, and stability. I”, Math. Comput., 64, S23–S26, (1995). |
![]() |
320 | Palenzuela, C., Anderson, M., Lehner, L., Liebling, S.L. and Neilsen, D., “Binary Black Holes’
Effects on Electromagnetic Fields”, Phys. Rev. Lett., 103, 081101, (2009). [![]() |
![]() |
321 | Palenzuela, C., Lehner, L. and Liebling, S.L., “Dual Jets from Binary Black Holes”, Science,
329, 927, (2010). [![]() ![]() |
![]() |
322 | Palenzuela, C., Lehner, L., Reula, O.A. and Rezzolla, L., “Beyond ideal MHD: towards a
more realistic modeling of relativistic astrophysical plasmas”, Mon. Not. R. Astron. Soc., 394,
1727–1740, (2009). [![]() ![]() |
![]() |
323 | Palenzuela, C., Olabarrieta, I., Lehner, L. and Liebling, S.L., “Head-on collisions of boson
stars”, Phys. Rev. D, 75, 064005, (2007). [![]() ![]() |
![]() |
324 | Pazos, E., Dorband, E.N., Nagar, A., Palenzuela, C., Schnetter, E. and Tiglio, M., “How far
away is far enough for extracting numerical waveforms, and how much do they depend on the
extraction method?”, Class. Quantum Grav., 24, S341–S368, (2007). [![]() ![]() |
![]() |
325 | Pazos, E., Tiglio, M., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Orbiting binary black
hole evolutions with a multipatch high order finite-difference approach”, Phys. Rev. D, 80,
024027, (2009). [![]() ![]() ![]() |
![]() |
326 | Pazos, E., Tiglio, M., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Orbiting binary black
hole evolutions with a multipatch high order finite-difference approach”, Phys. Rev. D, 80,
024027, (2009). [![]() ![]() ![]() |
![]() |
327 | Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations,
Applied Mathematical Sciences, 44, (Springer, New York, 1983). [![]() |
![]() |
328 | Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R.
Soc. London, Ser. A, 284, 159–203, (1965). [![]() ![]() |
![]() |
329 | Pfeiffer, H.P., Brown, D.A., Kidder, L.E., Lindblom, L., Lovelace, G. and Scheel, M.A.,
“Reducing orbital eccentricity in binary black hole simulations”, Class. Quantum Grav., 24,
S59–S82, (2007). [![]() ![]() ![]() |
![]() |
330 | Pollney, D. and Reisswig, C., “Gravitational memory in binary black hole mergers”, Astrophys.
J. Lett., 732, L13, (2011). [![]() ![]() ![]() |
![]() |
331 | Pollney, D., Reisswig, C., Dorband, E.N., Schnetter, E. and Diener, P., “The asymptotic falloff
of local waveform measurements in numerical relativity”, Phys. Rev. D, 80, 121502, (2009).
[![]() ![]() |
![]() |
332 | Pollney, D., Reisswig, C., Dorband, E.N., Schnetter, E. and Diener, P., “Asymptotic falloff of
local waveform measurements in numerical relativity”, Phys. Rev. D, 80, 121502(R), (2009).
[![]() ![]() ![]() |
![]() |
333 | Pollney, D., Reisswig, C., Schnetter, E., Dorband, E.N. and Diener, P., “High accuracy binary
black hole simulations with an extended wave zone”, Phys. Rev. D, 83, 044045, (2011). [![]() ![]() |
![]() |
334 | Pollney, D., Reisswig, C., Schnetter, E., Dorband, E.N. and Diener, P., “High accuracy binary
black hole simulations with an extended wave zone”, Phys. Rev. D, 83, 044045, (2011). [![]() ![]() ![]() |
![]() |
335 | Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101,
(2005). [![]() ![]() ![]() |
![]() |
336 | Pretorius, F., “Simulation of binary black hole spacetimes with a harmonic evolution scheme”,
Class. Quantum Grav., 23, S529–S552, (2006). [![]() |
![]() |
337 | Pretorius, F., “Binary Black Hole Coalescence”, in Colpi, M., Casella, P., Gorini, V., Moschella,
U. and Possenti, A., eds., Physics of Relativistic Objects in Compact Binaries: From Birth to
Coalescence, Astrophysics and Space Science Library, 359, pp. 305–369, (Springer, Berlin; New
York, 2009). [![]() ![]() |
![]() |
338 | Pretorius, F. and Choptuik, M.W., “Adaptive mesh refinement for coupled elliptic-hyperbolic
systems”, J. Comput. Phys., 218, 246–274, (2006). [![]() ![]() |
![]() |
339 | Radice, D. and Rezzolla, L., “Discontinuous Galerkin methods for general-relativistic
hydrodynamics: Formulation and application to spherically symmetric spacetimes”, Phys. Rev.
D, 84, 024010, (2011). [![]() |
![]() |
340 | Ralston, J.V., “Note on a paper of Kreiss”, Commun. Pure Appl. Math., 24, 759–762, (1971).
[![]() |
![]() |
341 | Rauch, J., “L2 is continuable initial condition for Kreiss’ mixed problem”, Commun. Pure Appl.
Math., 25, 265–285, (1972). [![]() |
![]() |
342 | Rauch, J., “General theory of hyperbolic and mixed problems”, in Spencer, D.C., ed., Partial
Differential Equations, University of California Berkeley, August 9 – 27, 1971, Proceedings
of Symposia in Pura Mathemathics, XXIII, pp. 161–166, (American Mathematical Society,
Providence, RI, 1973). [![]() |
![]() |
343 | Rauch, J., “Symmetric positive systems with boundary characteristics of constant multiplicity”,
Trans. Amer. Math. Soc., 291, 167–187, (1985). [![]() |
![]() |
344 | Rauch, J. and Massey III, F.J., “Differentiability of solutions to hyperbolic initial-boundary value problems”, Trans. Amer. Math. Soc., 189, 303–318, (1974). |
![]() |
345 | Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, (Academic Press, San Diego, 1980). |
![]() |
346 | Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness, (Academic Press, San Diego, 1980). |
![]() |
347 | Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108,
1063–1069, (1957). [![]() ![]() |
![]() |
348 | Reimann, B., Alcubierre, M., González, J.A. and Núñez, D., “Constraint and gauge
shocks in one-dimensional numerical relativity”, Phys. Rev. D, 71, 064021, (2005). [![]() ![]() |
![]() |
349 | Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Unambiguous determination of
gravitational waveforms from binary black hole mergers”, Phys. Rev. Lett., 103, 221101, (2009).
[![]() ![]() ![]() |
![]() |
350 | Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Characteristic extraction in
numerical relativity: binary black hole merger waveforms at null infinity”, Class. Quantum
Grav., 27, 075014, (2010). [![]() ![]() ![]() |
![]() |
351 | Rendall, A.D., “Theorems on Existence and Global Dynamics for the Einstein Equations”,
Living Rev. Relativity, 8, lrr-2005-6, (2005). URL (accessed 6 April 2011): http://www.livingreviews.org/lrr-2005-6. |
![]() |
352 | Reula, O.A., “Hyperbolic Methods for Einstein’s Equations”, Living Rev. Relativity, 1,
lrr-1998-3, (1998). URL (accessed 6 April 2011): http://www.livingreviews.org/lrr-1998-3. |
![]() |
353 | Reula, O.A., “Strongly hyperbolic systems in General Relativity”, J. Hyperbol. Differ.
Equations, 1, 251–269, (2004). [![]() |
![]() |
354 | Reula, O.A. and Sarbach, O., “A model problem for the initial-boundary value formulation of
Einstein’s field equations”, J. Hyperbol. Differ. Equations, 2, 397–435, (2005). [![]() |
![]() |
355 | Reula, O.A. and Sarbach, O., “The initial-boundary value problem in general relativity”, Int.
J. Mod. Phys. D, 20, 767–783, (2011). [![]() ![]() ![]() |
![]() |
356 | Rezzolla, L., Abrahams, A.M., Matzner, R.A., Rupright, M.E. and Shapiro, S.L.,
“Cauchy-perturbative matching and outer boundary conditions: Computational studies”, Phys.
Rev. D, 59, 064001, (1999). [![]() ![]() ![]() |
![]() |
357 | Richter, R., “Strongly hyperbolic Hamiltonian systems in numerical relativity: Formulation
and symplectic integration”, Class. Quantum Grav., 26, 145017, (2009). [![]() ![]() |
![]() |
358 | Richter, R. and Frauendiener, J., “Discrete differential forms for cosmological space-times”,
SIAM J. Sci. Comput., 32, 1140–1158, (2010). [![]() ![]() |
![]() |
359 | Richter, R., Frauendiener, J. and Vogel, M., “Application of Discrete Differential Forms to
Spherically Symmetric Systems in General Relativity”, Class. Quantum Grav., 24, 433–453,
(2007). [![]() ![]() |
![]() |
360 | Richter, R. and Lubich, C., “Free and constrained symplectic integrators for numerical general
relativity”, Class. Quantum Grav., 25, 225018, (2008). [![]() ![]() |
![]() |
361 | Richtmyer, R.D. and Morton, K.W., Difference Methods for Initial-Value Problems, Interscience Tracts in Pure and Applied Mathematics, 4, (Wiley-Interscience, New York, 1967), 2nd edition. |
![]() |
362 | Rinne, O., Axisymmetric numerical relativity, Ph.D. thesis, (University of Cambridge,
Cambridge, 2005). [![]() |
![]() |
363 | Rinne, O., “Stable radiation-controlling boundary conditions for the generalized harmonic
Einstein equations”, Class. Quantum Grav., 23, 6275–6300, (2006). [![]() ![]() |
![]() |
364 | Rinne, O., “An axisymmetric evolution code for the Einstein equations on hyperboloidal slices”,
Class. Quantum Grav., 27, 035014, (2010). [![]() ![]() |
![]() |
365 | Rinne, O., Buchman, L.T., Scheel, M.A. and Pfeiffer, H.P., “Implementation of higher-order
absorbing boundary conditions for the Einstein equations”, Class. Quantum Grav., 26, 075009,
(2009). [![]() ![]() ![]() |
![]() |
366 | Rinne, O., Lindblom, L. and Scheel, M.A., “Testing outer boundary treatments for the Einstein
equations”, Class. Quantum Grav., 24, 4053–4078, (2007). [![]() ![]() ![]() |
![]() |
367 | Rinne, O. and Stewart, J.M., “A strongly hyperbolic and regular reduction of Einstein’s
equations for axisymmetric spacetimes”, Class. Quantum Grav., 22, 1143–1166, (2005). [![]() ![]() |
![]() |
368 | Ruiz, M., Hilditch, D. and Bernuzzi, S., “Constraint preserving boundary conditions for the
Z4c formulation of general relativity”, Phys. Rev. D, 83, 024025, (2011). [![]() |
![]() |
369 | Ruiz, M., Rinne, O. and Sarbach, O., “Outer boundary conditions for Einstein’s field
equations in harmonic coordinates”, Class. Quantum Grav., 24, 6349–6377, (2007). [![]() ![]() ![]() |
![]() |
370 | Rupright, M.E., Abrahams, A.M. and Rezzolla, L., “Cauchy-perturbative matching and outer
boundary conditions: Methods and tests”, Phys. Rev. D, 58, 044005, (1998). [![]() ![]() ![]() |
![]() |
371 | Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms:
Systematic errors and a new phenomenological model for nonprecessing black hole binaries”,
Phys. Rev. D, 82, 064016, (2010). [![]() ![]() ![]() |
![]() |
372 | Sarbach, O., “Absorbing boundary conditions for Einstein’s field equations”, in Alcubierre, M.,
García Compeán, H.H. and Ureña López, L.A., eds., VII Mexican School on Gravitation
and Mathematical Physics, Playa del Carmen, Quintana Roo, Mexico, 26 November – 1
December 2006, J. Phys.: Conf. Ser., 91, 012005, (Institute of Physics Publishing, Bristol,
Philadelphia, 2007). [![]() ![]() |
![]() |
373 | Sarbach, O., Calabrese, G., Pullin, J. and Tiglio,
M., “Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution
equations”, Phys. Rev. D, 66, 064002, (2002). [![]() |
![]() |
374 | Sarbach, O., Heusler, M. and Brodbeck, O., “Self-adjoint wave equations for dynamical
perturbations of self-gravitating fields”, Phys. Rev. D, 63, 104015, (2001). [![]() |
![]() |
375 | Sarbach, O. and Lehner, L., “No naked singularities in homogeneous, spherically symmetric
bubble space-times?”, Phys. Rev. D, 69, 021901, (2004). [![]() |
![]() |
376 | Sarbach, O. and Tiglio, M., “Gauge invariant perturbations of Schwarzschild black holes in
horizon penetrating coordinates”, Phys. Rev. D, 64, 084016, (2001). [![]() |
![]() |
377 | Sarbach, O. and Tiglio, M., “Exploiting gauge and constraint freedom in hyperbolic
formulations of Einstein’s equations”, Phys. Rev. D, 66, 064023, (2002). [![]() |
![]() |
378 | Sarbach, O. and Tiglio, M., “Boundary conditions for Einstein’s field equations: Mathematical
and numerical analysis”, J. Hyperbol. Differ. Equations, 2, 839–883, (2005). [![]() |
![]() |
379 | Sarbach, O. and Winstanley, E., “On the linear stability of solitons and hairy black holes with a
negative cosmological constant: The odd-parity sector”, Class. Quantum Grav., 18, 2125–2146,
(2001). [![]() |
![]() |
380 | Schanze, T., “Approximation of the Crank-Nicholson method by the iterated dynamic-theta
method”, Comput. Phys. Commun., 165, 15–17, (2005). [![]() |
![]() |
381 | Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P.,
“High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev.
D, 79, 024003, (2009). [![]() ![]() ![]() |
![]() |
382 | Scheel, M.A., Erickcek, A.L., Burko, L.M., Kidder, L.E., Pfeiffer, H.P. and Teukolsky, S.A.,
“3D simulations of linearized scalar fields in Kerr spacetime”, Phys. Rev. D, 69, 104006, (2004).
[![]() ![]() ![]() |
![]() |
383 | Scheel, M.A., Kidder, L.E., Lindblom, L., Pfeiffer, H.P. and Teukolsky, S.A., “Toward stable
3D numerical evolutions of black-hole spacetimes”, Phys. Rev. D, 66, 124005, (2002). [![]() ![]() |
![]() |
384 | Scheel, M.A., Pfeiffer, H.P., Lindblom, L., Kidder, L.E., Rinne, O. and Teukolsky, S.A., “Solving
Einstein’s equations with dual coordinate frames”, Phys. Rev. D, 74, 104006, (2006). [![]() ![]() |
![]() |
385 | Schnetter, E., Diener, P., Dorband, E.N. and Tiglio, M., “A multi-block infrastructure for
three-dimensional time-dependent numerical relativity”, Class. Quantum Grav., 23, S553–S578,
(2006). [![]() ![]() |
![]() |
386 | Schnetter, E., Hawley, S.H. and Hawke, I., “Evolutions in 3-D numerical relativity using
fixed mesh refinement”, Class. Quantum Grav., 21, 1465–1488, (2004). [![]() ![]() ![]() |
![]() |
387 | Secchi, P., “The initial boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity”, Differ. Integral Eq., 9, 671–700, (1996). |
![]() |
388 | Secchi, P., “Well-Posedness of Characteristic Symmetric Hyperbolic Systems”, Arch. Ration.
Mech. Anal., 134, 155–197, (1996). [![]() |
![]() |
389 | Secchi, P., “Some properties of anisotropic Sobolev spaces”, Arch. Math., 75, 207–216, (2000).
[![]() |
![]() |
390 | Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic
slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [![]() ![]() |
![]() |
391 | Smarr, L.L. and York Jr, J.W., “Kinematical conditions in the construction of spacetime”,
Phys. Rev. D, 17, 2529–2551, (1978). [![]() |
![]() |
392 | Sperhake, U., Non-linear numerical schemes in general relativity, Ph.D. thesis, (University of
Southampton, Southampton, 2001). [![]() |
![]() |
393 | Sperhake, U., “Binary black-hole evolutions of excision and puncture data”, Phys. Rev. D, 76,
104015, (2007). [![]() |
![]() |
394 | Sperhake, U., Kelly, B.J., Laguna, P., Smith, K.L. and Schnetter, E., “Black hole head-on
collisions and gravitational waves with fixed mesh-refinement and dynamic singularity
excision”, Phys. Rev. D, 71, 124042, (2005). [![]() |
![]() |
395 | Stewart, J.M., “The Cauchy problem and the initial boundary value problem in numerical
relativity”, Class. Quantum Grav., 15, 2865–2889, (1998). [![]() ![]() |
![]() |
396 | Strand, B., “Summation by Parts for Finite Difference Approximations for d∕dx”, J. Comput.
Phys., 110, 47–67, (1994). [![]() |
![]() |
397 | Strang, G., “Necessary and Insufficient Conditions for Well-Posed Cauchy problems”, J. Differ.
Equations, 2, 107–114, (1966). [![]() |
![]() |
398 | Svärd, M., “On Coordinate Transformations for Summation-by-Parts Operators”, J. Sci.
Comput., 20, 29–42, (2004). [![]() |
![]() |
399 | Svärd, M., Mattsson, K. and Nordström, J., “Steady-State Computations Using
Summation-by-Parts Operators”, J. Sci. Comput., 24, 79–95, (2005). [![]() |
![]() |
400 | Szabados, L.B., “Quasi-Local Energy-Momentum and Angular Momentum in General
Relativity”, Living Rev. Relativity, 12, lrr-2009-4, (2009). URL (accessed 6 April 2011): http://www.livingreviews.org/lrr-2009-4. |
![]() |
401 | Szilágyi, B., Cauchy-characteristic matching in general relativity, Ph.D. thesis, (University of
Pittsburgh, Pittsburgh, 2000). [![]() ![]() |
![]() |
402 | Szilágyi, B., Lindblom, L. and Scheel, M.A., “Simulations of binary black hole mergers using
spectral methods”, Phys. Rev. D, 80, 124010, (2009). [![]() ![]() |
![]() |
403 | Szilágyi, B., Pollney, D., Rezzolla, L., Thornburg, J. and Winicour, J., “An explicit harmonic
code for black-hole evolution using excision”, Class. Quantum Grav., 24, S275–S293, (2007).
[![]() ![]() ![]() |
![]() |
404 | Szilágyi, B., Schmidt, B.G. and Winicour, J., “Boundary conditions in linearized harmonic
gravity”, Phys. Rev. D, 65, 064015, (2002). [![]() |
![]() |
405 | Szilágyi, B. and Winicour, J., “Well-posed initial-boundary evolution in general relativity”,
Phys. Rev. D, 68, 041501, (2003). [![]() ![]() ![]() |
![]() |
406 | Tadmor, E., “Spectral Viscosity: A collection of selected references on High-frequency
wave-dependent methods for time-dependent problems with large gradients”, personal
homepage, University of Maryland. URL (accessed 4 April 2011): ![]() |
![]() |
407 | Tadmor, E., “Stability analysis of finite-difference, pseudospectral and Fourier-Galerkin
approximations for time-dependent problems”, SIAM Rev., 29, 525–555, (1987). [![]() |
![]() |
408 | Tadmor, E., “Convergence of spectral methods for nonlinear conservation laws”, SIAM J.
Numer. Anal., 26, 30–44, (1989). [![]() |
![]() |
409 | Tadmor, E., “From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by the
Energy Method. II”, in Estep, D. and Tavener, S., eds., Collected Lectures on the Preservation
of Stability under Discretization, Colorado State University, Fort Collins, CO, May 30 – June
2, 2001, Proceedings in Applied Mathematics, 109, pp. 25–50, (SIAM, Philadelphia, 2002).
[![]() |
![]() |
410 | Tarfulea, N.,
Constraint preserving boundary conditions for hyperbolic formulations of Einstein’s equations,
Ph.D. thesis, (University of Minnesota, Duluth, 2004). [![]() |
![]() |
411 | Taylor, M.E., Partial Differential Equations II: Qualitative Studies of Linear Equations,
Applied Mathematical Sciences, 116, (Springer, New York, 1996), 2nd edition. [![]() ![]() |
![]() |
412 | Taylor, M.E., Partial Differential Equations III: Nonlinear Equations, Applied Mathematical
Sciences, 117, (Springer, New York, 1996), 2nd edition. [![]() ![]() |
![]() |
413 | Taylor, N.W., Kidder, L.E. and Teukolsky, S.A., “Spectral methods for the wave equation in
second-order form”, Phys. Rev. D, 82, 024037, (2010). [![]() ![]() |
![]() |
414 | Teukolsky, S.A., “Stability of the iterated Crank-Nicholson method in numerical relativity”,
Phys. Rev. D, 61, 087501, (2000). [![]() ![]() |
![]() |
415 | Thomas, J.W., Numerical Partial Differential Equations: Finite Difference Methods, Texts in
Applied Mathematics, 22, (Springer, New York; Berlin, 1995). [![]() |
![]() |
416 | Thomas, J.W., Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations, Texts in Applied Mathematics, 23, (Springer, New York; Berlin, 1999). |
![]() |
417 | Thornburg, J., “A Multiple-Grid-Patch Evolution Scheme for 3-D Black Hole Excision”, in
Gurzadyan, V.G., Jantzen, R.T. and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting:
On recent developments in theoretical and experimental general relativity, gravitation, and
relativistic field theories, Part C, Proceedings of the MGIX MM meeting held at the University
of Rome ‘La Sapienza’, 2 – 8 July 2000, pp. 1743–1744, (World Scientific, Singapore; River
Edge, 2000). [![]() |
![]() |
418 | Thornburg, J., “Black-hole excision with multiple grid patches”, Class. Quantum Grav., 21,
3665–3691, (2004). [![]() ![]() ![]() |
![]() |
419 | Tichy, W., “Long term black hole evolution with the BSSN system by pseudo-spectral
methods”, Phys. Rev. D, 80, 104034, (2009). [![]() ![]() |
![]() |
420 | Tiglio, M., Kidder, L.E. and Teukolsky, S.A., “High accuracy simulations of Kerr tails:
Coordinate dependence and higher multipoles”, Class. Quantum Grav., 25, 105022, (2008).
[![]() ![]() |
![]() |
421 | Tiglio, M., Lehner, L. and Neilsen, D., “3-D simulations of Einstein’s equations: Symmetric
hyperbolicity, live gauges and dynamic control of the constraints”, Phys. Rev. D, 70, 104018,
(2004). [![]() ![]() ![]() |
![]() |
422 | Tsuji, M., “Regularity of solutions of hyperbolic mixed problems with characteristic boundary”,
Proc. Japan Acad., 48, 719–724, (1972). [![]() |
![]() |
423 | van Meter, J.R., Baker, J.G., Koppitz, M. and Choi, D., “How to move a black hole without
excision: Gauge conditions for the numerical evolution of a moving puncture”, Phys. Rev. D,
73, 124011, (2006). [![]() ![]() ![]() |
![]() |
424 | van Putten, M.H.P.M. and Eardley, D.M., “Nonlinear wave equations for relativity”, Phys.
Rev. D, 53, 3056–3063, (1996). [![]() |
![]() |
425 | Vega, I., Diener, P., Tichy, W. and Detweiler, S.L., “Self-force with (3+1) codes: A primer for
numerical relativists”, Phys. Rev. D, 80, 084021, (2009). [![]() ![]() |
![]() |
426 | Vega, I., Wardell, B. and Diener, P., “Effective source approach to self-force calculations”,
Class. Quantum Grav., 28, 134010, (2011). [![]() ![]() |
![]() |
427 | Villain, L. and Bonazzola, S., “Inertial modes in slowly rotating stars: An evolutionary
description”, Phys. Rev. D, 66, 123001, (2002). [![]() ![]() ![]() |
![]() |
428 | Villain, L., Bonazzola, S. and Haensel, P., “Inertial modes in stratified rotating neutron
stars: An evolutionary description”, Phys. Rev. D, 71, 083001, (2005). [![]() ![]() ![]() |
![]() |
429 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [![]() ![]() |
![]() |
430 | Washik, M.C., Healy, J., Herrmann, F., Hinder, I., Shoemaker, D.M., Laguna, P. and Matzner,
R.A., “Binary-Black-Hole Encounters, Gravitational Bursts and Maximum Final Spin”, Phys.
Rev. Lett., 101, 061102, (2008). [![]() ![]() |
![]() |
431 | Weidmann, J., Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, (Springer, Berlin; New York, 1987). |
![]() |
432 | Winicour, J., “Characteristic Evolution and Matching”, Living Rev. Relativity, 12, lrr-2009-3,
(2009). [![]() http://www.livingreviews.org/lrr-2009-3. |
![]() |
433 | Winicour, J., “Disembodied boundary data for Einstein’s equations”, Phys. Rev. D, 80, 124043,
(2009). [![]() ![]() ![]() |
![]() |
434 | Winicour, J., “Geometrization of metric boundary data for Einstein’s equations”, Gen. Relativ.
Gravit., 41, 1909–1926, (2009). [![]() |
![]() |
435 | Winicour, J., “Boundary conditions for the gravitational field”, Class. Quantum Grav., 29,
113001, (2012). [![]() ![]() |
![]() |
436 | Winstanley, E. and Sarbach, O., “On the linear stability of solitons and hairy black holes with
a negative cosmological constant: The even-parity sector”, Class. Quantum Grav., 19, 689–724,
(2002). [![]() |
![]() |
437 | Witek, H., Cardoso, V., Gualtieri, L., Herdeiro, C., Sperhake, U. and Zilhão, M., “Head-on
collisions of unequal mass black holes in D = 5 dimensions”, Phys. Rev. D, 83, 044017, (2011).
[![]() ![]() |
![]() |
438 | Witek, H., Cardoso, V., Herdeiro, C., Nerozzi, A., Sperhake, U. and Zilhão, M., “Black holes
in a box: Toward the numerical evolution of black holes in AdS space-times”, Phys. Rev. D,
82, 104037, (2010). [![]() ![]() ![]() |
![]() |
439 | Witek, H., Cardoso, V., Herdeiro, C., Nerozzi, A., Sperhake, U. and Zilhão, M., “Black holes
in a box”, J. Phys.: Conf. Ser., 229, 012072, (2010). [![]() |
![]() |
440 | Witek, H., Hilditch, D. and Sperhake, U., “Stability of the puncture method with a generalized
BSSN formulation”, Phys. Rev. D, 83, 104041, (2011). [![]() ![]() |
![]() |
441 | Witek, H., Zilhão, M., Gualtieri, L., Cardoso, V., Herdeiro, C., Nerozzi, A. and Sperhake,
U., “Numerical relativity for D dimensional space-times: Head-on collisions of black holes and
gravitational wave extraction”, Phys. Rev. D, 82, 104014, (2010). [![]() ![]() |
![]() |
442 | Yamamoto, T., Shibata, M. and Taniguchi, K., “Simulating coalescing compact binaries by a
new code (SACRA)”, Phys. Rev. D, 78, 064054, (2008). [![]() ![]() ![]() |
![]() |
443 | Yoneda, G. and Shinkai, H., “Symmetric hyperbolic system in the Ashtekar formulation”, Phys.
Rev. Lett., 82, 263–266, (1999). [![]() |
![]() |
444 | York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources
of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4,
1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [![]() ![]() |
![]() |
445 | York Jr, J.W., “Causal Propagation of Constraints and the Canonical Form of General
Relativity”, arXiv, e-print, (1998). [![]() |
![]() |
446 | Zenginoğlu, A., “Hyperboloidal evolution with the Einstein equations”, Class. Quantum
Grav., 25, 195025, (2008). [![]() ![]() |
![]() |
447 | Zenginoğlu, A., “Hyperboloidal foliations and scri-fixing”, Class. Quantum Grav., 25, 145002,
(2008). [![]() |
![]() |
448 | Zenginoğlu, A., “Asymptotics of Schwarzschild black hole perturbations”, Class. Quantum
Grav., 27, 045015, (2010). [![]() |
![]() |
449 | Zenginoğlu, A., “Hyperboloidal layers for hyperbolic equations on unbounded domains”, J.
Comput. Phys., 230, 2286–2302, (2011). [![]() ![]() |
![]() |
450 | Zenginoğlu, A. and Kidder, L.E., “Hyperboloidal evolution of test fields in three spatial
dimensions”, Phys. Rev. D, 81, 124010, (2010). [![]() |
![]() |
451 | Zenginoğlu, A., Núñez, D. and Husa, S., “Gravitational perturbations of Schwarzschild
spacetime at null infinity and the hyperboloidal initial value problem”, Class. Quantum Grav.,
26, 035009, (2009). [![]() |
![]() |
452 | Zenginoğlu, A. and Tiglio, M., “Spacelike matching to null infinity”, Phys. Rev. D, 80, 024044,
(2009). [![]() ![]() |
![]() |
453 | Zerilli, F., “Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation
Equations”, Phys. Rev. Lett., 24, 737–738, (1970). [![]() |
![]() |
454 | Zink, B., Korobkin, O., Schnetter, E. and Stergioulas, N., “Frequency band of the f-mode
Chandrasekhar-Friedman-Schutz instability”, Phys. Rev. D, 81, 084055, (2010). [![]() ![]() |
![]() |
455 | Zink, B., Pazos, E., Diener, P. and Tiglio, M., “Cauchy-perturbative matching revisited: Tests
in spherical symmetry”, Phys. Rev. D, 73, 084011, (2006). [![]() |
![]() |
456 | Zink, B., Schnetter, E. and Tiglio, M., “Multipatch methods in general relativistic astrophysics:
Hydrodynamical flows on fixed backgrounds”, Phys. Rev. D, 77, 103015, (2008). [![]() ![]() ![]() |
![]() |
457 | Zumbusch, G., “Finite Element, Discontinuous Galerkin, and Finite Difference evolution
schemes in spacetime”, Class. Quantum Grav., 26, 175011, (2009). [![]() ![]() |
http://www.livingreviews.org/lrr-2012-9 |
Living Rev. Relativity 15, (2012), 9
![]() This work is licensed under a Creative Commons License. E-mail us: |