Equation Icon  ∫ ∫ ∥u∥2η,0,Ω := e−2ηt|u(t,x1,y)|2dtdx1dn−1y = |u η(t,x )|2dtdnx, Ω ℝn+1 ∫ ∫ ∥u∥2 := e−2ηt|u(t,0,y)|2dtdn−1y = |u η(t,0,y )|2dtdn−1y, η,0,𝒯 𝒯 ℝn