![]() |
1 | Akcay, S., “Fast frequency-domain algorithm for gravitational self-force: Circular orbits in
Schwarzschild spacetime”, Phys. Rev. D, 83, 124026, (2011). [![]() ![]() |
![]() |
2 | Alvi, K., “Approximate binary-black-hole metric”, Phys. Rev. D, 61, 124013, 1–19, (2000).
[![]() ![]() |
![]() |
3 | Anderson, P.R., Eftekharzadeh, A. and Hu, B.L., “Self-force on a scalar charge in radial infall
from rest using the Hadamard-WKB expansion”, Phys. Rev. D, 73, 064023, (2006). [![]() ![]() |
![]() |
4 | Anderson, P.R. and Hu, B.L., “Radiation reaction in Schwarzschild spacetime: Retarded
Green’s function via Hadamard-WKB expansion”, Phys. Rev. D, 69, 064039, (2004). [![]() ![]() |
![]() |
5 | Anderson, W.G., Flanagan, É.É. and Ottewill, A.C., “Quasilocal contribution to the
gravitational self-force”, Phys. Rev. D, 71, 024036, (2005). [![]() ![]() |
![]() |
6 | Anderson, W.G. and Wiseman, A.G., “A matched expansion approach to practical self-force
calculations”, Class. Quantum Grav., 22, S783–S800, (2005). [![]() ![]() |
![]() |
7 | Barack, L., “Self-force on a scalar particle in spherically symmetric spacetime via
mode-sum regularization: Radial trajectories”, Phys. Rev. D, 62, 084027, 1–21, (2000). [![]() ![]() |
![]() |
8 | Barack, L., “Gravitational self-force by mode sum regularization”, Phys. Rev. D, 64, 084021,
1–16, (2001). [![]() ![]() |
![]() |
9 | Barack, L., “Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav.,
26, 213001, (2009). [![]() ![]() |
![]() |
10 | Barack, L. and Burko, L.M., “Radiation-reaction force on a particle plunging into a black hole”,
Phys. Rev. D, 62, 084040, 1–5, (2000). [![]() ![]() |
![]() |
11 | Barack, L., Damour, T. and Sago, N., “Precession effect of the gravitational self-force in a
Schwarzschild spacetime and the effective one-body formalism”, Phys. Rev. D, 82, 084036,
(2010). [![]() ![]() |
![]() |
12 | Barack, L. and Golbourn, D.A., “Scalar-field perturbations from a particle orbiting a black
hole using numerical evolution in 2+1 dimensions”, Phys. Rev. D, 76, 044020, (2007). [![]() ![]() |
![]() |
13 | Barack, L., Golbourn, D.A. and Sago, N., “m-mode regularization scheme for the self-force in
Kerr spacetime”, Phys. Rev. D, 76, 124036, (2007). [![]() ![]() |
![]() |
14 | Barack, L. and Lousto, C.O., “Computing the gravitational self-force on a compact object
plunging into a Schwarzschild black hole”, Phys. Rev. D, 66, 061502, 1–5, (2002). [![]() ![]() |
![]() |
15 | Barack, L., Mino, Y., Nakano, H., Ori, A. and Sasaki, M., “Calculating the Gravitational
Self-Force in Schwarzschild Spacetime”, Phys. Rev. Lett., 88, 091101, 1–4, (2002). [![]() ![]() |
![]() |
16 | Barack, L. and Ori, A., “Mode sum regularization approach for the self-force in black hole
spacetime”, Phys. Rev. D, 61, 061502, 1–5, (2000). [![]() ![]() |
![]() |
17 | Barack, L. and Ori, A., “Gravitational self-force and gauge transformations”, Phys. Rev. D,
64, 124003, 1–13, (2001). [![]() ![]() |
![]() |
18 | Barack, L. and Ori, A., “Regularization parameters for the self-force in Schwarzschild
spacetime: Scalar case”, Phys. Rev. D, 66, 084022, 1–15, (2002). [![]() ![]() |
![]() |
19 | Barack, L. and Ori, A., “Gravitational Self-Force on a Particle Orbiting a Kerr Black Hole”,
Phys. Rev. Lett., 90, 111101, 1–4, (2003). [![]() ![]() |
![]() |
20 | Barack, L. and Ori, A., “Regularization parameters for the self-force in Schwarzschild
spacetime. II. Gravitational and electromagnetic cases”, Phys. Rev. D, 67, 024029, 1–11, (2003).
[![]() ![]() |
![]() |
21 | Barack, L. and Sago, N., “Gravitational self-force on a particle in circular orbit around a
Schwarzschild black hole”, Phys. Rev. D, 75, 064021, (2007). [![]() ![]() |
![]() |
22 | Barack, L. and Sago, N., “Gravitational Self-Force Correction to the Innermost Stable
Circular Orbit of a Schwarzschild Black Hole”, Phys. Rev. Lett., 102, 191101, (2009). [![]() ![]() |
![]() |
23 | Barack, L. and Sago, N., “Gravitational self-force on a particle in eccentric orbit around a
Schwarzschild black hole”, Phys. Rev. D, 81, 084021, (2010). [![]() ![]() |
![]() |
24 | Barack, L. and Sago, N., “Beyond the geodesic approximation: Conservative effects of the
gravitational self-force in eccentric orbits around a Schwarzschild black hole”, Phys. Rev. D,
83, 084023, (2011). [![]() ![]() |
![]() |
25 | Barton, J.L., Lazar, D., Kennefick, D.J., Khanna, G. and Burko, L.M., “Computational
efficiency of frequency- and time-domain calculations of extreme mass-ratio binaries: Equatorial
orbits”, Phys. Rev. D, 78, 064042, (2010). [![]() |
![]() |
26 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (accessed 25 August 2010): http://www.livingreviews.org/lrr-2006-4. |
![]() |
27 | Blanchet, L. and Damour, T., “Radiative gravitational fields in general relativity I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379–430, (1986). |
![]() |
28 | Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B.F., “High-order post-Newtonian fit of
the gravitational self-force for circular orbits in the Schwarzschild geometry”, Phys. Rev. D,
81, 084033, (2010). [![]() |
![]() |
29 | Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B.F., “Post-Newtonian and numerical
calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry”,
Phys. Rev. D, 81, 064004, (2010). [![]() |
![]() |
30 | Burko, L.M., “Self-Force on a Particle in Orbit around a Black Hole”, Phys. Rev. Lett., 84,
4529–4532, (2000). [![]() ![]() |
![]() |
31 | Burko, L.M., “Self-force on static charges in Schwarzschild spacetime”, Class. Quantum Grav.,
17, 227–250, (2000). [![]() ![]() |
![]() |
32 | Burko, L.M., “The importance of conservative self forces for binaries undergoing radiation
damping”, Int. J. Mod. Phys. A, 16, 1471–1479, (2001). [![]() |
![]() |
33 | Burko, L.M., Harte, A.I. and Poisson, E., “Mass loss by a scalar charge in an expanding
universe”, Phys. Rev. D, 65, 124006, 1–11, (2002). [![]() ![]() |
![]() |
34 | Burko, L. and Khanna, G., “Accurate time-domain gravitational waveforms for
extreme-mass-ratio binaries”, Europhys. Lett., 78, 60005, (2007). [![]() ![]() |
![]() |
35 | Burko, L.M. and Liu, Y.T., “Self-force on a scalar charge in the spacetime of a stationary,
axisymmetric black hole”, Phys. Rev. D, 64, 024006, 1–21, (2001). [![]() ![]() |
![]() |
36 | Burko, L.M., Liu, Y.T. and Soen, Y., “Self-force on charges in the spacetime of spherical shells”,
Phys. Rev. D, 63, 024015, 1–18, (2001). [![]() |
![]() |
37 | Canizares, P. and Sopuerta, C.F., “Efficient pseudospectral method for the computation of the
self-force on a charged particle: Circular geodesics around a Schwarzschild black hole”, Phys.
Rev. D, 79, 084020, (2009). [![]() |
![]() |
38 | Canizares, P., Sopuerta, C.F. and Jaramillo, J.L., “Pseudospectral collocation methods for the
computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black
hole”, Phys. Rev. D, 82, 044023, (2010). [![]() ![]() |
![]() |
39 | Casals, M., Dolan, S., Ottewill, A.C. and Wardell, B., “Padé approximants of the Green
function in spherically symmetric spacetimes”, Phys. Rev. D, 79, 124044, (2009). [![]() ![]() |
![]() |
40 | Casals, M., Dolan, S., Ottewill, A.C. and Wardell, B., “Self-force calculations with matched
expansions and quasinormal mode sums”, Phys. Rev. D, 79, 124043, (2009). [![]() ![]() |
![]() |
41 | Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys.
Rev. D, 11, 2042–2062, (1975). [![]() |
![]() |
42 | Cohen, J.M. and Kegeles, L.S., “Electromagnetic fields in curved spaces: a constructive
procedure”, Phys. Rev. D, 10, 1070–1084, (1974). [![]() |
![]() |
43 | Copson, E.T., “On Electrostatics in a Gravitational Field”, Proc. R. Soc. London, Ser. A, 116, 720–735, (1928). |
![]() |
44 | Damour, T., “Gravitational self-force in a Schwarzschild background and the effective one-body
formalism”, Phys. Rev. D, 81, 024017, (2010). [![]() ![]() |
![]() |
45 | Damour, T. and Iyer, B.R., “Multipole analysis for electromagnetism and linearized gravity
with irreducible Cartesian tensors”, Phys. Rev. D, 43, 3259–3272, (1991). [![]() |
![]() |
46 | D’Eath, P.D., “Dynamics of a small black hole in a background universe”, Phys. Rev. D, 11,
1387, (1975). [![]() |
![]() |
47 | D’Eath, P.D., Black Holes: Gravitational Interactions, (Clarendon Press; Oxford University Press, Oxford; New York, 1996). |
![]() |
48 | Décanini, Y. and Folacci, A., “Off-diagonal coefficients of the DeWitt-Schwinger and
Hadamard representations of the Feynman propagator”, Phys. Rev. D, 73, 044027, 1–38, (2006).
[![]() ![]() |
![]() |
49 | Detweiler, S., “Perspective on gravitational self-force analyses”, Class. Quantum Grav., 22,
681–716, (2005). [![]() ![]() |
![]() |
50 | Detweiler, S., “Consequence of the gravitational self-force for circular orbits of the Schwarzschild
geometry”, Phys. Rev. D, 77, 124026, (2008). [![]() ![]() |
![]() |
51 | Detweiler, S., Messaritaki, E. and Whiting, B.F., “Self-force of a scalar field for circular orbits
about a Schwarzschild black hole”, Phys. Rev. D, 67, 1–18, (2003). [![]() ![]() |
![]() |
52 | Detweiler, S. and Poisson, E., “Low multipole contributions to the gravitational self-force”,
Phys. Rev. D, 69, 084019, (2004). [![]() ![]() |
![]() |
53 | Detweiler, S. and Whiting, B.F., “Self-force via a Green’s function decomposition”, Phys. Rev.
D, 67, 024025, (2003). [![]() ![]() |
![]() |
54 | DeWitt, B.S. and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys.
(N.Y.), 9, 220–259, (1960). [![]() |
![]() |
55 | Diaz-Rivera, L.M., Messaritaki, E., Whiting, B.F. and Detweiler, S., “Scalar field self-force
effects on orbits about a Schwarzschild black hole, eccentric orbits”, Phys. Rev. D, 70, 124018,
(2004). [![]() ![]() |
![]() |
56 | Dirac, P.A.M., “Classical theory of radiating electrons”, Proc. R. Soc. London, Ser. A, 167, 148, (1938). |
![]() |
57 | Dixon, W.G., “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum”, Proc. R. Soc. London, Ser. A, 314, 499–527, (1970). |
![]() |
58 | Dixon, W.G., “Dynamics of extended bodies in general relativity. II. Moments of the charge-current vector”, Proc. R. Soc. London, Ser. A, 319, 509–547, (1970). |
![]() |
59 | Dixon, W.G., “Dynamics of Extended Bodies in General Relativity. III. Equations of Motion”, Philos. Trans. R. Soc. London, Ser. A, 277, 59–119, (1974). |
![]() |
60 | Dolan, S. and Barack, L., “Self-force via m-mode regularization and 2+1D evolution:
Foundations and a scalar-field implementation on Schwarzschild spacetime”, Phys. Rev. D, 83,
124019, (2011). [![]() ![]() |
![]() |
61 | Drasco, S., Flanagan, É.É. and Hughes, S.A., “Computing inspirals in Kerr in the
adiabatic regime: I. The scalar case”, Class. Quantum Grav., 22, S801–S846, (2005). [![]() ![]() |
![]() |
62 | Drasco, S. and Hughes, S.A., “Gravitational wave snapshots of generic extreme mass ratio
inspirals”, Phys. Rev. D, 73, 024027, (2006). [![]() ![]() |
![]() |
63 | Eckhaus, W., Asymptotic Analysis of Singular Perturbations, Studies in Mathematics and its
Applications, 9, (North-Holland, Amsterdam; New York, 1979). [![]() |
![]() |
64 | Ehlers, J. and Geroch, R., “Equation of motion of small bodies in relativity”, Ann. Phys.
(N.Y.), 309, 232–236, (2004). [![]() ![]() |
![]() |
65 | Ehlers, J. and Rudolph, E., “Dynamics of extended bodies in general relativity center-of-mass
description and quasirigidity”, Gen. Relativ. Gravit., 8, 197–217, (1977). [![]() |
![]() |
66 | Einstein, A. and Infeld, L., “On the motion of particles in general relativity theory”, Can. J.
Math., 1, 209, (1949). [![]() |
![]() |
67 | Field, S.E., Hesthaven, J.S. and Lau, S.R., “Discontinuous Galerkin method for computing
gravitational waveforms from extreme mass ratio binaries”, Class. Quantum Grav., 26, 165010,
(2009). [![]() ![]() |
![]() |
68 | Field, S.E., Hesthaven, J.S. and Lau, S.R., “Persistent junk solutions in time-domain modeling
of extreme mass ratio binaries”, Phys. Rev. D, 81, 124030, (2010). [![]() ![]() |
![]() |
69 | Flanagan, É.É. and Hinderer, T., “Transient resonances in the inspirals of point particles into
black holes”, arXiv, e-print, (2010). [![]() |
![]() |
70 | Flanagan, É.É. and Wald, R.M., “Does back reaction enforce the averaged null
energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). [![]() ![]() |
![]() |
71 | Friedlander, F.G., The wave equation on a curved space-time, Cambridge Monographs on
Mathematical Physics, 2, (Cambridge University Press, Cambridge; New York, 1975). [![]() |
![]() |
72 | Fukumoto, T., Futamase, T. and Itoh, Y., “On the equation of motion for a fast moving small
object using the strong field point particle limit”, Prog. Theor. Phys., 116, 423–428, (2006).
[![]() ![]() |
![]() |
73 | Futamase, T., Hogan, P.A. and Itoh, Y., “Equations of Motion in General Relativity of a Small
Charged Black Hole”, Phys. Rev. D, 78, 104014, (2008). [![]() |
![]() |
74 | Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact
Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (accessed 25 August 2010): http://www.livingreviews.org/lrr-2007-2. |
![]() |
75 | Galley, C.R. and Hu, B.L., “Self-force on extreme mass ratio inspirals via curved spacetime
effective field theory”, Phys. Rev. D, 79, 064002, (2009). [![]() ![]() |
![]() |
76 | Galley, C.R., Hu, B.L. and Lin, S.-Y., “Electromagnetic and gravitational self-force on a
relativistic particle from quantum fields in curved space”, Phys. Rev. D, 74, 024017, (2006).
[![]() ![]() |
![]() |
77 | Gal’tsov, D.V., “Radiation reaction in the Kerr gravitational field”, J. Phys. A: Math. Gen.,
15, 3737–3749, (1982). [![]() |
![]() |
78 | Ganz, K., Hikida, W., Nakano, H., Sago, N. and Tanaka, T., “Adiabatic evolution of three
‘constants’ of motion for greatly inclined orbits in Kerr spacetime”, Prog. Theor. Phys., 117,
1041–1066, (2007). [![]() ![]() |
![]() |
79 | Geroch, R. and Jang, P.S., “Motion of a body in general relativity”, J. Math. Phys., 16, 65–67,
(1975). [![]() |
![]() |
80 | Geroch, R. and Traschen, J., “Strings and other distributional sources in general relativity”,
Phys. Rev. D, 36, 1017–1031, (1987). [![]() |
![]() |
81 | Gralla, S.E., “Comments on First and Second Order Gravitational Self-Force”, Presentation at the 12th Capra Meeting on Radiation Reaction, conference paper, (2009). |
![]() |
82 | Gralla, S.E., Harte, A.I. and Wald, R.M., “A Rigorous Derivation of Electromagnetic
Self-force”, Phys. Rev. D, 80, 024031, (2009). [![]() ![]() |
![]() |
83 | Gralla, S.E. and Wald, R.M., “A Rigorous Derivation of Gravitational Self-force”, Class.
Quantum Grav., 25, 205009, (2008). [![]() ![]() |
![]() |
84 | Haas, R., “Scalar self-force on eccentric geodesics in Schwarzschild spacetime: a time-domain
computation”, Phys. Rev. D, 75, 124011, (2007). [![]() ![]() |
![]() |
85 | Haas, R., Self-force on point particles in orbit around a Schwarzschild black hole, Ph.D. Thesis,
(University of Guelph, Guelph, 2008). [![]() |
![]() |
86 | Haas, R. and Poisson, E., “Mass change and motion of a scalar charge in cosmological
spacetimes”, Class. Quantum Grav., 22, S739–S752, (2005). [![]() ![]() |
![]() |
87 | Haas, R. and Poisson, E., “Mode-sum regularization of the scalar self-force: Formulation in
terms of a tetrad decomposition of the singular field”, Phys. Rev. D, 74, 004009, (2006). [![]() ![]() |
![]() |
88 | Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (Yale
University Press, New Haven, CT, 1923). [![]() ![]() |
![]() |
89 | Harte, A.I., “Self-forces from generalized Killing fields”, Class. Quantum Grav., 25, 235020,
(2008). [![]() ![]() |
![]() |
90 | Harte, A.I., “Electromagnetic self-forces and generalized Killing fields”, Class. Quantum Grav.,
26, 155015, (2009). [![]() ![]() |
![]() |
91 | Harte, A.I., “Effective stress-energy tensors, self-force, and broken symmetry”, Class. Quantum
Grav., 27, 135002, (2010). [![]() ![]() |
![]() |
92 | Havas, P., “Radiation Damping in General Relativity”, Phys. Rev., 108(5), 1351–1352, (1957).
[![]() |
![]() |
93 | Havas, P. and Goldberg, J.N., “Lorentz-Invariant Equations of Motion of Point Masses in the
General Theory of Relativity”, Phys. Rev., 128(1), 398–414, (1962). [![]() |
![]() |
94 | Hinderer, T. and Flanagan, É.É., “Two timescale analysis of extreme mass ratio inspirals in
Kerr. I. Orbital Motion”, Phys. Rev. D, 78, 064028, (2008). [![]() ![]() |
![]() |
95 | Hobbs, J.M., “A Vierbein Formalism for Radiation Damping”, Ann. Phys. (N.Y.), 47, 141–165, (1968). |
![]() |
96 | Holmes, M.H., Introduction to Perturbation Methods, Texts in Applied Mathematics, 20,
(Springer, Berlin; New York, 1995). [![]() |
![]() |
97 | Huerta, E.A. and Gair, J.R., “Influence of conservative corrections on parameter estimation
for EMRIs”, Phys. Rev. D, 79, 084021, (2009). [![]() ![]() |
![]() |
98 | Hughes, S., “Evolution of circular, nonequatorial orbits of Kerr black holes due to
gravitational-wave emission”, Phys. Rev. D, 61, 084004, (2000). [![]() ![]() |
![]() |
99 | Hughes, S., Drasco, S., Flanagan, É.É. and Franklin, J., “Gravitational radiation reaction
and inspiral waveforms in the adiabatic limit”, Phys. Rev. Lett., 94, 221101, (2005). [![]() ![]() |
![]() |
100 | Infeld, L. and Schild, A., “On the Motion of Test Particles in General Relativity”, Rev. Mod.
Phys., 21, 408–413, (1949). [![]() |
![]() |
101 | Jackson, J.D., Classical Electrodynamics, (Wiley, New York, 1999), 3rd edition. |
![]() |
102 | Kates, R.E., “Motion of a small body through an external field in general relativity calculated
by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980). [![]() |
![]() |
103 | Kates, R.E., “Motion of an electrically or magnetically charged body with possibly strong
internal gravity through external electromagnetic and gravitational fields”, Phys. Rev. D, 22,
1879–1881, (1980). [![]() |
![]() |
104 | Kates, R.E., “Underlying structure of singular perturbations on manifolds”, Ann. Phys. (N.Y.),
132, 1–17, (1981). [![]() |
![]() |
105 | Kegeles, L.S. and Cohen, J.M., “Constructive procedure for perturbations of spacetimes”, Phys.
Rev. D, 19, 1641–1664, (1979). [![]() |
![]() |
106 | Keidl, T., Self-force for extreme mass ratio inspiral, Ph.D. Thesis, (University of
Wisconsin-Milwaukee, Milwaukee, 2008). [![]() |
![]() |
107 | Keidl, T.S., Friedman, J.L. and Wiseman, A.G., “Finding fields and self-force in a
gauge appropriate to separable wave equations”, Phys. Rev. D, 75, 124009, (2006).
[![]() |
![]() |
108 | Keidl, T.S., Shah, A.G., Friedman, J.L., Kim, D.H. and Price, L.R., “Gravitational self-force
in a radiation gauge”, Phys. Rev. D, 82, 124012, (2010). [![]() ![]() |
![]() |
109 | Kevorkian, J. and Cole, J.D., Multiple Scale and Singular Perturbation Methods, Applied
Mathematical Sciences, 114, (Springer, New York, 1996). [![]() |
![]() |
110 | Khanna, G., “Teukolsky evolution of particle orbits around Kerr black holes in the time domain:
Elliptic and inclined orbits”, Phys. Rev. D, 69, 024016, (2006). [![]() |
![]() |
111 | Lagerstrom, P.A., Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, 76, (Springer, New York, 1988). |
![]() |
112 | Landau, L.D. and Lifshitz, E.M., The Classical Theory of Fields, Course of Theoretical Physics,
2, (Pergamon Press, Oxford,; New York, 1975), 4th edition. [![]() |
![]() |
113 | Leaute, B. and Linet, B., “Electrostatics in a Reissner-Nordström space-time”, Phys. Lett. A,
58, 5–6, (1976). [![]() |
![]() |
114 | Linet, B., “Electrostatics and magnetostatics in Schwarzschild metric”, J. Phys. A: Math. Gen.,
9, 1081–1087, (1976). [![]() |
![]() |
115 | “LISA Home Page (NASA)”, project homepage, Jet Propulsion Laboratory/NASA. URL
(accessed 2 April 2004): ![]() |
![]() |
116 | Lopez-Aleman, R., Khanna, G. and Pullin, J., “Perturbative evolution of particle orbits around
Kerr black holes: time domain calculation”, Class. Quantum Grav., 20, 3259–3268, (2003).
[![]() ![]() |
![]() |
117 | Lousto, C.O., “Pragmatic Approach to Gravitational Radiation Reaction in Binary Black
Holes”, Phys. Rev. Lett., 84, 5251–5254, (2000). [![]() ![]() |
![]() |
118 | Lousto, C.O., ed., Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach, Class. Quantum Grav., 22, (IOP Publishing, Bristol, 2005). |
![]() |
119 | Lousto, C.O. and Nakano, H., “A new method to integrate (2+1)-wave equations with Dirac’s
delta functions as sources”, Class. Quantum Grav., 25, 145018, (2008). [![]() ![]() |
![]() |
120 | Lousto, C.O. and Price, R.H., “Understanding initial data for black hole collisions”, Phys. Rev.
D, 56, 6439–6457, (1997). [![]() ![]() |
![]() |
121 | Lousto, C.O. and Whiting, B.F., “Reconstruction of black hole metric perturbations from the
Weyl curvature”, Phys. Rev. D, 66, 024026, 1–7, (2002). [![]() ![]() |
![]() |
122 | Manasse, F.K. and Misner, C.W., “Fermi normal coordinates and some basic concepts in
differential geometry”, J. Math. Phys., 4, 735–745, (1963). [![]() |
![]() |
123 | Martel, K. and Poisson, E., “One-parameter family of time-symmetric initial data for the radial
infall of a particle into a Schwarzschild black hole”, Phys. Rev. D, 66, 084001, (2002). [![]() ![]() |
![]() |
124 | Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”,
Phys. Rev. D, 67, 084027, 1–17, (2003). [![]() ![]() |
![]() |
125 | Mino, Y., “Self-force in the radiation reaction formula – adiabatic approximation of a metric
perturbation and an orbit”, Prog. Theor. Phys., 113, 733–761, (2005). [![]() |
![]() |
126 | Mino, Y., “Adiabatic expansion for a metric perturbation and the condition to solve the gauge
problem for gravitational radiation reaction problem”, Prog. Theor. Phys., 115, 43–61, (2006).
[![]() ![]() |
![]() |
127 | Mino, Y., Nakano, H. and Sasaki, M., “Covariant Self-Force Regularization of a Particle
Orbiting a Schwarzschild Black Hole – Mode Decomposition Regularization”, Prog. Theor.
Phys., 108, 1039–1064, (2003). [![]() |
![]() |
128 | Mino, Y. and Price, R., “Two-timescale adiabatic expansion of a scalar field model”, Phys.
Rev. D, 77, 064001, (2008). [![]() ![]() |
![]() |
129 | Mino, Y., Sasaki, M. and Tanaka, T., “Gravitational radiation reaction”, Prog. Theor. Phys.
Suppl., 128, 373–406, (1997). [![]() ![]() |
![]() |
130 | Mino, Y., Sasaki, M. and Tanaka, T., “Gravitational radiation reaction to a particle motion”,
Phys. Rev. D, 55, 3457–3476, (1997). [![]() ![]() |
![]() |
131 | Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). |
![]() |
132 | Morette-DeWitt, C. and DeWitt, B.S., “Falling charges”, Physics, 1, 3–20, (1964). |
![]() |
133 | Morette-DeWitt, C. and Ging, J.L., “Freinage dû à la radiation gravitationnelle”, C. R. Hebd. Seanc. Acad. Sci., 251, 1868, (1960). |
![]() |
134 | Ori, A., “Reconstruction of inhomogeneous metric perturbations and electromagnetic
four-potential in Kerr spacetime”, Phys. Rev. D, 67, 124010, 1–19, (2003). [![]() ![]() |
![]() |
135 | Ori, A. and Thorne, K.S., “Transition from inspiral to plunge for a compact body in a circular
equatorial orbit around a massive, spinning black hole”, Phys. Rev. D, 62, 124022, (2000).
[![]() ![]() |
![]() |
136 | Ottewill, A.C. and Wardell, B., “Quasilocal contribution to the scalar self-force: Geodesic
motion”, Phys. Rev. D, 77, 104002, (2008). [![]() ![]() |
![]() |
137 | Ottewill, A.C. and Wardell, B., “Quasilocal contribution to the scalar self-force: Nongeodesic
motion”, Phys. Rev. D, 79, 024031, (2009). [![]() ![]() |
![]() |
138 | Papapetrou, A., “Spinning Test-Particles in General Relativity. I”, Proc. R. Soc. London, Ser. A, 209, 248–258, (1951). |
![]() |
139 | Peters, P.C., “Gravitational radiation and the motion of two point masses”, Phys. Rev., 136,
B1224–B1232, (1964). [![]() |
![]() |
140 | Peters, P.C. and Mathews, J., “Gravitational radiation from point masses in a Keplerian orbit”,
Phys. Rev., 131, 435–440, (1963). [![]() |
![]() |
141 | Pfenning, M.J. and Poisson, E., “Scalar, electromagnetic, and gravitational self-forces in weakly
curved spacetimes”, Phys. Rev. D, 65, 084001, 1–30, (2002). [![]() ![]() |
![]() |
142 | Poisson, E., “Retarded coordinates based at a world line and the motion of a small black hole
in an external universe”, Phys. Rev. D, 69, 084007, (2004). [![]() ![]() |
![]() |
143 | Pound, A., Motion of small bodies in general relativity: foundations and implementations of
the self-force, Ph.D. Thesis, (University of Guelph, Guelph, 2010). [![]() |
![]() |
144 | Pound, A., “Self-consistent gravitational self-force”, Phys. Rev. D, 81, 024023, (2010). [![]() ![]() |
![]() |
145 | Pound, A., “Singular perturbation techniques in the gravitational self-force problem”, Phys.
Rev. D, 81, 124009, (2010). [![]() ![]() |
![]() |
146 | Pound, A. and Poisson, E., “Multi-scale analysis of the electromagnetic self-force in a weak
gravitational field”, Phys. Rev. D, 77, 044012, (2008). [![]() ![]() |
![]() |
147 | Pound, A. and Poisson, E., “Osculating orbits in Schwarzschild spacetime, with an application
to extreme mass-ratio inspirals”, Phys. Rev. D, 77, 044013, (2008). [![]() ![]() |
![]() |
148 | Pound, A., Poisson, E. and Nickel, B.G., “Limitations of the adiabatic approximation to the
gravitational self-force”, Phys. Rev. D, 72, 124001, (2005). [![]() ![]() |
![]() |
149 | Quinn, T.C., “Axiomatic approach to radiation reaction of scalar point particles in curved
spacetime”, Phys. Rev. D, 62, 064029, 1–9, (2000). [![]() ![]() |
![]() |
150 | Quinn, T.C. and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational
radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997). [![]() ![]() |
![]() |
151 | Quinn, T.C. and Wald, R.M., “Energy conservation for point particles undergoing radiation
reaction”, Phys. Rev. D, 60, 064009, 1–20, (1999). [![]() ![]() |
![]() |
152 | Racine, E. and Flanagan, É.É., “Post-1-Newtonian equations of motion for systems of
arbitrarily structured bodies”, Phys. Rev. D, 71, 044010, (2005). [![]() ![]() |
![]() |
153 | Roach, G.F., Green’s Functions, (Cambridge University Press, Cambridge; New York, 1982),
2nd edition. [![]() |
![]() |
154 | Rohrlich, F., Classical Charged Particles, (World Scientific, Singapore; Hackensack, NJ, 2007),
3rd edition. [![]() |
![]() |
155 | Rosenthal, E., “Construction of the second-order gravitational perturbations produced by a
compact object”, Phys. Rev. D, 73, 044034, (2006). [![]() ![]() |
![]() |
156 | Rosenthal, E., “Second-order gravitational self-force”, Phys. Rev. D, 74, 084018, (2006). [![]() ![]() |
![]() |
157 | Sago, N., Barack, L. and Detweiler, S., “Two approaches for the gravitational self force in black
hole spacetime: Comparison of numerical results”, Phys. Rev. D, 78, 124024, (2008). [![]() ![]() |
![]() |
158 | Sago, N., Tanaka, T., Hikida, W., Ganz, K. and Nakano, H., “Adiabatic evolution of
orbital parameters in the Kerr spacetime”, Prog. Theor. Phys., 115, 873–907, (2006). [![]() ![]() |
![]() |
159 | Sago, N., Tanaka, T., Hikida, W. and Nakano, H., “Adiabatic radiation reaction to orbits in
Kerr spacetime”, Prog. Theor. Phys., 114, 509–514, (2005). [![]() ![]() |
![]() |
160 | Schattner, R., “The center of mass in general relativity”, Gen. Relativ. Gravit., 10, 377–393, (1979). |
![]() |
161 | Sciama, D.W., Waylen, P.C. and Gilman, R.C., “Generally Covariant Integral Formulation of
Einstein’s Field Equations”, Phys. Rev., 187, 1762–1766, (1969). [![]() |
![]() |
162 | Shankar, K. and Whiting, B.F., “Self-force of a static electric charge near a Schwarzschild star”,
Phys. Rev. D, 76, 124027, (2007). [![]() ![]() |
![]() |
163 | Smith, A.G. and Will, C.M., “Force on a static charge outside a Schwarzschild black hole”,
Phys. Rev. D, 22, 1276–1284, (1980). [![]() |
![]() |
164 | Steinbauer, R. and Vickers, J.A., “The use of Generalised Functions and Distributions in
General Relativity”, Class. Quantum Grav., 23, R91–R114, (2006). [![]() ![]() |
![]() |
165 | Steinhoff, J. and Puetzfeld, D., “Multipolar equations of motion for extended test bodies in
General Relativity”, Phys. Rev. D, 81, 044019, (2010). [![]() ![]() |
![]() |
166 | Stewart, J.M., “Hertz–Bromwich–Debye–Whittaker–Penrose potentials in general relativity”, Proc. R. Soc. London, Ser. A, 367, 527–538, (1979). |
![]() |
167 | Sundararajan, P., “Transition from adiabatic inspiral to geodesic plunge for a compact object
around a massive Kerr black hole: Generic orbits”, Phys. Rev. D, 77, 124050, (2008). [![]() ![]() |
![]() |
168 | Sundararajan, P., Khanna, G. and Hughes, S.A., “Towards adiabatic waveforms for inspiral
into Kerr black holes: I. A new model of the source for the time domain perturbation equation”,
Phys. Rev. D, 76, 104005, (2007). [![]() ![]() |
![]() |
169 | Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, 1960). |
![]() |
170 | Taylor, S. and Poisson, E., “Nonrotating black hole in a post-Newtonian tidal environment”,
Phys. Rev. D, 78, 084016, (2008). [![]() ![]() |
![]() |
171 | Teitelboim, C., Villarroel, D. and van Weert, C.G., “Classical electrodynamics of retarded fields
and point particles”, Riv. Nuovo Cimento, 3, 9, (1980). [![]() |
![]() |
172 | Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations
for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185,
635–647, (1973). [![]() ![]() |
![]() |
173 | Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339,
(1980). [![]() ![]() |
![]() |
174 | Thorne, K.S. and Hartle, J.B., “Laws of motion and precession for black holes and other
bodies”, Phys. Rev. D, 31, 1815–1837, (1985). [![]() |
![]() |
175 | Vega, I., The dynamics of point particles around black holes, Ph.D. Thesis, (University of Florida, Gainesville, 2009). |
![]() |
176 | Vega, I. and Detweiler, S., “Regularization of fields for self-force problems in curved spacetime:
Foundations and a time-domain application”, Phys. Rev. D, 77, 084008, (2008). [![]() ![]() |
![]() |
177 | Vega, I., Diener, P., Tichy, W. and Detweiler, S., “Self-force with (3+1) codes: a primer for
numerical relativists”, Phys. Rev. D, 80, 084021, (2009). [![]() ![]() |
![]() |
178 | Verhulst, F., Methods and Applications of Singular Perturbations: Boundary Layers and
Multiple Timescale Dynamics, Texts in Applied Mathematics, 50, (Springer, New York, 2005).
[![]() |
![]() |
179 | Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other
Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203–206,
(1978). [![]() |
![]() |
180 | Walker, M. and Will, C.M., “The approximation of radiative effects in relativistic gravity –
Gravitational radiation reaction and energy loss in nearly Newtonian systems”, Astrophys. J.
Lett., 242, L129–L133, (1980). [![]() |
![]() |
181 | Warburton, N. and Barack, L., “Self-force on a scalar charge in Kerr spacetime: Circular
equatorial orbits”, Phys. Rev. D, 81, 084039, (2010). [![]() ![]() |
![]() |
182 | Wardell, B., Green Functions and Radiation Reaction From a Spacetime Perspective, Ph.D.
Thesis, (University College Dublin, Dublin, 2009). [![]() |
![]() |
183 | Whiting, B.F., “Identifying the singular field for self-force evaluation”, Class. Quantum Grav.,
22, S661–S679, (2005). [![]() |
![]() |
184 | Whiting, B.F. and Price, L.P., “Metric reconstruction from Weyl scalars”, Class. Quantum
Grav., 22, S589–S604, (2005). [![]() |
![]() |
185 | Wiseman, A.G., “Self-force on a static scalar test charge outside a Schwarzschild black hole”,
Phys. Rev. D, 61, 084014, 1–14, (2000). [![]() ![]() |
![]() |
186 | Zel’nikov, A.I and Frolov, V.P., “Influence of gravitation on the self-energy of charged particles”, Sov. Phys. JETP, 55, 919–198, (1982). |
![]() |
187 | Zhang, X.-H., “Multipole expansions of the general-relativistic gravitational field of the external
universe”, Phys. Rev. D, 34, 991–1004, (1986). [![]() |
http://www.livingreviews.org/lrr-2011-7 |
Living Rev. Relativity 14, (2011), 7
![]() This work is licensed under a Creative Commons License. E-mail us: |