In this section we consider the motion of a point particle of mass subjected to its own gravitational
field in addition to an external field. The particle moves on a world line
in a curved spacetime whose
background metric
is assumed to be a vacuum solution to the Einstein field equations. We shall
suppose that
is small, so that the perturbation
created by the particle can also be considered to
be small. In the final analysis we shall find that
obeys a linear wave equation in the background
spacetime, and this linearization of the field equations will allow us to fit the problem of determining the
motion of a point mass within the general framework developed in Sections 17 and 18. We shall find
that
is not a geodesic of the background spacetime because
acts on the particle and
produces an acceleration proportional to
; the motion is geodesic in the test-mass limit
only.
While we can make the problem fit within the general framework, it is important to understand that the
problem of motion in gravitation is conceptually very different from the versions encountered previously in
the case of a scalar or electromagnetic field. In these cases, the field equations satisfied by the scalar
potential or the vector potential
are fundamentally linear; in general relativity the field equations
satisfied by
are fundamentally nonlinear, and this makes a major impact on the formulation of the
problem. (In all cases the coupled problem of determining the field and the motion of the particle is
nonlinear.) Another difference resides with the fact that in the previous cases, the field equations and the
law of motion could be formulated independently of each other (because the action functional could be
varied independently with respect to the field and the world line); in general relativity the law of
motion follows from energy-momentum conservation, which is itself a consequence of the field
equations.
The dynamics of a point mass in general relativity must therefore be formulated with care. We shall
describe a formal approach to this problem, based on the fiction that the spacetime of a point particle can
be constructed exactly in general relativity. (This is indeed a fiction, because it is known [80] that the
metric of a point particle, as described by a Dirac distribution on a world line, is much too singular to be
defined as a distribution in spacetime. The construction, however, makes distributional sense at the level of
the linearized theory.) The outcome of this approach will be an approximate formulation of the equations of
motion that relies on a linearization of the field equations, and which turns out to be closely analogous to
the scalar and electromagnetic cases encountered previously. We shall put the motion of a small mass on a
much sounder foundation in Part V, where we take
to be a (small) extended body instead of a point
particle.
Let a point particle of mass move on a world line
in a curved spacetime with metric
. This is
the exact metric of the perturbed spacetime, and it depends on
as well as all other relevant parameters.
At a later stage of the discussion
will be expressed as sum of a “background” part
that is
independent of
, and a “perturbation” part
that contains the dependence on
. The world line
is described by relations
in which
is an arbitrary parameter – this will later be identified with
proper time
in the background spacetime. We use sans-serif symbols to denote tensors that refer to the
perturbed spacetime; tensors in the background spacetime will be denoted, as usual, by italic
symbols.
The particle’s action functional is
where On a formal level the metric is obtained by solving the Einstein field equations, and the world line
is determined by the equations of energy-momentum conservation, which follow from the field equations.
From Eqs. (5.14
), (13.3
), and (19.3
) we obtain
and additional manipulations reduce this to
where
At this stage we begin treating as a small quantity, and we write
We introduce the tensor field
as the exact difference betweenWe express the exact Einstein tensor as
where
The exact Einstein field equations can be expressed as
where the effective energy-momentum tensor is defined by Because
Eq. (19.12) expresses the full and exact content of Einstein’s field equations. It is written in such a way
that the left-hand side is linear in the perturbation
, while the right-hand side contains all nonlinear
terms. It may be viewed formally as a set of linear differential equations for
with a specified source
term
. This equation is of mixed hyperbolic-elliptic type, and as such it is a poor starting point
for the selection of retarded solutions that enforce a strict causal link between the source and
the field. This inadequacy, however, can be remedied by imposing the Lorenz gauge condition
A formal solution to Eq. (19.16) is
The split of the Einstein field equations into a wave equation and a gauge condition directly tied to the
conservation of the effective energy-momentum tensor is a most powerful tool, because it allows us to
disentangle the problems of obtaining and determining the motion of the particle. This comes about
because the wave equation can be solved first, independently of the gauge condition, for a particle moving
on an arbitrary world line
; the world line is determined next, by imposing the Lorenz gauge condition
on the solution to the wave equation. More precisely stated, the source term
for the
wave equation can be evaluated for any world line
, without demanding that the effective
energy-momentum tensor be conserved, and without demanding that
be a geodesic of the
perturbed spacetime. Solving the wave equation then returns
as a functional of the
arbitrary world line, and the metric is not yet fully specified. Because imposing the Lorenz
gauge condition is equivalent to imposing conservation of the effective energy-momentum tensor,
inserting
within Eq. (19.15
) finally determines
, and forces it to be a geodesic of the
perturbed spacetime. At this stage the full set of Einstein field equations is accounted for, and the
metric is fully specified as a tensor field in spacetime. The split of the field equations into a
wave equation and a gauge condition is key to the formulation of the gravitational self-force;
in this specific context the Lorenz gauge is conferred a preferred status among all choices of
gauge.
An important question to be addressed is how the wave equation is to be integrated. A method of
principle, based on the assumed smallness of and
, is suggested by post-Minkowskian theory
[180, 26]. One proceeds by iterations. In the first iterative stage, one fixes
and substitutes
within
; evaluation of the integral in Eq. (19.17
) returns the first-order approximation
for the perturbation. In the second stage
is inserted within
and Eq. (19.17
)
returns the second-order approximation
for the perturbation. Assuming that this
procedure can be repeated at will and produces an adequate asymptotic series for the exact perturbation,
the iterations are stopped when the
-order approximation
is deemed to
be sufficiently accurate. The world line is then determined, to order
, by subjecting the approximated
field to the Lorenz gauge condition. It is to be noted that the procedure necessarily produces an
approximation of the field, and an approximation of the motion, because the number of iterations is
necessarily finite. This is the only source of approximation in our formulation of the dynamics of a point
mass.
Conservation of energy-momentum implies Eq. (19.5), which states that the motion of the point mass is
geodesic in the perturbed spacetime. The equation is expressed in terms of the exact connection
, and
with the help of Eq. (19.8
) it can be re-written in terms of the background connection
. We get
, where the left-hand side is the covariant acceleration in the background
spacetime, and
is given by Eq. (19.6
). At this stage the arbitrary parameter
can be identified with
proper time
in the background spacetime. With this choice the equations of motion become
While our formulation of the dynamics of a point mass is in principle exact, any practical implementation
will rely on an approximation method. As we saw previously, the most immediate source of approximation
concerns the number of iterations involved in the integration of the wave equation. Here we perform a single
iteration and obtain the perturbation and the equations of motion to first order in the mass
.
In a first iteration of the wave equation we fix and set
,
, where
It should be clear that Eq. (19.25) is valid only in a formal sense, because the potentials obtained from
Eqs. (19.23
) diverge on the world line. To make sense of these equations we will proceed as in
Sections 17 and 18 with a careful analysis of the field’s singularity structure; regularization will
produce a well-defined version of Eq. (19.25
). Our formulation of the dynamics of a point mass
makes it clear that a proper implementation requires that the wave equation of Eq. (19.22
)
and the equations of motion of Eq. (19.25
) be integrated simultaneously, in a self-consistent
manner.
In the preceding discussion we started off with an exact formulation of the problem of motion
for a small mass in a background spacetime with metric
, but eventually boiled it
down to an implementation accurate to first order in
. Would it not be simpler and more
expedient to formulate the problem directly to first order? The answer is a resounding no:
By doing so we would be driven toward a grave inconsistency; the nonlinear formulation is
absolutely necessary if one wishes to contemplate a self-consistent integration of Eqs. (19.22
) and
(19.25
).
A strictly linearized formulation of the problem would be based on the field equations ,
where
is the energy-momentum tensor of Eq. (19.21
). The Bianchi-like identities
dictate
that
must be conserved in the background spacetime, and a calculation identical to the one leading to
Eq. (19.5
) would reveal that the particle’s motion must be geodesic in the background spacetime. In the
strictly linearized formulation, therefore, the gravitational potentials of Eq. (19.23
) must be sourced by a
particle moving on a geodesic, and there is no opportunity for these potentials to exert a self-force.
To get the self-force, one must provide a formulation that extends beyond linear order. To be
sure, one could persist in adopting the linearized formulation and “save the phenomenon” by
relaxing the conservation equation. In practice this could be done by adopting the solutions of
Eq. (19.23
), demanding that the motion be geodesic in the perturbed spacetime, and relaxing
the linearized gauge condition to
. While this prescription would produce the
correct answer, it is largely ad hoc and does not come with a clear justification. Our exact
formulation provides much more control, at least in a formal sense. We shall do even better in
Part V.
An alternative formulation of the problem provided by Gralla and Wald [83] avoids the inconsistency by
refraining from performing a self-consistent integration of Eqs. (19.22
) and (19.25
). Instead of an expansion
of the acceleration in powers of
, their approach is based on an expansion of the world line itself, and it
returns the equations of motion for a deviation vector which describes the offset of the true world line
relative to a reference geodesic. While this approach is mathematically sound, it eventually breaks down as
the deviation vector becomes large, and it does not provide a justification of the self-consistent treatment of
the equations.
The difference between the Gralla–Wald approach and a self-consistent one is the difference between a
regular expansion and a general one. In a regular expansion, all dependence on a small quantity is
expanded in powers:
To conclude this subsection we should explain why it is desirable to restrict our discussion to spacetimes
that contain no matter except for the point particle. Suppose, in contradiction with this assumption,
that the background spacetime contains a distribution of matter around which the particle is
moving. (The corresponding vacuum situation has the particle moving around a black hole.
Notice that we are still assuming that the particle moves in a region of spacetime in which there
is no matter; the issue is whether we can allow for a distribution of matter somewhere else.)
Suppose also that the matter distribution is described by a collection of matter fields .
Then the field equations satisfied by the matter have the schematic form
, and the
background metric is determined by the Einstein field equations
, in which
stands for the matter’s energy-momentum tensor. We now insert the point particle in
the spacetime, and recognize that this displaces the background solution
to a new
solution (
. The perturbations are determined by the coupled set of equations
and
. After linearization these take
the form of
where ,
,
, and
are suitable differential operators acting on the perturbations. This is
a coupled set of partial differential equations for the perturbations
and
. These equations are
linear, but they are much more difficult to deal with than the single equation for
that was obtained in
the vacuum case. And although it is still possible to solve the coupled set of equations via a Green’s
function technique, the degree of difficulty is such that we will not attempt this here. We shall, therefore,
continue to restrict our attention to the case of a point particle moving in a vacuum (globally Ricci-flat)
background spacetime.
Going back to Eq. (19.23), we have that the gravitational potentials associated with a point particle of
mass
moving on world line
are given by
For a more concrete expression we take to be in a neighbourhood of the world line. The
manipulations that follow are very close to those performed in Section 17.2 for the case of a scalar
charge, and in Section 18.2 for the case of an electric charge. Because these manipulations
are by now familiar, it will be sufficient here to present only the main steps. There are two
important simplifications that occur in the case of a massive particle. First, it is clear that
With the understanding that is close to the world line (refer back to Figure 9
), we substitute the
Hadamard construction of Eq. (16.7
) into Eq. (19.29
) and integrate over the portion of
that is
contained in
. The result is
In the following subsections we shall refer to as the gravitational potentials at
produced by
a particle of mass
moving on the world line
, and to
as the gravitational field at
. To
compute this is our next task.
Keeping in mind that and
are related by
, a straightforward computation reveals
that the covariant derivatives of the gravitational potentials are given by
We wish to express in the retarded coordinates of Section 10, as an expansion in powers of
. For this purpose we decompose the field in the tetrad
that is obtained by parallel transport
of
on the null geodesic that links
to
; this construction is detailed in Section 10. We
recall from Eq. (10.4
) that the parallel propagator can be expressed as
. The
expansion relies on Eq. (10.29
) for
and Eq. (10.31
) for
, both simplified by setting
.
We shall also need
Making these substitutions in Eq. (19.3) and projecting against various members of the tetrad gives
The translation of the results contained in Eqs. (19.39) – (19.44
) into the Fermi normal coordinates of
Section 9 proceeds as in Sections 17.4 and 18.4, but is simplified by setting
in
Eqs. (11.7
), (11.8
), (11.4
), (11.5
), and (11.6
) that relate the Fermi normal coordinates
to the
retarded coordinates. We recall that the Fermi normal coordinates refer to a point
on the world
line that is linked to
by a spacelike geodesic that intersects
orthogonally.
The translated results are
where all frame components are now evaluated at It is then a simple matter to average these results over a two-surface of constant and
. Using
the area element of Eq. (17.24
) and definitions analogous to those of Eq. (17.25
), we obtain
The singular gravitational potentials
are solutions to the wave equation of Eq. (19.22 To evaluate the integral of Eq. (19.59) we take
to be close to the world line (see Figure 9
),
and we invoke Eq. (16.31
) as well as the Hadamard construction of Eq. (16.37
). This gives
Differentiation of Eq. (19.60) yields
To derive an expansion for we follow the general method of Section 11.4 and introduce
the functions
. We have that
where overdots indicate differentiation with respect to and
. The leading term
was worked out in Eq. (19.35
), and the derivatives of
are given
by
and
according to Eqs. (19.37) and (16.15
). Combining these results together with Eq. (11.12
) for
gives
which becomes
and which is identical to Eq. (19.37 We proceed similarly to obtain an expansion for . Here we introduce the functions
and express
as
.
The leading term
was computed in Eq. (19.36
), and
follows from Eq. (16.14). Combining these results together with Eq. (11.12
) for
gives
We obtain the frame components of the singular gravitational field by substituting these expansions
into Eq. (19.61) and projecting against the tetrad
. After some algebra we arrive at
The difference between the retarded field of Eqs. (19.39) – (19.44
) and the singular field of
Eqs. (19.66
) – (19.71
) defines the regular gravitational field
. Its frame components are
The retarded gravitational field of a point particle is singular on the world line, and this behaviour
makes it difficult to understand how the field is supposed to act on the particle and influence its motion.
The field’s singularity structure was analyzed in Sections 19.3 and 19.4, and in Section 19.5 it was shown
to originate from the singular field
; the regular field
was then shown to be regular on the
world line.
To make sense of the retarded field’s action on the particle we can follow the discussions of Section 17.6
and 18.6 and postulate that the self gravitational field of the point particle is either , as worked out
in Eq. (19.57
), or
, as worked out in Eq. (19.78
). These regularized fields are both given by
The actual gravitational perturbation is obtained by inverting Eq. (19.10
), which leads to
. Substituting Eq. (19.80
) yields
Eq. (19.84) was first derived by Yasushi Mino, Misao Sasaki, and Takahiro Tanaka in 1997 [130
].
(An incomplete treatment had been given previously by Morette-DeWitt and Ging [133].) An
alternative derivation was then produced, also in 1997, by Theodore C. Quinn and Robert
M. Wald [150
]. These equations are now known as the MiSaTaQuWa equations of motion, and other
derivations [83
, 144
], based on an extended-body approach, will be reviewed below in Part V. It
should be noted that Eq. (19.84
) is formally equivalent to the statement that the point particle
moves on a geodesic in a spacetime with metric
, where
is the regular metric
perturbation obtained by trace-reversal of the potentials
; this perturbed metric
is regular on the world line, and it is a solution to the vacuum field equations. This elegant
interpretation of the MiSaTaQuWa equations was proposed in 2003 by Steven Detweiler and Bernard
F. Whiting [53]. Quinn and Wald [151] have shown that under some conditions, the total work done
by the gravitational self-force is equal to the energy radiated (in gravitational waves) by the
particle.
http://www.livingreviews.org/lrr-2011-7 |
Living Rev. Relativity 14, (2011), 7
![]() This work is licensed under a Creative Commons License. E-mail us: |