![]() |
1 | Angulo, M.E. and Mena Marugán, G.A., “Large quantum gravity effects: Cylindrical waves
in four dimensions”, Int. J. Mod. Phys. D, 9, 669–686, (2000). [![]() |
![]() |
2 | Ashtekar, A., “Large quantum gravity effects: Unforseen limitations of the classical theory”,
Phys. Rev. Lett., 77, 4864–4867, (1996). [![]() ![]() |
![]() |
3 | Ashtekar, A., “Some surprising consequences of background independence in canonical quantum
gravity”, International LQG Seminar, February 27, 2007, conference paper, (2007). Online
version (accessed 22 January 2010): ![]() |
![]() |
4 | Ashtekar, A., Baez, J., Corichi, A. and Krasnov, K., “Quantum geometry and black hole
entropy”, Phys. Rev. Lett., 80, 904–907, (1998). [![]() ![]() |
![]() |
5 | Ashtekar, A., Bičák, J. and Schmidt, B.G., “Asymptotic structure of symmetry reduced
general relativity”, Phys. Rev. D, 55, 669–686, (1997). [![]() ![]() |
![]() |
6 | Ashtekar, A., Bičák, J. and Schmidt, B.G., “Behavior of Einstein-Rosen waves at null
infinity”, Phys. Rev. D, 55, 687–694, (1997). [![]() ![]() |
![]() |
7 | Ashtekar, A. and Bojowald, M., “Quantum geometry and the Schwarzschild singularity”, Class.
Quantum Grav., 23, 391–411, (2006). [![]() ![]() |
![]() |
8 | Ashtekar, A. and Horowitz, G.T., “On the canonical approach to quantum gravity”, Phys. Rev.
D, 26, 3342–3353, (1982). [![]() |
![]() |
9 | Ashtekar, A. and Husain, V., “Symmetry reduced Einstein gravity and generalized sigma and
chiral models”, Int. J. Mod. Phys. D, 7, 549–566, (1998). [![]() ![]() |
![]() |
10 | Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”,
Living Rev. Relativity, 7, lrr-2004-10, (2004). URL (accessed 22 January 2010): http://www.livingreviews.org/lrr-2004-10. |
![]() |
11 | Ashtekar, A. and Lewandowski, J., “Representation theory of analytic holonomy C⋆ algebras”,
in Baez, J.C., ed., Knots and Quantum Gravity, Proceedings of a workshop held at UC Riverside
on May 14 – 16, 1993, Oxford Lecture Series in Mathematics and its Applications, 1, pp. 21–61,
(Clarendon Press; Oxford University Press, Oxford; New York, 1994). [![]() |
![]() |
12 | Ashtekar, A. and Lewandowski, J., “Background independent quantum gravity: A status
report”, Class. Quantum Grav., 21, R53–R152, (2004). [![]() ![]() |
![]() |
13 | Ashtekar, A. and Pierri, M., “Probing quantum gravity through exactly soluble
midi-superspaces. I”, J. Math. Phys., 37, 6250–6270, (1996). [![]() ![]() |
![]() |
14 | Ashtekar, A. and Samuel, J., “Bianchi cosmologies: The role of spatial topology”, Class.
Quantum Grav., 8, 2191–2215, (1991). [![]() |
![]() |
15 | Ashtekar, A. and Varadarajan, M., “A striking property of the gravitational Hamiltonian”,
Phys. Rev. D, 50, 4944–4956, (1994). [![]() ![]() |
![]() |
16 | Banerjee, K. and Date, G., “Loop quantization of polarized Gowdy model on T3: Classical
theory”, Class. Quantum Grav., 25, 105014, (2008). [![]() ![]() |
![]() |
17 | Banerjee, K. and Date, G., “Loop quantization of polarized Gowdy model on T3:
Kinematical states and constraint operators”, Class. Quantum Grav., 25, 145004, (2008). [![]() ![]() |
![]() |
18 | Barbero G, J.F., Garay, I. and Villaseñor, E.J.S., “Exact quantization of Einstein-Rosen
waves coupled to massless scalar matter”, Phys. Rev. Lett., 95, 051301, (2005). [![]() ![]() |
![]() |
19 | Barbero G, J.F., Garay, I. and Villaseñor, E.J.S., “Probing quantized Einstein-Rosen waves
with massless scalar matter”, Phys. Rev. D, 74, 044004, (2006). [![]() |
![]() |
20 | Barbero G, J.F., Garay, I. and Villaseñor, E.J.S., “Quantum Einstein-Rosen waves: Coherent
states and n-point functions”, Class. Quantum Grav., 25, 205013, (2008). [![]() ![]() |
![]() |
21 | Barbero G, J.F., Gómez Vergel, D. and Villaseñor, E.J.S., “Evolution operators for
linearly polarized two-Killing cosmological models”, Phys. Rev. D, 74, 024003, (2006).
[![]() |
![]() |
22 | Barbero G, J.F., Gómez Vergel, D. and Villaseñor, E.J.S., “Hamiltonian dynamics of
linearly polarized Gowdy models coupled to massless scalar fields”, Class. Quantum Grav., 24,
5945–5972, (2007). [![]() ![]() |
![]() |
23 | Barbero G, J.F., Gómez Vergel, D. and Villaseñor, E.J.S., “Quantum unitary evolution of
linearly polarized S1 × S2 and S3 Gowdy models coupled to massless scalar fields”, Class.
Quantum Grav., 25, 085002, (2008). [![]() |
![]() |
24 | Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Microcausality and quantum
cylindrical gravitational waves”, Phys. Rev. D, 67, 124006, (2003). [![]() ![]() |
![]() |
25 | Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Asymptotic analysis of field
commutators for Einstein-Rosen gravitational waves”, J. Math. Phys., 45, 3498–3532, (2004).
[![]() ![]() |
![]() |
26 | Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Particles and vacuum for
perturbative and non-perturbative Einstein-Rosen gravity”, Phys. Rev. D, 70, 044028, (2004).
[![]() ![]() |
![]() |
27 | Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Quantum cylindrical waves
and sigma models”, Int. J. Mod. Phys. D, 13, 1119–1128, (2004). [![]() |
![]() |
28 | Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Asymptotics of regulated
field commutators for Einstein-Rosen waves”, J. Math. Phys., 46, 062306, (2005). [![]() ![]() |
![]() |
29 | Beck, G., “Zur Theorie binärer Gravitationsfelder”, Z. Phys., 33, 713, (1925). |
![]() |
30 | Beetle, C., “Midi-superspace quantization of non-compact toroidally symmetric gravity”, Adv.
Theor. Math. Phys., 2, 471–495, (1998). [![]() |
![]() |
31 | Bekenstein, J., “The quantum mass spectrum of the Kerr black hole”, Lett. Nuovo Cimento,
11, 467, (1974). [![]() |
![]() |
32 | Bengtsson, I., “A new phase for general relativity?”, Class. Quantum Grav., 7, 27–39, (1990). |
![]() |
33 | Berezin, V.A., Boyarsky, A. and Neronov, A.Y.., “Quantum geometrodynamics for black holes
and wormholes”, Phys. Rev. D, 57, 1118–1128, (1998). [![]() ![]() |
![]() |
34 | Berger, B.K., “Quantum graviton creation in a model universe”, Ann. Phys. (N.Y.), 83,
458–490, (1974). [![]() |
![]() |
35 | Berger, B.K., “Quantum cosmology: Exact solution for the Gowdy T3 model”, Phys. Rev. D,
11, 2770–2780, (1975). [![]() |
![]() |
36 | Berger, B.K., “Quantum effects in the Gowdy T3 cosmology”, Ann. Phys. (N.Y.), 156, 155–193, (1984). |
![]() |
37 | Berger, B.K., Chitre, D.M., Moncrief, V.E. and Nutku, Y., “Hamiltonian formulation of
spherically symmetric gravitational fields”, Phys. Rev. D, 5, 2467–2470, (1972). [![]() |
![]() |
38 | Berger, B.K., Chruściel, P.T. and Moncrief, V., “On ‘Asymptotically Flat’ Space-Times
with G2-Invariant Cauchy Surfaces”, Ann. Phys. (N.Y.), 237, 322–354, (1995). [![]() ![]() |
![]() |
39 | Böhmer, C.G. and Vandersloot, K., “Loop quantum dynamics of the Schwarzschild interior”,
Phys. Rev. D, 76, 104030, (2007). [![]() ![]() |
![]() |
40 | Bojowald, M., “Spherically symmetric quantum geometry: states and basic operators”, Class.
Quantum Grav., 21, 3733–3753, (2004). [![]() ![]() |
![]() |
41 | Bojowald, M., “Nonsingular Black Holes and Degrees of Freedom in Quantum Gravity”, Phys.
Rev. Lett., 95, 061301, (2005). [![]() ![]() |
![]() |
42 | Bojowald, M., “Loop Quantum Cosmology”, Living Rev. Relativity, 11, lrr-2008-4, (2008). URL
(accessed 22 January 2010): http://www.livingreviews.org/lrr-2008-4. |
![]() |
43 | Bojowald, M., Harada, T. and Tibrewala, R., “Lemaître-Tolman-Bondi collapse from the
perspective of loop quantum gravity”, Phys. Rev. D, 78, 064057, (2008). [![]() ![]() |
![]() |
44 | Bojowald, M. and Kastrup, H.A., “Quantum symmetry reduction
for diffeomorphism-invariant theories of connections”, Class. Quantum Grav., 17, 3009–3043,
(2000). [![]() ![]() |
![]() |
45 | Bojowald, M. and Swiderski, R., “The volume operator in spherically symmetric quantum
geometry”, Class. Quantum Grav., 21, 4881–4900, (2004). [![]() ![]() |
![]() |
46 | Bojowald, M. and Swiderski, R., “Spherically symmetric quantum geometry: Hamiltonian
constraint”, Class. Quantum Grav., 23, 2129–2154, (2006). [![]() ![]() |
![]() |
47 | Bonacina, G., Gamba, A. and Martellini, M., “Interacting Euclidean three-dimensional
quantum gravity”, Phys. Rev. D, 45, 3577–3583, (1992). [![]() ![]() |
![]() |
48 | Borissov, R., “Weave states for plane gravitational waves”, Phys. Rev. D, 49, 923–929, (1994).
[![]() |
![]() |
49 | Bose, S., Louko, J., Parker, L. and Peleg, Y., “Hamiltonian thermodynamics of 2D vacuum
dilatonic black holes”, Phys. Rev. D, 53, 5708–5716, (1996). [![]() ![]() |
![]() |
50 | Braden, H.W., Whiting, B.F. and York Jr, J.W., “Density of states for the gravitational field
in black hole topologies”, Phys. Rev. D, 36, 3614–3635, (1987). [![]() |
![]() |
51 | Brizuela, D., Mena Marugán, G.A. and Pawlowski, T., “Big Bounce and inhomogeneities”,
Class. Quantum Grav., 27, 052001, (2010). [![]() ![]() |
![]() |
52 | Brown, J.D. and Kuchař, K.V., “Dust as a standard of space and time in canonical quantum
gravity”, Phys. Rev. D, 51, 5600–5629, (1995). [![]() ![]() |
![]() |
53 | Callan Jr, C.G., Giddings, S.B., Harvey, J.A. and Strominger, A., “Evanescent black holes”,
Phys. Rev. D, 45, R1005–R1009, (1992). [![]() ![]() |
![]() |
54 | Campiglia, M., Gambini, R. and Pullin, J., “Loop quantization of spherically symmetric
midi-superspaces”, Class. Quantum Grav., 24, 3649–3672, (2007). [![]() ![]() |
![]() |
55 | Campiglia, M., Gambini, R. and Pullin, J., “Loop quantization of spherically symmetric
midi-superspaces: The interior problem”, in Macias, A., Lämmerzahl, C. and Camacho,
A., eds., Recent Developments in Gravitation and Cosmology, 3rd Mexican Meeting on
Mathematical and Experimental Physics, Mexico City, Mexico, 10 – 14 September 2007, AIP
Conf. Proc., 977, pp. 52–63, (American Institute of Physics, Melville, NY, 2008). [![]() ![]() |
![]() |
56 | Carmeli, M., Charach, C. and Feinstein, A., “Inhomogeneous mixmaster universes: Some exact solutions”, Ann. Phys. (N.Y.), 150, 392, (1983). |
![]() |
57 | Carmeli, M., Charach, C. and Malin, S., “Survey of cosmological models with gravitational,
scalar and electromagnetic waves”, Phys. Rep., 76, 79, (1981). [![]() |
![]() |
58 | Cavaglià, M., de Alfaro, V. and Filippov, A.T., “Hamiltonian formalism for black holes and
quantization”, Int. J. Mod. Phys. D, 4, 661–672, (1995). [![]() ![]() |
![]() |
59 | Cavaglià, M., de Alfaro, V. and Filippov, A.T., “Quantization of the Schwarzschild black
hole”, Int. J. Mod. Phys. D, 5, 227–250, (1996). [![]() ![]() |
![]() |
60 | Chandrasekhar, S., “Cylindrical waves in general relativity”, Proc. R. Soc. London, Ser. A,
408, 209–232, (1986). [![]() |
![]() |
61 | Charach, C., “Electromagnetic Gowdy universe”, Phys. Rev. D, 19, 3516–3523, (1979). [![]() |
![]() |
62 | Charach, C. and Malin, S., “A cosmological model with gravitational and scalar waves”, Phys.
Rev. D, 19, 1058, (1979). [![]() |
![]() |
63 | Charach, C. and Malin, S., “Cosmological model with gravitational, electromagnetic, and scalar
waves”, Phys. Rev. D, 21, 3284–3294, (1980). [![]() |
![]() |
64 | Chiou, D., “Phenomenological loop quantum geometry of the Schwarzschild black hole”, Phys.
Rev. D, 78, 064040, (2008). [![]() ![]() |
![]() |
65 | Cho, D.H.J. and Varadarajan, M., “Functional evolution of quantum cylindrical waves”, Class.
Quantum Grav., 23, 6115–6140, (2006). [![]() ![]() |
![]() |
66 | Chruściel, P.T., “On Space-Times with U(1) × U(1) Symmetric Compact Cauchy Surfaces”,
Ann. Phys. (N.Y.), 202, 100–150, (1990). [![]() |
![]() |
67 | Clarke, C.J.S., “Spherical symmetry does not imply a direct product”, Class. Quantum Grav., 4, L37–L40, (1987). |
![]() |
68 | Corichi, A., Cortez, J. and Mena Marugán, G.A., “Quantum Gowdy T3 model: A unitary
description”, Phys. Rev. D, 73, 084020, (2006). [![]() ![]() |
![]() |
69 | Corichi, A., Cortez, J. and Mena Marugán, G.A., “Unitary evolution in Gowdy cosmology”,
Phys. Rev. D, 73, 041502, (2006). [![]() ![]() |
![]() |
70 | Corichi, A., Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Quantum Gowdy
T3 model: A uniqueness result”, Class. Quantum Grav., 23, 6301–6320, (2006). [![]() ![]() |
![]() |
71 | Corichi, A., Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Quantum Gowdy T3
model: Schrödinger representation with unitary dynamics”, Phys. Rev. D, 76, 124031, (2007).
[![]() ![]() |
![]() |
72 | Corichi, A., Cortez, J. and Quevedo, H., “On unitary time evolution in Gowdy T3 cosmologies”,
Int. J. Mod. Phys. D, 11, 1451–1468, (2002). [![]() ![]() |
![]() |
73 | Corichi, A., Cortez, J. and Quevedo, H., “Schrödinger representation for a scalar field on
curved spacetime”, Phys. Rev. D, 66, 085025, (2002). [![]() ![]() |
![]() |
74 | Cortez, J. and Mena Marugán, G.A., “Feasibility of a unitary quantum dynamics in the
Gowdy T3 cosmological model”, Phys. Rev. D, 72, 064020, (2005). [![]() ![]() |
![]() |
75 | Cortez, J., Mena Marugán, G.A., Serodio, R. and Velhinho, J.M., “Uniqueness of the Fock
quantization of a free scalar field on S1 with time dependent mass”, Phys. Rev. D, 79, 084040,
(2009). [![]() ![]() |
![]() |
76 | Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Uniqueness of the Fock quantization
of the Gowdy T3 model”, Phys. Rev. D, 75, 084027, (2007). [![]() ![]() |
![]() |
77 | Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Uniqueness of the Fock representation
of the Gowdy S1 × S2 and S3 models”, Class. Quantum Grav., 25, 105005, (2008). [![]() ![]() |
![]() |
78 | Cruz, J., Miković, A.R. and Navarro-Salas, J., “Free field realization of cylindrically symmetric
Einstein gravity”, Phys. Lett. B, 437, 273–278, (1998). [![]() |
![]() |
79 | DeWitt, B.S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160, 1113–1148, (1967). |
![]() |
80 | DeWitt, B.S., “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162, 1195–1239, (1967). |
![]() |
81 | DeWitt, B.S., “Quantum theory of gravity. III. Applications of the covariant theory”, Phys. Rev., 162, 1239–1256, (1967). |
![]() |
82 | Di Bartolo, C., Gambini, R., Porto, R. and Pullin, J., “Dirac-like approach for consistent
discretizations of classical constrained theories”, J. Math. Phys., 46, 012901, (2005). [![]() ![]() |
![]() |
83 | Di Bartolo, C., Gambini, R. and Pullin, J., “Consistent and mimetic discretizations in general
relativity”, J. Math. Phys., 46, 032501, (2005). [![]() ![]() |
![]() |
84 | Einstein, A. and Rosen, N., “On Gravitational Waves”, J. Franklin Inst., 223, 43–54, (1937).
[![]() |
![]() |
85 | Engle, J., “Quantum field theory and its symmetry reduction”, Class. Quantum Grav., 23,
2861–2894, (2006). [![]() ![]() |
![]() |
86 | Fels, M.E. and Torre, C.G., “The principle of symmetric criticality in general relativity”, Class.
Quantum Grav., 19, 641–676, (2002). [![]() ![]() |
![]() |
87 | Fischer, A.E., “Resolving the singularities in the space of Riemannian geometries”, J. Math.
Phys., 27, 718–738, (1986). [![]() |
![]() |
88 | Fleischhack, C., “Representations of the Weyl algebra in quantum geometry”, Commun. Math.
Phys., 285, 67–140, (2009). [![]() ![]() |
![]() |
89 | Franzen, A., Gutti, S. and Kiefer, C., “Quantum gravitational collapse in the
Lemaitre–Tolman–Bondi model with a positive cosmological constant”, Class. Quantum Grav.,
27, 015011, (2009). [![]() ![]() |
![]() |
90 | Friedman, J.L., Louko, J. and Winters-Hilt, S.N., “Reduced phase space formalism for
spherically symmetric geometry with a massive dust shell”, Phys. Rev. D, 56, 7674–7691,
(1997). [![]() ![]() |
![]() |
91 | Gambini, R., Ponce, M. and Pullin, J., “Consistent discretizations: the Gowdy spacetimes”,
Phys. Rev. D, 72, 024031, (2005). [![]() ![]() |
![]() |
92 | Gambini, R. and Pullin, J., “Black holes in loop quantum gravity: the complete space-time”,
Phys. Rev. Lett., 101, 161301, (2008). [![]() ![]() |
![]() |
93 | Gambini, R. and Pullin, J., “Diffeomorphism invariance in spherically symmetric loop quantum
gravity”, Adv. Sci. Lett., 2, 255–260, (2009). [![]() |
![]() |
94 | Gambini, R., Pullin, J. and Rastgoo, S., “Quantum scalar field in quantum gravity: the
vacuum in the spherically symmetric case”, Class. Quantum Grav., 26, 215011, (2009). [![]() ![]() |
![]() |
95 | Gegenberg, J. and Kunstatter, G., “2-D midisuperspace models for quantum black holes”,
in Grumiller, D., Rebhan, A. and Vassilevich, D., eds., Fundamental Interactions: A
Memorial Volume for Wolfgang Kummer, pp. 231–248, (World Scientific, Singapore, 2009).
[![]() |
![]() |
96 | Geroch, R.P., “A method for generating solutions of Einstein’s equations”, J. Math. Phys., 12,
918–924, (1971). [![]() |
![]() |
97 | Geroch, R.P., “A method for generating new solutions of Einstein’s equation. 2”, J. Math.
Phys., 13, 394–404, (1972). [![]() |
![]() |
98 | Giulini, D., “The superspace of geometrodynamics”, Gen. Relativ. Gravit., 41, 785–815, (2009).
[![]() ![]() |
![]() |
99 | Gómez Vergel, D., “Schrödinger quantization of linearly polarized Gowdy S1 × S2 and S3
models coupled to massless scalar fields”, Class. Quantum Grav., 25, 175016, (2008). [![]() ![]() |
![]() |
100 | Gómez Vergel, D. and Villaseñor, E.J.S., “The time-dependent quantum harmonic oscillator
revisited: Applications to quantum field theory”, Ann. Phys. (N.Y.), 324, 1360–1385, (2009).
[![]() ![]() |
![]() |
101 | Gotay, M.J., Nester, J.M. and Hinds, G., “Presymplectic manifolds and the Dirac–Bergmann
theory of constraints”, J. Math. Phys., 19, 2388, (1978). [![]() |
![]() |
102 | Gowdy, R.H., “Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 826–829, (1971).
[![]() |
![]() |
103 | Gowdy, R.H., “Vacuum Spacetimes with Two-Parameter Spacelike Isometry Groups and
Compact Invariant Hypersurfaces: Topologies and Boundary Conditions”, Ann. Phys. (N.Y.),
83, 203–241, (1974). [![]() |
![]() |
104 | Hájíček, P., “Spherically symmetric systems of fields and black holes. II. Apparent horizon
in canonical formalism”, Phys. Rev. D, 30, 1178–1184, (1984). [![]() |
![]() |
105 | Hájíček, P., “Spherically symmetric systems of fields and black holes. III. Positivity of
energy and of a new type Euclidean action”, Phys. Rev. D, 30, 1185–1193, (1984). [![]() |
![]() |
106 | Hájíček, P., “Spherically symmetric systems of fields and black holes. IV. No room for
black-hole evaporation in the reduced configuration space?”, Phys. Rev. D, 31, 785–795, (1985).
[![]() |
![]() |
107 | Hájíček, P., “Spherically symmetric gravitating shell as a reparametrization invariant
system”, Phys. Rev. D, 57, 936–953, (1998). [![]() |
![]() |
108 | Hájíček, P., “Quantum Theory of Gravitational Collapse (Lecture Notes on Quantum
Conchology)”, in Giulini, D., Kiefer, C. and Lämmerzahl, C., eds., Quantum Gravity: From
Theory to Experimental Search, 271th WE-Heraeus Seminar ‘Aspects of Quantum Gravity’,
Bad Honnef, Germany, 24 February – 1 March 2002, Lecture Notes in Physics, 631, pp. 255–299,
(Springer, Berlin; New York, 2003). [![]() ![]() |
![]() |
109 | Hájíček, P. and Kiefer, C., “Embedding variables in the canonical theory of gravitating
shells”, Nucl. Phys. B, 603, 531–554, (2001). [![]() ![]() |
![]() |
110 | Hájíček, P. and Kouletsis, I., “Pair of null gravitating shells: I. Space of solutions and its
symmetries”, Class. Quantum Grav., 19, 2529–2549, (2002). [![]() ![]() |
![]() |
111 | Hájíček, P. and Kouletsis, I., “Pair of null gravitating shells: II. Canonical
theory and embedding variables”, Class. Quantum Grav., 19, 2551–2566, (2002). [![]() ![]() |
![]() |
112 | Helfer, A.D., “The stress-energy operator”, Class. Quantum Grav., 13, L129–L134, (1996).
[![]() ![]() |
![]() |
113 | Henneaux, M. and Teitelboim, C., Quantization of Gauge Systems, (Princeton University Press,
Princeton, NJ, 1992). [![]() |
![]() |
114 | Holst, S., “Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action”, Phys.
Rev. D, 53, 5966–5969, (1996). [![]() ![]() |
![]() |
115 | Husain, V., “Quantum effects on the singularity of the Gowdy cosmology”, Class. Quantum
Grav., 4, 1587–1591, (1987). [![]() |
![]() |
116 | Husain, V., “The Weyl tensor and gravitational entropy”, Phys. Rev. D, 38, 3314–3317, (1988).
[![]() |
![]() |
117 | Husain, V., “Observables for space-times with two Killing field symmetries”, Phys. Rev. D, 50,
6207–6216, (1994). [![]() ![]() |
![]() |
118 | Husain, V., “Einstein’s equations and the chiral model”, Phys. Rev. D, 53, 4327–4334, (1996).
[![]() ![]() |
![]() |
119 | Husain, V. and Pullin, J., “Quantum theory of space-times with one Killing field”, Mod. Phys.
Lett. A, 5, 733, (1990). [![]() |
![]() |
120 | Husain, V. and Smolin, L., “Exactly solvable quantum cosmologies from two Killing field
reductions of general relativity”, Nucl. Phys. B, 327, 205, (1989). [![]() |
![]() |
121 | Husain, V. and Terno, D.R., “Dynamics and entanglement in spherically symmetric quantum
gravity”, Phys. Rev. D, 81, 044039, (2010). [![]() ![]() |
![]() |
122 | Husain, V. and Winkler, O., “On singularity resolution in quantum gravity”, Phys. Rev. D,
69, 084016, (2004). [![]() ![]() |
![]() |
123 | Husain, V. and Winkler, O., “Flat slice Hamiltonian formalism for dynamical black holes”,
Phys. Rev. D, 71, 104001, (2005). [![]() ![]() |
![]() |
124 | Husain, V. and Winkler, O., “Quantum black holes from null expansion operators”, Class.
Quantum Grav., 22, L135–L142, (2005). [![]() ![]() |
![]() |
125 | Husain, V. and Winkler, O., “Quantum resolution of black hole singularities”, Class. Quantum
Grav., 22, L127–L133, (2005). [![]() ![]() |
![]() |
126 | Isenberg, J. and Nester, J., “Canonical Gravity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein, 1, pp. 23–97, (Plenum Press, New York, 1980). |
![]() |
127 | Jacobson, T. and Smolin, L., “Covariant action for Ashtekar’s form of canonical gravity”, Class.
Quantum Grav., 5, 583–594, (1988). [![]() |
![]() |
128 | Jantzen, R.T., “The dynamical degrees of freedom in spatially homogeneous cosmology”,
Commun. Math. Phys., 64, 211–232, (1979). [![]() |
![]() |
129 | Kastrup, H.A., “The quantum levels of isolated spherically symmetric gravitational systems”,
Phys. Lett. B, 385, 75–80, (1996). [![]() ![]() |
![]() |
130 | Kastrup, H.A. and Thiemann, T., “Spherically symmetric gravity as a completely integrable
system”, Nucl. Phys. B, 425, 665–686, (1994). [![]() ![]() |
![]() |
131 | Kennefick, D., “Einstein versus the Physical Review”, Phys. Today, 48, 43–48, (2005). [![]() |
![]() |
132 | Kiefer, C., Quantum Gravity, International Series of Monographs on Physics, 136, (Oxford
University Press, Oxford; New York, 2007), 2nd edition. [![]() |
![]() |
133 | Kiefer, C. and Louko, J., “Hamiltonian evolution and quantization for extremal black holes”,
Ann. Phys. (Berlin), 8, 67–81, (1999). [![]() ![]() |
![]() |
134 | Kiefer, C., Müller-Hill, J., Singh, T.P. and Vaz, C., “Hawking radiation from the
quantum Lemaître-Tolman-Bondi model”, Phys. Rev. D, 75, 124010, (2007). [![]() ![]() |
![]() |
135 | Kiefer, C., Müller-Hill, J. and Vaz, C., “Classical and quantum LTB model for the
non-marginal case”, Phys. Rev. D, 73, 044025, (2006). [![]() ![]() |
![]() |
136 | Korotkin, D. and Nicolai, H., “An integrable model of quantum gravity”, Phys. Lett. B, 356,
211–216, (1995). [![]() ![]() |
![]() |
137 | Korotkin, D. and Nicolai, H., “Separation of variables and Hamiltonian formulation for the
Ernst equation”, Phys. Rev. Lett., 74, 1272–1275, (1995). [![]() ![]() |
![]() |
138 | Korotkin, D. and Nicolai, H., “Isomonodromic quantization of dimensionally reduced gravity”,
Nucl. Phys. B, 475, 397–439, (1996). [![]() ![]() |
![]() |
139 | Korotkin, D. and Samtleben, H., “Canonical quantization of cylindrical gravitational waves
with two polarizations”, Phys. Rev. Lett., 80, 14–17, (1998). [![]() ![]() |
![]() |
140 | Kouletsis, I., Hájíček, P. and Bičák, J., “Gauge-invariant Hamiltonian dynamics of
cylindrical gravitational waves”, Phys. Rev. D, 68, 104013, (2003). [![]() ![]() |
![]() |
141 | Kuchař, K.V., “Canonical quantization of cylindrical gravitational waves”, Phys. Rev. D, 4,
955–986, (1971). [![]() |
![]() |
142 | Kuchař, K.V., “Canonical Quantization of Gravity”, in Israel, W., ed., Relativity, Astrophysics
and Cosmology, Proceedings of the summer school held 14 – 26 August 1972 at the Banff Centre,
Banff, Alberta, Astrophysics and Space Science Library, 38, pp. 237–288, (Reidel, Dordrecht;
Boston, 1973). [![]() |
![]() |
143 | Kuchař, K.V., “Geometrodynamics of Schwarzschild black holes”, Phys. Rev. D, 50,
3961–3981, (1994). [![]() ![]() |
![]() |
144 | Kuchař, K.V. and Ryan Jr, M.P., “Is minisuperspace quantization valid?: Taub in
mixmaster”, Phys. Rev. D, 40, 3982–3996, (1989). [![]() |
![]() |
145 | Lapedes, A.S., “Applications of Arnowitt-Deser-Misner quantization of some metrics with at
least two parameter isometry groups”, Phys. Rev. D, 15, 946–956, (1977). [![]() |
![]() |
146 | Lewandowski, J., Okołów, A., Sahlmann, H. and Thiemann, T., “Uniqueness of
Diffeomorphism Invariant States on Holonomy–Flux Algebras”, Commun. Math. Phys., 267,
703–733, (2006). [![]() ![]() |
![]() |
147 | Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev.
Relativity, 1, lrr-1998-13, (1998). URL (accessed 22 January 2010): http://www.livingreviews.org/lrr-1998-13. |
![]() |
148 | Louko, J. and Mäkelä, J., “Area spectrum of the Schwarzschild black hole”, Phys. Rev. D,
54, 4982–4996, (1996). [![]() ![]() |
![]() |
149 | Louko, J., Simon, J.Z. and Winters-Hilt, S.N., “Hamiltonian thermodynamics of a Lovelock
black hole”, Phys. Rev. D, 55, 3525–3535, (1997). [![]() ![]() |
![]() |
150 | Louko, J. and Whiting, B.F., “Hamiltonian thermodynamics of the Schwarzschild black hole”,
Phys. Rev. D, 51, 5583–5599, (1995). [![]() ![]() |
![]() |
151 | Louko, J., Whiting, B.F. and Friedman, J.L., “Hamiltonian spacetime dynamics with a spherical
null-dust shell”, Phys. Rev. D, 57, 2279–2298, (1998). [![]() ![]() |
![]() |
152 | Louko, J. and
Winters-Hilt, S.N., “Hamiltonian thermodynamics of the Reissner–Nordström–anti-de Sitter
black hole”, Phys. Rev. D, 54, 2647–2663, (1996). [![]() ![]() |
![]() |
153 | Lund, F., “Hamiltonian treatment of the complete vacuum Schwarzschild geometry”, Phys.
Rev. D, 8, 3247, (1973). [![]() |
![]() |
154 | Maison, D., “Are the stationary, axially symmetric Einstein equations completely integrable?”,
Phys. Rev. Lett., 41, 521, (1978). [![]() |
![]() |
155 | Mäkelä, J. and Repo, P., “A quantum mechanical model of the Reissner-Nordström black
hole”, Phys. Rev. D, 57, 4899–4916, (1998). [![]() ![]() |
![]() |
156 | Manojlović, N. and Mena Marugán, G.A., “Asymptotic behaviour of cylindrical waves
interacting with spinning strings”, Class. Quantum Grav., 18, 2065–2086, (2001). [![]() ![]() |
![]() |
157 | Martín-Benito, M., Garay, L.J. and Mena Marugán, G.A., “Hybrid quantum Gowdy
cosmology: Combining loop and Fock quantizations”, Phys. Rev. D, 78, 083516, (2008). [![]() ![]() |
![]() |
158 | McGuigan, M., “The Gowdy cosmology and two-dimensional gravity”, Phys. Rev. D, 43,
1199–1211, (1991). [![]() |
![]() |
159 | Mena Marugán, G.A., “Canonical quantization of the Gowdy model”, Phys. Rev. D, 56,
908–919, (1997). [![]() ![]() |
![]() |
160 | Mena Marugán, G.A., “Gauge fixing and the Hamiltonian for cylindrical spacetimes”, Phys.
Rev. D, 63, 024005, (2001). [![]() ![]() |
![]() |
161 | Mena Marugán, G.A. and Montejo, M., “Quantization of pure gravitational plane waves”,
Phys. Rev. D, 58, 104017, (1998). [![]() ![]() |
![]() |
162 | Mena Marugán, G.A. and Montejo, M., “Plane waves in quantum gravity: Breakdown of the
classical spacetime”, Phys. Rev. D, 61, 084019, (2000). [![]() ![]() |
![]() |
163 | Misner, C.W., “Feynman Quantization of General Relativity”, Rev. Mod. Phys., 29, 497–509,
(1957). [![]() |
![]() |
164 | Misner, C.W., “Minisuperspace”, in Klauder, J.R., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 441–473, (W.H. Freeman, San Francisco, 1972). |
![]() |
165 | Misner, C.W., “A minisuperspace example: The Gowdy T3 cosmology”, Phys. Rev. D, 8,
3271–3285, (1973). [![]() |
![]() |
166 | Mitter, P.K. and Viallet, C.M., “On the bundle of connections and the gauge orbit manifold
in Yang-Mills theory”, Commun. Math. Phys., 79, 457–472, (1981). [![]() |
![]() |
167 | Modesto, L., “Disappearance of black hole singularity in quantum gravity”, Phys. Rev. D, 70,
124009, (2004). [![]() ![]() |
![]() |
168 | Modesto, L., “The Kantowski-Sachs space-time in loop quantum gravity”, Int. J. Theor. Phys.,
45, 2235–2246, (2006). [![]() ![]() |
![]() |
169 | Modesto, L., “Loop quantum black hole”, Class. Quantum Grav., 23, 5587–5601, (2006). [![]() ![]() |
![]() |
170 | Modesto, L., “Loop quantum gravity and black hole singularity”, XVII SIGRAV Conference,
Torino, September 4 – 7, 2006, conference paper, (2007). [![]() |
![]() |
171 | Modesto, L., “Black hole interior from loop quantum gravity”, Adv. High Energy Phys., 2008,
459290, (2008). [![]() ![]() |
![]() |
172 | Modesto, L., “Gravitational collapse in loop quantum gravity”, Int. J. Theor. Phys., 47,
357–373, (2008). [![]() ![]() |
![]() |
173 | Modesto, L., “Space-time structure of loop quantum black hole”, arXiv e-print, (2008).
[![]() |
![]() |
174 | Modesto, L. and Prémont-Schwarz, I., “Self-dual black holes in loop quantum gravity: Theory
and phenomenology”, Phys. Rev. D, 80, 064041, (2009). [![]() ![]() |
![]() |
175 | Moncrief, V., “Reduction of Einstein’s equations for vacuum space-times with spacelike U(1)
isometry groups”, Ann. Phys. (N.Y.), 167, 118–142, (1986). [![]() |
![]() |
176 | Mostert, P.S., “On a compact Lie group acting on a manifold”, Ann. Math., 65, 447–455, (1957). |
![]() |
177 | Mostert, P.S., “On a compact Lie group acting on a manifold (Errata)”, Ann. Math., 66, 589, (1957). |
![]() |
178 | Mukhanov, V.F., “Are black holes quantized?”, J. Exp. Theor. Phys. Lett., 44, 63–66, (1986). |
![]() |
179 | Neville, D.E., “Energy and directional signatures for plane quantized gravity waves”, Phys.
Rev. D, 57, 986–1008, (1998). [![]() ![]() |
![]() |
180 | Neville, D.E., “Volume operator for singly polarized gravity waves with planar or cylindrical
symmetry”, Phys. Rev. D, 73, 124005, (2006). [![]() ![]() |
![]() |
181 | Neville, D.E., “Volume operator for spin networks with planar or cylindrical symmetry”, Phys.
Rev. D, 73, 124004, (2006). [![]() ![]() |
![]() |
182 | Nicolai, H., Korotkin, D. and Samtleben, H., “Integrable classical and quantum gravity”,
Lectures given at NATO Advanced Study Institute on Quantum Fields and Quantum
Space Time, Cargèse, France, 22 July – 3 August 1996, conference paper, (1996).
[![]() |
![]() |
183 | Niedermaier, M., “Renormalization and asymptotic safety in truncated quantum Einstein
gravity”, J. High Energy Phys.(12), 066, (2002). [![]() ![]() |
![]() |
184 | Niedermaier, M. and Reuter, M., “The Asymptotic Safety Scenario in Quantum Gravity”,
Living Rev. Relativity, 9, lrr-2006-5, (2006). URL (accessed 22 January 2010): http://www.livingreviews.org/lrr-2006-5. |
![]() |
185 | Osborn, H., “Renormalisation and composite operators in non-linear σ models”, Nucl. Phys.
B, 294, 595–620, (1987). [![]() |
![]() |
186 | Palais, R.S., “The principle of symmetric criticality”, Commun. Math. Phys., 69, 13–30, (1979).
[![]() |
![]() |
187 | Peltola, A. and Kunstatter, G., “Complete single-horizon quantum corrected black hole
spacetime”, Phys. Rev. D, 79, 061501(R), (2008). [![]() ![]() |
![]() |
188 | Peltola, A. and Kunstatter, G., “Effective polymer dynamics of D-dimensional black hole
interiors”, Phys. Rev. D, 80, 044031, (2009). [![]() ![]() |
![]() |
189 | Pierri, M., “Probing quantum general relativity through exactly soluble midi-superspaces. II:
Polarized Gowdy models”, Int. J. Mod. Phys. D, 11, 135, (2002). [![]() ![]() |
![]() |
190 | Regge, T. and Teitelboim, C., “Role of surface integrals in the Hamiltonian formulation of
general relativity”, Ann. Phys. (N.Y.), 88, 286–318, (1974). [![]() |
![]() |
191 | Romano, J.D., “Spherically Symmetric Scalar Field Collapse: An Example of the Spacetime
Problem of Time”, arXiv e-print, (1995). [![]() |
![]() |
192 | Romano, J.D. and Torre, C.G., “Internal time formalism for spacetimes with two Killing
vectors”, Phys. Rev. D, 53, 5634–5650, (1996). [![]() ![]() |
![]() |
193 | Ryan Jr, M.P. and Shepley, L.C., Homogeneous Relativistic Cosmologies, Princeton Series in Physics, (Princeton University Press, Princeton, NJ, 1975). |
![]() |
194 | Samuel, J., “A Lagrangian basis for Ashtekar’s formulation of canonical gravity”, Pramana,
28, L429–L432, (1987). [![]() |
![]() |
195 | Schmidt, B.G., “Vacuum spacetimes with toroidal null infinities”, Class. Quantum Grav., 13,
2811–2816, (1996). [![]() |
![]() |
196 | Shale, D., “Linear symmetries of free boson fields”, Trans. Amer. Math. Soc., 103, 149–169, (1962). |
![]() |
197 | Siegl, R., “Some underlying manifolds of the Schwarzschild solution”, Class. Quantum Grav.,
9, 239–240, (1992). [![]() |
![]() |
198 | Singer, I.M., “Some remarks on the Gribov ambiguity”, Commun. Math. Phys., 60, 7–12,
(1978). [![]() |
![]() |
199 | Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C. and Herlt, E., Exact Solutions
of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge
University Press, Cambridge; New York, 2003), 2nd edition. [![]() |
![]() |
200 | Szenthe, J., “On the global geometry of spherically symmetric space-times”, Math. Proc. Camb.
Phil. Soc., 137, 741–754, (2004). [![]() |
![]() |
201 | Thiemann, T. and Kastrup, H.A., “Canonical quantization of spherically symmetric gravity
in Ashtekar’s self-dual representation”, Nucl. Phys. B, 399, 211–258, (1993). [![]() ![]() |
![]() |
202 | Torre, C.G., “A complete set of observables for cylindrically symmetric gravitational fields”,
Class. Quantum Grav., 8, 1895–1912, (1991). [![]() |
![]() |
203 | Torre, C.G., “Midisuperspace models of canonical quantum gravity”, Int. J. Theor. Phys., 38,
1081–1102, (1999). [![]() ![]() |
![]() |
204 | Torre, C.G., “Quantum dynamics of the polarized Gowdy T3 model”, Phys. Rev. D, 66, 084017,
(2002). [![]() ![]() |
![]() |
205 | Torre, C.G., “Observables for the polarized Gowdy model”, Class. Quantum Grav., 23,
1543–1556, (2006). [![]() ![]() |
![]() |
206 | Torre, C.G., “Schrödinger representation for the polarized Gowdy model”, Class. Quantum
Grav., 24, 1–13, (2007). [![]() ![]() |
![]() |
207 | Torre, C.G., “Symmetry Reduction of Quasi-Free States”, J. Math. Phys., 50, 062303, (2009).
[![]() ![]() |
![]() |
208 | Torre, C.G. and Varadarajan, M., “Quantum fields at any time”, Phys. Rev. D, 58, 064007,
(1998). [![]() ![]() |
![]() |
209 | Torre, C.G. and Varadarajan, M., “Functional evolution of free quantum fields”, Class.
Quantum Grav., 16, 2651–2668, (1999). [![]() ![]() |
![]() |
210 | Unruh, W.G., “Notes on black-hole evaporation”, Phys. Rev. D, 14, 870–892, (1976). [![]() |
![]() |
211 | Varadarajan, M., “Classical and quantum geometrodynamics of 2-D vacuum dilatonic black
holes”, Phys. Rev. D, 52, 7080–7088, (1995). [![]() ![]() |
![]() |
212 | Varadarajan, M., “Gauge fixing of one Killing field reductions of canonical gravity: The case
of asymptotically flat induced two-geometry”, Phys. Rev. D, 52, 2020–2029, (1995). [![]() ![]() |
![]() |
213 | Varadarajan, M., “On the metric operator for quantum cylindrical waves”, Class. Quantum
Grav., 17, 189–199, (2000). [![]() ![]() |
![]() |
214 | Varadarajan, M., “Kruskal coordinates as canonical variables for Schwarzschild black holes”,
Phys. Rev. D, 63, 084007, (2001). [![]() ![]() |
![]() |
215 | Vaz, C., “Canonical quantization, conformal fields and the statistical entropy of the
Schwarzschild black hole”, Phys. Rev. D, 61, 064017, (2000). [![]() ![]() |
![]() |
216 | Vaz, C., “Signatures of an emergent gravity from black hole entropy”, Gen. Relativ. Gravit.,
41, 2307–2311, (2009). [![]() ![]() |
![]() |
217 | Vaz, C., Kiefer, C., Singh, T.P. and Witten, L., “Quantum general relativity and Hawking
radiation”, Phys. Rev. D, 67, 024014, (2003). [![]() ![]() |
![]() |
218 | Vaz, C. and Wijewardhana, L.C.R., “Spectrum and entropy of AdS black holes”, Phys. Rev.
D, 79, 084014, (2009). [![]() ![]() |
![]() |
219 | Vaz, C. and Witten, L., “Mass quantization of the Schwarzschild black hole”, Phys. Rev. D,
60, 024009, (1999). [![]() ![]() |
![]() |
220 | Vaz, C. and Witten, L., “Quantum black holes from quantum collapse”, Phys. Rev. D, 64,
084005, (2001). [![]() ![]() |
![]() |
221 | Vaz, C. and Witten, L., “Quantum states and the statistical entropy of the charged black hole”,
Phys. Rev. D, 63, 024008, (2001). [![]() ![]() |
![]() |
222 | Vaz, C., Witten, L. and Singh, T.P., “Toward a midisuperspace quantization of
Lemaître-Tolman-Bondi collapse models”, Phys. Rev. D, 63, 104020, (2001). [![]() ![]() |
![]() |
223 | Vaz, C., Witten, L. and Singh, T.P., “Toward a quantization of null dust collapse”, Phys. Rev.
D, 65, 104016, (2002). [![]() ![]() |
![]() |
224 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [![]() |
![]() |
225 | Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics,
Chicago Lectures in Physics, (University of Chicago Press, Chicago, 1994). [![]() |
![]() |
226 | Woodhouse, N.M.J., Geometric Quantization, Oxford Mathematical Monographs, (Clarendon
Press; Oxford University Press, Oxford; New York, 1992), 2nd edition. [![]() |
![]() |
227 | York Jr, J.W., “Black hole thermodynamics and the Euclidean Einstein action”, Phys. Rev.
D, 33, 2092–2099, (1986). [![]() |
http://www.livingreviews.org/lrr-2010-6 |
Living Rev. Relativity 13, (2010), 6
![]() This work is licensed under a Creative Commons License. E-mail us: |