Many cosmological models predict that the Universe is presently filled with a low-frequency stochastic
gravitational wave background (GWB) produced during the big bang era [243]. A significant
component [260, 134] is the gravitational radiation from massive black hole mergers. In the ideal case, the
change in the observed frequency caused by the GWB should be detectable in the set of timing residuals
after the application of an appropriate model for the rotational, astrometric and, where necessary, binary
parameters of the pulsar. As discussed in Section 4.2, all other effects being negligible, the rms scatter of
these residuals would be due to the measurement uncertainties and intrinsic timing noise from the
neutron star.
For a GWB with a flat energy spectrum in the frequency band there is an additional
contribution to the timing residuals
[85]. When
, the corresponding wave energy density is
This technique was first applied [273] to a set of TOAs for PSR B1237+25 obtained from regular
observations over a period of 11 years as part of the JPL pulsar timing programme [89]. This pulsar was
chosen on the basis of its relatively low level of timing activity by comparison with the youngest pulsars,
whose residuals are ultimately plagued by timing noise (see Section 4.3). By ascribing the rms scatter in the
residuals () to the GWB, the limit
for a centre frequency
.
This limit, already well below the energy density required to close the Universe, was further reduced
following the long-term timing measurements of millisecond pulsars at Arecibo (see Section 4.3). In the
intervening period, more elaborate techniques had been devised [31, 39
, 303] to look for the
likely signature of a GWB in the frequency spectrum of the timing residuals and to address the
possibility of “fitting out” the signal in the TOAs. Following [31
] it is convenient to define
For binary pulsars, the orbital period provides an additional clock for measuring the effects of
gravitational waves. In this case, the range of frequencies is not limited by the time span of the
observations, allowing the detection of waves with periods as large as the light travel time to the binary
system [31]. The most stringent results presently available are based on the B1855+09 limit
in the frequency range
[160].
In addition to probing the GWB, pulsar timing is beginning to place interesting constraints on the existence
of massive black hole binaries. Arecibo data for PSRs B1937+21 and J1713+0747 already make the
existence of an equal-mass black hole binary in Sagittarius unlikely [176]. More recently, timing data
from B1855+09 have been used to virtually rule out the existence of a proposed supermassive
black hole as the explanation for the periodic motion seen at the centre of the radio galaxy
3C66B [304].
A simulation of the expected modulations of the timing residuals for the putative binary system, with a
total mass of , is shown along with the observed timing residuals in Figure 29
. Although
the exact signature depends on the orientation and eccentricity of the binary system, Monte Carlo
simulations show that the existence of such a massive black hole binary is ruled out with at least 95%
confidence [135
].
|
A natural extension of the single-arm detector concept discussed above is the idea of using timing data for a
number of pulsars distributed over the whole sky to detect gravitational waves [118]. Such a “timing array”
would have the advantage over a single arm in that, through a cross-correlation analysis of
the residuals for pairs of pulsars distributed over the sky, it should be possible to separate
the timing noise of each pulsar from the signature of the GWB common to all pulsars in the
array. To illustrate this, consider the fractional frequency shift of the th pulsar in an array
|
Looking further ahead, the increase in sensitivity provided by the Square Kilometre Array [132, 162]
should further improve the limits of the spectrum probed by pulsar timing. As Figure 30
shows, the SKA
could provide up to two orders of magnitude improvement over current capabilities.
![]() |
http://www.livingreviews.org/lrr-2005-7 |
© Max Planck Society and the author(s)
Problems/comments to |