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Abstract

In 1962 O. A. Gross proved that the last digits of the Fubini numbers (or surjective
numbers) have a simple periodicity property. We extend this result to a wider class of
combinatorial numbers coming from restricted set partitions.

1 The Stirling numbers of the second kind and the

Fubini numbers

The nth Fubini number or surjection number [18, 22, 31, 34, 35], Fn, counts all the possible
partitions of n elements such that the order of the blocks matters. The

{

n

k

}

Stirling number
of the second kind with parameters n and k enumerates the partitions of n elements into k

blocks. Thus, Fn has the following expression:

Fn =
n

∑

k=0

k!

{

n

k

}

. (1)

The first Fubini numbers are presented in the next table:

1This scientific work was financed by Proyecto Prometeo de la Secretaŕıa Nacional de Ciencia, Tecnoloǵıa
e Innovación (Ecuador).
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 3 13 75 541 4 683 47 293 545 835 7 087 261 102 247 563

We may realize that the last digits form a periodic sequence of length four. This is true
up to infinity. That is, for all n ≥ 1

Congruence 1.
Fn+4 ≡ Fn (mod 10).

A proof was given by Gross [20] which uses backward differences. Later we give a simple
combinatorial proof.

We note that if the order of the blocks does not matter, we get the Bell numbers [11]:

Bn =
n

∑

k=0

{

n

k

}

.

This sequence does not possess this “periodicity property”.
Now we introduce other classes of numbers which do share this periodicity.

2 The r-Stirling and r-Fubini numbers

The r-Stirling number of the second kind with parameters n and k is denoted by
{

n

k

}

r
and

enumerates the partitions of n elements into k blocks such that all the first r elements are in
different blocks. So, for example, {1, 2, 3, 4, 5} can be partitioned into {1, 4, 5} ∪ {2, 3} but
{1, 2} ∪ {3, 5} ∪ {4} is forbidden, if r ≥ 2. An introductory paper on r-Stirling numbers is
due to Broder [5]. A good source of combinatorial identities on r-Stirling numbers is a book
of Charalambides [6]. (Note that in this book these numbers are called noncentral Stirling
numbers.)

Similarly to (1) we can introduce the r-Fubini numbers as

Fn,r =
n

∑

k=0

(k + r)!

{

n+ r

k + r

}

r

. (2)

(It is worthwile to shift the indices, since the upper and lower parameters have to be at least
r, so n and k can run from zero in the formula.)

We note that the literature of these numbers is rather thin. From the analytical point of
view they were discussed by Corcino and his co-authors [12]. The present author with Nyul
[28] is preparing a manuscript which studies these numbers in a combinatorial way.

The first 2-Fubini and 3-Fubini numbers are

F1,2 F2,2 F3,2 F4,2 F5,2 F6,2 F7,2 F8,2

10 62 466 4 142 42 610 498 542 6 541 426 95 160 302

and
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F1,3 F2,3 F3,3 F4,3 F5,3 F6,3 F7,3 F8,3

42 342 3 210 34 326 413 322 5 544 342 82 077 450 1 330 064 406

We see that the sequence of the last digits is also periodic with period four:

Congruence 2.
Fn+4,r ≡ Fn,r (mod 10) (n, r ≥ 1).

If the order of the blocks does not interest us, we get the r-Bell numbers:

Bn,r =
n

∑

k=0

{

n+ r

k + r

}

r

.

These numbers were discussed combinatorially in a paper of the present author [26] and
analytically by Corcino and his co-authors [13, 14], and also by Dil and Kurt [15]. The table
of these numbers [26] shows that there is possibly no periodicity in the last digits of the
r-Bell numbers.

3 Restricted Stirling numbers and three derived se-

quences

Let us go further and introduce another class of Stirling numbers. The
{

n

k

}

≤m
restricted

Stirling number of the second kind [1, 8, 9, 10] gives the number of partitions of n elements
into k subsets under the restriction that none of the blocks contain more than m elements.
The notation reflects this restrictive property.

The sum of restricted Stirling numbers gives the restricted Bell numbers [30]:

Bn,≤m =
n

∑

k=0

{

n

k

}

≤m

.

Their tables are as follows:

B1,≤2 B2,≤2 B3,≤2 B4,≤2 B5,≤2 B6,≤2 B7,≤2 B8,≤2 B9,≤2 B10,≤2 B11,≤2

1 2 4 10 26 76 232 764 2 620 9 496 35 696

B1,≤3 B2,≤3 B3,≤3 B4,≤3 B5,≤3 B6,≤3 B7,≤3 B8,≤3 B9,≤3 B10,≤3 B11,≤3

1 2 5 14 46 166 652 2 780 12 644 61 136 312 676

B1,≤4 B2,≤4 B3,≤4 B4,≤4 B5,≤4 B6,≤4 B7,≤4 B8,≤4 B9,≤4 B10,≤4 B11,≤4

1 2 5 15 51 196 827 3 795 18 755 99 146 556 711

If we eliminate the first elementsB1,≤2 andB1,≤3, B2,≤3, B3,≤3 we can see that these sequences,
for m = 2, 3, seem to be periodic of length five:

Congruence 3.
Bn,≤2 ≡ Bn+5,≤2 (mod 10) (n > 1).

Bn,≤3 ≡ Bn+5,≤3 (mod 10) (n > 3).
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The third table shows that such kind of congruence cannot be proven if m = 4. The
proof of the above congruence for m = 2, 3 is contained in the 5.3 subsection. We will also
explain why this property fails to hold whenever m > 3.

What happens, if we take restricted Fubini numbers, as

Fn,≤m =
n

∑

k=0

k!

{

n

k

}

≤m

? (3)

The next congruences hold.

Congruence 4.

Fn,≤1 ≡ 0 (mod 10) (n > 4),

Fn,≤m ≡ 0 (mod 10) (n > 4,m = 2, 3, 4), (4)

Fn,≤m ≡ 0 (mod 2) (n > m,m > 4). (5)

The first congruence is trivial, since Fn,≤1 = n!. The others will be proved in subsection
5.4.

If we consider restricted Stirling numbers of the first kind, a similar conjecture can be
phrased. These numbers with parameter n, k andm count all the permutations on n elements
with k cycles such that all cycles contain at most m items. Let us denote these numbers by
[

n

k

]

≤m
. Then let

An,≤m =
n

∑

k=0

[

n

k

]

≤m

.

We may call these as restricted factorials, since if m = n (there is no restriction) we get that
An,≤m = n!. Note that the sequence (n!) is clearly periodic in the present sense, because
n! ≡ 0 (mod 10) if n > 4. The tables

A1,≤3 A2,≤3 A3,≤3 A4,≤3 A5,≤3 A6,≤3 A7,≤3 A8,≤3 A9,≤3 A10,≤3 A11,≤3

1 2 6 18 66 276 1 212 5 916 31 068 171 576 1 014 696

A1,≤4 A2,≤4 A3,≤4 A4,≤4 A5,≤4 A6,≤4 A7,≤4 A8,≤4 A9,≤4 A10,≤4 A11,≤4

1 2 6 24 96 456 2 472 14 736 92 304 632 736 4 661 856

suggest that An,≤m is perhaps periodic of order five. The next result can be phrased as
follows:

Congruence 5.
An,≤m ≡ An+5,≤m (mod 10) (n > 2,m = 2, 3, 4).

Our argument presented in the subsection 5.5 will show that the restricted factorial
numbers all terminate with digit 0 if n > 4 and m > 4, this is the reason why we excluded
above the case m > 4.

Note that An,≤2 = Bn,≤2 and this number equals to the number of involutions on n

elements. (Involution is a permutation π such that π2 = 1, the identity permutation.).
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4 The associated Stirling numbers

At the end we turn to the definition of the associated Stirling numbers. The m-associated
Stirling number of the second kind with parameters n and k, denoted by

{

n

k

}

≥m
, gives the

number of partitions of an n element set into k subsets such that every block contains at
least m elements [11, p. 221].

The associated Bell numbers are

Bn,≥m =
n

∑

k=0

{

n

k

}

≥m

.

The tables for m = 2, 3, 4 (Bn,≥1 = Bn, the nth Bell number) follow.

B1,≥2 B2,≥2 B3,≥2 B4,≥2 B5,≥2 B6,≥2 B7,≥2 B8,≥2 B9,≥2 B10,≥2 B11,≥2

0 1 1 4 11 41 162 715 3 425 17 722 98 253

B1,≥3 B2,≥3 B3,≥3 B4,≥3 B5,≥3 B6,≥3 B7,≥3 B8,≥3 B9,≥3 B10,≥3 B11,≥3

0 0 1 1 1 11 36 92 491 2 557 11 353

B1,≥4 B2,≥4 B3,≥4 B4,≥4 B5,≥4 B6,≥4 B7,≥4 B8,≥4 B9,≥4 B10,≥4 B11,≥4

0 0 0 1 1 1 1 36 127 337 793

Here one cannot observe periodicity in the last digits. However, this is not the case, if
we take the associated Fubini numbers, where the order of the blocks counts:

Fn,≥m =
n

∑

k=0

k!

{

n

k

}

≥m

.

Since Fn,≥1 = Fn, the nth Fubini number, we present the table of these numbers for m =
2, 3, 4:

F1,≥2 F2,≥2 F3,≥2 F4,≥2 F5,≥2 F6,≥2 F7,≥2 F8,≥2 F9,≥2 F10,≥2 F11,≥2

0 1 1 7 21 141 743 5 699 42 241 382 153 3 586 155

F1,≥3 F2,≥3 F3,≥3 F4,≥3 F5,≥3 F6,≥3 F7,≥3 F8,≥3 F9,≥3 F10,≥3 F11,≥3

0 0 1 1 1 21 71 183 2 101 13 513 64 285

F1,≥4 F2,≥4 F3,≥4 F4,≥4 F5,≥4 F6,≥4 F7,≥4 F8,≥4 F9,≥4 F10,≥4 F11,≥4

0 0 0 1 1 1 1 71 253 673 1 585

The next special values are trivial:

F0,≥m = 1, Fn,≥m = 0 (0 < n < m), Fm,≥m = 1.

We will prove that the associated Fubini numbers are always odd, when n ≥ m:

Congruence 6.
Fn,≥m ≡ 1 (mod 2) (n ≥ m),

and that the last digits form a periodic sequence of length 20:

Congruence 7.
Fn,≥m ≡ Fn+20,≥m (mod 10) (n ≥ 5,m = 2, 3, 4, 5).

This last congruence is rather unusual, because the length of the period is 20, larger than
for the other treated sequences, and, in addition, if m = 1 (Fubini number case), the period
is just 4.
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5 Proof of the congruences

Now we start to give the proofs of the above congruences.

5.1 The Fubini numbers – Congruence 1

We prove Congruence 1 of Gross, which states that

Fn+4 ≡ Fn (mod 10).

Let n > 4. By the definition,

Fn+4 − Fn =
n+4
∑

k=0

k!

{

n+ 4

k

}

−

n
∑

k=0

k!

{

n

k

}

=

n+4
∑

k=5

k!

{

n+ 4

k

}

−
n

∑

k=5

k!

{

n

k

}

+
4

∑

k=0

k!

{

n+ 4

k

}

−
4

∑

k=0

k!

{

n

k

}

≡

{

n+ 4

0

}

+

{

n+ 4

1

}

+ 2

{

n+ 4

2

}

+ 6

{

n+ 4

3

}

+ 24

{

n+ 4

4

}

−

{

n

0

}

−

{

n

1

}

− 2

{

n

2

}

− 6

{

n

3

}

− 24

{

n

4

}

(mod 10).

Because of the special values
{

n

0

}

= 0,
{

n

1

}

= 1, the first two members cancel. The remaining
terms are divisible by two, so it is enough to prove that

5

∣

∣

∣

∣

({

n+ 4

2

}

+ 3

{

n+ 4

3

}

+ 12

{

n+ 4

4

}

−

{

n

2

}

− 3

{

n

3

}

− 12

{

n

4

})

.

The special values [4, p. 12.]
{

n

2

}

= 2n−1 − 1,

{

n

3

}

=
1

2

(

3n−1 − 2n + 1
)

,

{

n

4

}

=
1

6
4n−1 −

1

2
3n−1 + 2n−2 −

1

6

give that
{

n+ 4

2

}

−

{

n

2

}

= 2n+3 − 1− (2n−1 − 1) = 15 · 2n−1,

3

{

n+ 4

3

}

− 3

{

n

3

}

=
3

2

(

3n−1(34 − 1)− 2n(24 − 1)
)

,

12

{

n+ 4

4

}

− 12

{

n

4

}

=
12

2

(

1

3
4n−1(44 − 1)− 3n−1(34 − 1) + 2n−2(24 − 1)

)

.

All of these numbers – independently from n – are divisible by 5, so we proved the periodicity
of Fubini numbers.
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5.2 The r-Fubini numbers – Congruence 2

The generalization of the congruence of Gross to the r-Stirling case states that

Fn+4,r ≡ Fn,r (mod 10) (n, r ≥ 1).

Definition (2) immediately gives that if r > 5, 10 | Fn,r for all n > 0, so the periodicity
is trivial. If r = 1, we get back the ordinary Fubini numbers (up to a shifting), so we can
restrict ourselves to 2 ≤ r ≤ 4. So

Fn+4,r − Fn,r

r=2
≡ 2

{

n+ 4 + r

r

}

r

+ 6

{

n+ 4 + r

r + 1

}

r

+ 24

{

n+ 4 + r

r + 2

}

r

− 2

{

n+ r

r

}

r

− 6

{

n+ r

r + 1

}

r

− 24

{

n+ r

r + 2

}

r

,

r=3
≡ 6

{

n+ 4 + r

r

}

r

+ 24

{

n+ 4 + r

r + 1

}

r

− 6

{

n+ r

r

}

r

− 24

{

n+ r

r + 1

}

r

,

r=4
≡ 24

{

n+ 4 + r

r

}

r

− 24

{

n+ r

r

}

r

(mod 10).

We need the following special values:

{

n+ r

r

}

r

= rn, (6)

{

n+ r

r + 1

}

r

= (r + 1)n − rn, (7)

{

n+ r

r + 2

}

r

=
1

2
(r + 2)n − (r + 1)n +

1

2
rn. (8)

The first identity can be proven easily: the left hand side counts the partitions of n + r

elements into r subsets such that the first r elements are in different subsets. Such partitions
can be formed in the following way: we put the first r elements into singletons and the
remaining n elements go to these r blocks independently: we have rn possibilities.

The proof of the second special value is similar, but now we have an additional block.
We put again our first r elements into r different blocks, and the remaining n elements go
to these and to the additional block. Up to now we have (r + 1)n possibilities. But the last
block cannot be empty, so we have to exclude the cases when all the n elements go to the
first r partition. The number of such cases is rn. These considerations give (7).

The left hand side of the third identity is the number of partitions of n + r elements
into r + 2 blocks with the usual restriction. Let us suppose that the two additional blocks
contain k elements from n. We can choose these elements in

(

n

k

)

ways and then we construct
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a partition with the two blocks:
{

k

2

}

possibilities. (Note that k ≥ 2.) The remaining n − k

elements go to the first r block independently in rn−k ways. We sum on k to get

{

n+ r

r + 2

}

r

=
n

∑

k=2

(

n

k

){

k

2

}

rn−k.

Since
{

k

2

}

= 2k−1 − 1, the binomial theorem yields the desired identity.
We go back to prove our congruence of the r-Fubini numbers. Since the others are simpler

and similar, we deal only with the case r = 2; we prove that

Fn+4,r − Fn,r ≡ 2

{

n+ 4 + r

r

}

r

+ 6

{

n+ 4 + r

r + 1

}

r

+ 24

{

n+ 4 + r

r + 2

}

r

−2

{

n+ r

r

}

r

− 6

{

n+ r

r + 1

}

r

− 24

{

n+ r

r + 2

}

r

≡ 0 (mod 10).

It is enough to prove that the paired terms with the same lower parameter are divisible by
five. Our special r-Stirling number values imply that

{

n+ 4 + r

r

}

r

−

{

n+ r

r

}

r

= 2n(24 − 1),

{

n+ 4 + r

r + 1

}

r

−

{

n+ r

r + 1

}

r

= 3n(34 − 1)− 2n(24 − 1),

{

n+ 4 + r

r + 2

}

r

−

{

n+ r

r + 2

}

r

=
1

2
4n(44 − 1)− 3n(34 − 1) +

1

2
2n(24 − 1).

For any n > 0, these values are all divisible by five, so we are done.

5.3 The restricted Bell numbers – Congruence 3

Let us prove Congruence 3. Miksa, Moser and Wyman [30] proved that

Congruence 8.
Bn+p,≤m ≡ Bn,≤m (mod p) (m < p)

holds for any prime p. In particular, if p = 5, we have that

Congruence 9.
Bn+5,≤m ≡ Bn,≤m (mod 5) (m = 2, 3, 4).

Utilizing (9), we can prove the periodicity of the last digits if we prove that Bn,≤m is
even. This will hold just when m = 2 or 3.

A theorem of Miksa, Moser, and Wyman [30, Theorem 2.] says that

Bn+1,≤m = Bn,≤m +

(

n

1

)

Bn−1,≤m +

(

n

2

)

Bn−2,≤m + · · ·+

(

n

m− 1

)

Bn−m+1,≤m. (9)
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In particular, if m = 2, we have

Bn+1,≤2 = Bn,≤2 +

(

n

1

)

Bn−1,≤2,

and if m = 3, then

Bn+1,≤3 = Bn,≤3 +

(

n

1

)

Bn−1,≤3 +

(

n

2

)

Bn−2,≤3.

These show that if two (resp. three) consecutive terms are even, then all the rest are also
even. Checking the tables given above, we have, in particular, that Bn,≤2 is even for all n ≥ 2
and Bn,≤3 is even for all n ≥ 4.

Taking the above considerations, Congruence 3 is proven.
Although Bn,≤4 does not share this property for small n, it can happen that for a large

n three consecutive terms are even. This would imply the periodicity from that index. For
larger m this is not enough, because Congruence 9 does not hold for these m.

5.3.1 A formula for the restricted Bell numbers

Although we do not need them, we also can prove easily the following properties:

Bn,≤m = Bn (n ≤ m),

Bn,≤m = Bn −
n−m
∑

k=1

(

n

m+ k

)

Bn−m−k (m < n ≤ 2m).

Here Bn is the nth Bell number, defined by

Bn =
n

∑

k=0

{

n

k

}

.

The case n ≤ m is trivial, since n < m means that there is no restriction, so we get
back the Bell numbers indeed. If m < n ≤ 2m, from the number of all the partitions on
n elements (which is Bn), we have to exclude the tilted cases, i.e., when one of the blocks
contains more than m elements. There can be only one such block, say A. If A contains
m + k elements (0 < k ≤ n−m), we have to choose these elements coming to A; there are
(

n

m+k

)

cases. In the other blocks there are n − (m + k) elements, which can be partitioned
in Bn−m−k ways. If we substract all of these possibilities parametrized by k, we are done.

In particular, we have that

Bm+1,≤m = Bm+1 − 1 (m > 1),

Bm+2,≤m = Bm+2 − 1− (m+ 2) (m > 1).
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5.4 The restricted Fubini numbers – Congruence 4

The number Fn,≤m (see (3)) counts the ordered partitions on n elements, where the blocks in
each partition cannot contain more than m elements. We can give the next interpretation as
well. There are Fn,≤m ways to classify n persons in a competition where draws are allowed
but no more than m persons can have the same position. This helps us to find a simple
recursion for Fn,≤m: from the n persons k will go to the first place (1 ≤ k ≤ m) and the
remaining competitors will classified to the rest of the positions in Fn−k,≤m ways. In formula,

Fn,≤m =

(

n

1

)

Fn−1,≤m +

(

n

2

)

Fn−2,≤m + · · ·+

(

n

m

)

Fn−m,≤m. (10)

Hence we see that to determine Fn,≤m we need the previous m members of the sequence.
In particular, when m = 2, 3, 4, to get divisibility by 10, it is enough to see that there are
two, three, four consecutive terms divisible by 10. This is satisfied, thus we have justified
(4).

Proving (5), we use the definition of the restricted Fubini numbers directly:

Fn,≤m =
n

∑

k=0

k!

{

n

k

}

≤m

≡

{

n

1

}

≤m

(mod 2) (n > 0).

The value
{

n

1

}

≤m
is zero if n > m.

5.5 The restricted factorials – Congruence 5

To prove Congruence 5, we begin with the dual of the identity (9):

An+1,≤m = (11)

An,≤m + nAn−1,≤m + n(n− 1)An−2,≤m + · · ·+ n(n− 1) · · · (n−m)An−m+1,≤m.

The initial values are A0,≤m = A1,≤m = 1.
The proof is as follows. The number An+1,≤m gives the number of permutations on the

set {1, 2, . . . , n + 1} such that none of the cycles in the permutation contains more than m

elements. We pick up the last element, say. This can go to a one element cycle, and the
remaining n elements go to a restricted permutations in An,≤m ways. If the cycle of the last
element contains k ≥ 1 additional elements (k < m), we have to form a cycle with these
elements, and the remaining elements go to a restricted permutation in An−k,≤m ways. We
choose these elements in

(

n

k

)

ways. But, since the order of the elements in the cycle counts,
we multiply

(

n

k

)

with k!. Summing over k = 1, 2, . . . ,m− 1, we are done.
This identity helps us to prove the next congruence, which is the dual of Congruence 8:

Congruence 10.
An+p,≤m ≡ An,≤m (mod p) (m < p),
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where p is a prime number.
First we prove that

Congruence 11.
Ap,≤m ≡ 1 (mod p) (m < p).

This can be seen via the following representation:

An,≤m =
∑

1a1+2a2+···+mam=n

n!

1a1a1!2a2a2! · · ·mamam!
.

The validity of this representation can be seen easily: if we construct a partition on n

elements with cycles containing at most m elements, then we can have, say, a1 cycles with
one element, a2 cycles with two elements, and finally am cycles with m elements. The
order n! of the elements must be divided by the order of the cycles with the same elements
(a1! · · · am!) and with the identical arrangements in the separate cycles (1a1 · · ·mam).

Now Congruence 11 can be justified easily: if m < p, in the denominator p does not
appear as a factor, except when a1 = p. Therefore in the sum all the terms will congruent
to 0 modulo p, and the term corresponding to a1 = p, a2 = · · · = am = 0 is congruent to 1
modulo p.

Having these results, we can give the proof of Congruence 10 by induction. If n = 0 the
result is just Congruence 11, since A0,≤m = 1. Let us suppose that the result holds true for
all k ≤ n. By (11) we have that

An+1+p,≤m =

An+p,≤m + (n+ p)An+p−1,≤m + (n+ p)(n+ p− 1)An+p−2,≤m + · · ·+

(n+ p)(n+ p− 1) · · · (n+ p−m)An+p−m+1,≤m.

In the factors of the restricted factorials p can be deleted modulo p. This and the induction
hypothesis yield that

An+1+p,≤m ≡

An,≤m + nAn−1,≤m + n(n− 1)An−2,≤m + · · ·+

(n)(n− 1) · · · (n−m)An−m+1,≤m (mod p).

The sum equals to An+1,≤m, and Congruence 10 has been proven.
Finishing up the proof of Congruence 5, we apply (11) when m = 3, 4 (the m = 2 case is

done by the An,≤2 = Bn,≤2 correspondence) to get

An+1,≤3 = An,≤3 + nAn−1,≤3 + n(n− 1)An−2,≤3,

An+1,≤4 = An,≤4 + nAn−1,≤4 + n(n− 1)An−2,≤4 + n(n− 1)(n− 2)An−3,≤4.

These show that if respectively three and four consecutive terms are even, the rest are even as
well. Checking the given tables for these sequences this is justified. Specializing Congruence
10 with p = 5, Congruence 5 is proven.

To terminate this section, we additionally prove the next congruence.
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Congruence 12.
An,≤m ≡ 0 (mod 10) (n > m > 4).

Identity (11) shows that to determine An,≤m we need m consecutive terms terminating
with An−1,≤m. Moreover, An,≤m = n! if n ≤ m which is congruent to 0 modulo 10 whenever
m > 4. Hence, again by the recursion, it is enough to prove that

Am+1,≤m ≡ Am+2,≤m ≡ Am+3,≤m ≡ Am+4,≤m ≡ 0 (mod 10). (12)

First, we consider the case
Am+1,≤m =

Am,≤m +mAm−1≤m +m(m− 1)Am−2,≤m + · · ·+m(m− 1) · · · 2A1,≤m =

m! +m(m− 1)! +m(m− 1)(m− 2)! + · · ·+m(m− 1) · · · 2 · 1! = m ·m!.

If m > 4, this is already congruent to 0 modulo 10. Let us continue with

Am+2,≤m =

Am+1,≤m + (m+ 1)Am≤m + (m+ 1)mAm−1,≤m + · · ·+ (m+ 1)m · · · 3A2,≤m =

m ·m! + (m+ 1)m! + (m+ 1)m(m− 1)! + · · ·+ (m+ 1)m · · · 3 · 2!

All the factors are divisible by 10, because m > 4. Hence, together with the last point, we
proved the first two congruence of (12). The remaining cases can be treated similarly.

5.6 Associated Fubini numbers – Congruences 6 and 7

Now we turn to the parity of the sequences Fn,≥m, that is, we prove Congruence 6:

Fn,≥m ≡

{

n

0

}

≥m

+

{

n

1

}

≥m

(mod 2).

The first Stirling number term is zero if n > 0, and the second one is 1 if n ≥ m, otherwise
it is zero as well.

The proof of Congruence 7 needs to be separated into the different cases when m =
2, 3, 4, 5.

First, let m = 2. Then we can prove the following special values for associated Stirling
numbers of the second kind:

{

n

2

}

≥2

=
1

2
(2n − 2n− 2), (13)

{

n

3

}

≥2

=
1

6
(3n − 3 · 2n)−

1

2
n(2n−1 − 1) +

1

2
(n2 + 1), (14)

{

n

4

}

≥2

=
4n

24
−

3n

18
(n+ 3)−

1

6
(n3 + 2n+ 1) +

2n

16
(n2 + 3n+ 4). (15)
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These relations hold for n ≥ 4, 6, 8, respectively. To see why the first relation holds, let us
form a partition of n elements into two blocks such that these blocks contain at least two
elements. We can sort our elements into the two blocks in 2n ways, and then sort out the
tilted partitions. A partition is tilted if one of the blocks does not contain any element (two
possibilities), or one of the blocks contains just one element; which is 2n possibilities. Since
the order of the blocks does not matter, we divide by two. This consideration gives (13).

Relation (14) can be proven as follows. We pick one of the blocks from the three and
select at least two elements putting them into this block, but we cannot select more than
n − 4 items to assure us that in the other blocks remain at least 2 + 2 elements. Let k be
the number of the selected items. The two unpicked blocks can be considered as a partition
on n − k elements with two blocks:

{

n−k

2

}

≥2
possibilities. Hence we get our intermediate

relation:
{

n

3

}

≥2

=
1

3

n−4
∑

k=2

(

n

k

){

n− k

2

}

≥2

.

We divided by 3, because to pick the initial block we had three equivalent possibilities. The
order of the blocks does not count. Finally, substituting the special value (13), after some
sum binomial manipulations we are done.

We note that the above identity can be generalized as follows:

{

n

k

}

≥m

=
1

k

n−(k−1)m
∑

k=m

(

n

k

){

n− k

k − 1

}

≥m

(n ≥ km). (16)

The just presented generalization is applicable to prove (15), too.
Now let us go back to the proof of Congruence 7 with m = 2.

Fn+20,≥2 − Fn,≥2 =
n+20
∑

k=0

k!

{

n+ 20

k

}

≥2

−
n

∑

k=0

k!

{

n

k

}

≥2

≡

≡

{

n+ 20

0

}

≥2

+

{

n+ 20

1

}

≥2

+ 2

{

n+ 20

2

}

≥2

+ 6

{

n+ 20

3

}

≥2

+ 24

{

n+ 20

4

}

≥2

−

{

n

0

}

≥2

−

{

n

1

}

≥2

− 2

{

n

2

}

≥2

− 6

{

n

3

}

≥2

− 24

{

n

4

}

≥2

(mod 10).

The first terms with lower parameters 0 and 1 are cancelled by the respective terms in the
second line. What remains is

Fn+20,≥2 − Fn,≥2 =
1

6

(

− 320 · 3n(1939523823 + 87169610n)+

15
(

219902325555 · 22n+1 − 8(1547 + 6n(39 + 2n))+

3 · 2n(92833928 + n(8808038 + 209715n))
))

.
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An induction shows that this is always divisible by 5 if n ≥ 5.
Now let us fix m = 3. The special values for the associated Stirling numbers with small

lower parameters are

{

n

2

}

≥3

=
1

2

(

2n − 2− 2n− 2

(

n

2

))

,

{

n

3

}

≥3

=
1

16

(

24− 3 · 23+n + 8 · 3n + 12n− 9 · 2n · n+

42n2 − 3 · 2n · n2 − 12n3 + 6n4
)

,
{

n

4

}

≥3

= −3−2+n(n2 + 5n+ 18)+

1

64

(

22n+5 + 3 · 2n(64 + 42n+ 19n2 + 2n3 + n4) −

16(8− 32n+ 112n2 − 91n3 + 43n4 − 9n5 + n6)
)

.

The first identity can be proven by the following combinatorial argument: we separate the
n elements into two blocks in 2n ways. The blocks have to contain at least two elements, so
we substract the cases when one of the blocks is empty (2 possibilities), contains one element
(2n cases), or contains two elements (2

(

n

2

)

cases). The order of the blocks is indifferent so
we divide by 2.

The two remaining special values are consequences of (16).
Following the argument we presented above calculating Fn+20,≥2 − Fn,≥2, one can prove

Congruence 7 for m = 3.
The rest of the cases (when m = 4, 5) can be treated similarly, however, the calculations

are more involved technically.
At the end we note that it is easy to prove the corresponding formula of (10) with respect

to the associated Fubini numbers.

Fn,≥m =

(

n

n

)

F0,≥m +

(

n

n− 1

)

F1,≥m + · · ·+

(

n

m

)

Fn−m,≥m (n ≥ m).

6 Closing remarks

In the present paper we discussed the modular properties (mostly in base 10) of several
combinatorial numbers coming from restricted set partitions and cycle decomposition of
permutations. In our case the restriction means that large or small blocks/cycles are not
permitted (restricted and associated Stirling numbers, respectively) or the first elements are
in different blocks/cycles (r-Stirlings).
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6.1 Other bases

It is sure that the proven congruences are not the only ones of this style. For instance, the
above used approach can also be applied to prove that the last digits of the Fubini numbers
are periodic of length 4 not just in the decimal base but in bases 2, 3, 4, 5, 6, 8 as well:

Fn+4 ≡ Fn (mod 2, 3, 4, 5, 6, 8) (n > 4),

from which Congruence 1 already follows.
What is more, in base 3 we have that

Fn+3 ≡ Fn +

{

1, if n is even;

2, if n is odd.

Such kind of results probably exists for the other sequences of this paper, like the r-Fubini
numbers.

Other class of results was proved by Kauffman [23], who revealed periodicity of the Fubini
numbers with higher modulus. Namely, she proved that

Fn+20 ≡ Fn (mod 100) (n > 1),

Fn+100 ≡ Fn (mod 1 000) (n > 2),

Fn+500 ≡ Fn (mod 10 000) (n > 3).

These together with the Gross congruence

Fn+4 ≡ Fn (mod 10)

suggest that there might be a minimal period m(k) for every 10k, that is,

Fn+m(k) ≡ Fn (mod 10k)

for some function m. Hence m(1) = 4, m(2) = 20, m(3) = 100 and m(4) = 500. It would be
interesting to find the function m in general.

6.2 Possible directions of investigation

In the literature there exist other generalizations of the “unrestricted” partitions and per-
mutations (which are enumerated by the classical Stirling numbers of the first and second
kind).

In a recent paper Mihoubi and Maamra [29] defined the (r1, . . . , rp)-Stirling numbers
which are extensions of the r-Stirling numbers. One could ask about the periodicity and
other modular properties of the (r1, . . . , rp)-Fubini numbers. Up to our knowledge, there is
no investigation with respect to these numbers, however, there is a manuscript on (r1, . . . , rp)-
Bell numbers by Maamra [25].
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Another direction of generalization comes from lattice theory. In 1973 Dowling [16]
constructed a class of geometric lattices with fixed underlying finite groups. The Whitney
numbers of these lattices are generalizations of the Stirling numbers of both kinds with an
additional parameter (which is the order of the underlying group). There are several papers
dealing with these numbers [2, 3, 7, 21, 27, 32, 33]. The periodicity of these sequences
would be an interesting question to deal with. In particular, one could use the papers of
Benoumhani [2, 3] who made some short remarks on the new Fubini numbers derived from
Whitney numbers.

A relatively new direction of research is the graph theoretical extension of the Stirling
and Bell numbers [17, 19, 24]. It could be an interesting question, how to define Fubini
numbers in this setting, because there is no block order. However, if it is possible, one could
investigate the modular properties of these numbers, too.
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