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Abstract

We show that counting independent sets in several families of graphs can be done
within the framework of generalized Zykov sums by using the transfer matrix method.
Then we calculate the generating function of the number of independent sets for families
of generalized Zykov sums. We include many interesting particular cases (Petersen
graphs, generalized Möbius ladders, carbon nanotube graphs, among others).

1 Introduction

The Fibonacci number F (G) of a graph G was introduced by Prodinger and Tichy [15] and
is defined as the number of independent sets of G. In combinatorial chemistry this number is
also known as the Merrifield-Simmons index [11, 12]. Prodinger and Tichy calculated F (G)
recursively by paying attention to whether certain vertices appear or not in what they call
the usual recursion argument. Such binary occurrence problem is formalized, in this paper,
in the transfer matrix method [2, 6, 7, 10].

Our goal is to show how to count independent sets in graphs with some pattern structure.
The structure we are dealing with is a generalization of the Zykov sum of graphs (also known
as the graph join). Let us recall that the Zykov sum is the graph obtained from the disjoint
union of two graphs G1, G2 by joining each vertex of G1 with each vertex of G2. This join
is just a particular case of a relation set between the vertices of G1 and G2. In this work,
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we generalize Zykov sums by joining vertices only when they belong to a given relation set.
We call these open or closed Zykov sums (the formal definitions are introduced in the next
section). It is almost trivial to show that the independent sets of G1 and G2 give rise to a new
independent set in their open or closed Zykov sum, unless their vertices belong to the relation
(see Theorem 5). Such binary information, whether vertices are related or not, is stored in a
matrix known as the transfer matrix [2, 6, 7, 10]. The transfer matrix is particularly useful
for graphs that can be written as a repetitive pattern of open or closed Zykov sums. Then,
the product of the transfer matrices stores information about the number of independent
sets. We show that the usual matrix product gives the number of independent set in graphs
that are some kind of strip, while the Hadamard product of matrices is for closing such strips
in order to form some type of circular structure, like cycles or tori.

To illustrate our methods we use several families of graphs having a repetitive pattern of
generalized Zykov sums which include paths, cycles, grids, cylinders, tori, Möbius ladders,
and generalized Petersen graphs, among others. Additional examples are honeycomb tubes
(nanotube graphs) and honeycomb torus graphs (nanotorus graphs) which are particularly
interesting because they appear in parallel computing architectures [18] and nanotechnology
[14].

There are other works dealing with the Fibonacci number F (G) when G has a different
structure from those studied here; for instance, trees [11], regular graphs [3, 17, 21], unicyclic
graphs [13], graphs with small maximum degree [9], graphs with a given number of vertices
and edges [4], and graphs with a given minimum degree [8]. However, these works deal with
estimations for F (G), in contrast to our work, which is interested mainly in exact formulas
for F (G) when G is an open or closed Zykov sum. Exact formulas for Fibonacci numbers of
graph are also the concern of Golin, Leung, Wang, and Yong [10], Euler [7], Prodinger and
Tichy [15], Warner [20], Engel [6], Calkin and Wilf [2], Burnstein, Kitaev, and Mansour [1],
among others. However, there are some errors in [1], as we show in Section 5.

This paper is organized as follows: In Section 2 we introduce the basic definitions and
some examples; in Section 3 we give the related theorems for counting independent sets
along with some examples; in Section 4, we calculate the generating function of the Fibo-
nacci numbers for some families of open and closed Zykov sums. Finally, in Section 5, we
describe more examples, among them (almost) regular graphs [1] where we also show some
counterexamples to the calculations in [1].

2 Definitions

In this paper we deal only with multigraphs [5]. However, since we are interested in the num-
ber of independent sets, the multiple edges are irrelevant, but the loops are not. Therefore,
by a graph, we refer to a multigraph without multiple edges but, perhaps, with loops. For
such a graph G, we denote the sets of vertices and edges of G as V (G) and E(G), respec-
tively. We are mainly interested in binary relations between graphs because they describe
a basic building block for patterns in families of certain graphs. These relations lead to a
couple of sums of graphs: closed and open Zykov sums denoted +R, ⊕R respectively. Both
are defined below.
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Definition 1. Let ⊎ be the disjoint union operator. Let G1, . . . , Gn be a collection of
graphs and R1, . . . , Rn−1 be a collection of relations such that each Ri is a relation set from
V (Gi) to V (Gi+1), i = 1, . . . , n− 1 . Let Ei = {{v, w} ⊆ V (Gi) ⊎ V (Gi+1) | v ∈ V (Gi), w ∈
V (Gi+1) with vRiw}, i = 1, . . . , n−1. We define a new graph G1+R1

· · ·+Rn−1
Gn as follows:

V (G1 +R1
· · ·+Rn−1

Gn) = V (G1) ⊎ · · · ⊎ V (Gn)

and
E(G1 +R1

· · ·+Rn−1
Gn) = E(G1) ⊎ · · · ⊎ E(Gn) ⊎ E1 ⊎ · · · ⊎ En−1.

We call G1 +R1
· · ·+Rn−1

Gn an open Zykov sum .
If we have an additional relation Rn from V (Gn) to V (G1), we define an extra graph

G1 ⊕R1
· · · ⊕Rn−1

Gn ⊕Rn
G1 as

V (G1 ⊕R1
· · · ⊕Rn−1

Gn ⊕Rn
G1) = V (G1) ⊎ · · · ⊎ V (Gn)

and
E(G1 ⊕R1

· · · ⊕Rn−1
Gn ⊕Rn

G1) = E(G1) ⊎ · · · ⊎ E(Gn) ⊎ E1 ⊎ · · · ⊎ En

where En = {{u, v} : u ∈ V (Gn) and v ∈ V (G1) with uRnv}. We call G1 ⊕R1
· · · ⊕Rn−1

Gn ⊕Rn
G1 a closed Zykov sum .

In the following section, we present several well known families of graphs that can be
generated from Zykov sums.

2.1 Examples

Let Cn be the n-cycle graph with V (Cn) = {0, 1, . . . , n− 1} and E(Cn) = {{0, 1}, . . . , {n−
2, n− 1}, {n− 1, 0}}, where n = 1, 2, . . .

Platonic graphs. The platonic graphs are made of the vertices and edges of the five
platonic solids. They can be constructed from open Zykov sums as is shown in Table 1.
Note that the relations used are sometimes functions, and if not, the inverse relation is a
function, except in the icosahedron case, where neither R±1

1 nor R±1
2 is a function.

Hypercubes. LetQ0 be the graph with vertex set given by the singleton set {v} and empty
set of edges. Then the hypercubes Qn can be defined recursively by Qn+1 = Qn +Idn Qn,
n ≥ 0 where Idn is the identity map on V (Qn).

Paths. Let P0 be the singleton graph, where V (P0) = {v0} and E(P0) = ∅. Let Id :
{v0} → {v0} be the identity map. Then

Pn = P0 +Id P0 +Id · · ·+Id P0

is the path graph of length n− 1, where P0 appears n times.
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Graph name Zykov sum Relation

Tetrahedral C1 +R C3 R = {(0, 0), (0, 1), (0, 2)}
Octahedral C3 +R C3 R = {(0, 0), (0, 2), (1, 1), (1, 0),

(2, 2), (2, 1)}
Cube C4 +Id C4 Id identity map on V (C4)
Icosahedral C3 +R1

C6 +R2
C3 R1 = {(0, 0), (0, 1), (0, 2), (1, 2),

(1, 3), (1, 4), (2, 4), (2, 5), (2, 0)}
R2 = {(0, 0), (1, 0), (1, 1), (2, 1),
(3, 1), (3, 2), (4, 2), (5, 2), (5, 0)}

Dodecahedral C5 +R1
C10 +R−1

2

C5 R1, R2 : V (C5) → V (C10)

R1(i) = 2i, R2(i) = 2i+ 1

Table 1: The platonic graphs as open Zykov sums. The graphs Cn are the n-cycle graphs

Grids, cylinders and tori. The grid Gn,m is defined by V (Gn,m) = {(i, j) : 1 ≤ i ≤
n, 1 ≤ j ≤ m} and E(Gn,m) = {{(i, j), (u, v)} : |i− u|+ |j − v| = 1}. Then

Gn,m = Pn +Id Pn +Id · · ·+Id Pn (1)

where the path Pn appears m times and Id is the identity function on V (Pn).
Now, let Cn be the n-cycle graph and Id the identity map on V (Cn). The cylinder n×m,

as an open Zykov sum, is

Cn,m = Cn +Id Cn +Id · · ·+Id Cn

where Cn appears m times. On the other hand, the closed Zykov sum

Tn,m = Cn ⊕Id Cn ⊕Id · · · ⊕Id Cn

is the torus n ×m, where Cn appears m + 1 times. Note that in the Zykov sum Tn,m, the
first and last terms have been identified by definition (see Definition 1).

3 Counting independent sets

In order to count independent sets, we are using the transfer matrix method [2, 6, 7, 10],
which is based upon a perpendicularity concept. Following this idea, we propose a new inner
product defined with the help of the relation set given in a Zykov sum.

Definition 2. Let B = {0, 1} and let G,H be a pair of graphs. Let BV (G) be the cartesian
product

∏

v∈V (G) Bv, where each Bv = B; similarly for BV (H). Let R be a relation from

V (G) to V (H). For any a ∈ BV (G), b ∈ BV (H) we define

〈a|b〉R =
∑

v,w
vRw

πv(a)πw(b) ∈ N

where πv : B
V (G) → Bv = B, πw : BV (H) → Bw = B are the canonical projections.
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Let 2V (G) be the power set of V (G). There exists a unique bijection ΨG : 2V (G) → BV (G)

such that
πvΨG(A) = χA(v), ∀v ∈ V (G), ∀A ⊂ V (G) (2)

where χA is the characteristic function of the set A.
The following lemma translates the concept of independent set in Zykov sums into per-

pendicularity.

Lemma 3. Let G,H be a pair of graphs and R be a relation from V (G) to V (H). If A,B
are independent sets of G,H respectively, then A⊎B is an independent set of G+RH if and
only if 〈ΨG(A)|ΨH(B)〉R = 0.

Proof. The disjoint union A ⊎B is an independent set of G+R H iff for any v ∈ V (G), w ∈
V (H), vRw implies {v, w} 6⊂ A ⊎ B iff vRw implies χA(v)χB(w) = 0 iff

∑

v,w
vRw

πv(ΨG(A))πw(ΨH(B)) = 0

because of (2).

The transfer matrix is defined below using the inner product relative to the Zykov sums.

Definition 4. 1. For a graph G, we denote the collection of independent sets of G with
IG; while F (G), called the Fibonacci number of G, stands for the cardinality of IG,
i.e., F (G) = |IG|.

2. For any z ∈ N we define

z =

{

1, if z = 0;

0, otherwise.

3. Let G,H be a pair of graphs and R be a relation from V (G) to V (H). The function

TR
G,H : IG × IH → B, TR

G,H(A,B) = 〈ΨG(A)|ΨH(B)〉R

is called the transfer matrix of G+R H.

Note that for any z1, z2 ∈ N, z1 + z2 = z1 z2. In the following Theorems 5 and 6, we show
how to calculate the Fibonacci number of open and closed Zykov sums.

Theorem 5. Let G,H be a pair of graphs and R be a relation from V (G) to V (H). Then

1.
F (G+R H) =

∑

A∈IG,B∈IH

TR
G,H(A,B)

where TR
G,H is the transfer matrix of G+R H.
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2. If G = H,

F (G⊕R G) =
∑

A∈IG

TR
G,G(A,A)

where TR
G,G is the transfer matrix of G+R G.

Proof. 1. We have that if J ∈ IG+RH then there exist A ∈ IG and B ∈ IH such that
J = A ⊎ B. Now, use Lemma 3.

2. We have that J ∈ IG⊕RG iff J ∈ IG and 〈Ψ(J)|Ψ(J)〉R = 0.

Theorem 6. Let G,H,K be graphs, R be a relation from V (G) to V (H) and S be a relation
from V (H) to V (K). Then,

F (G+R H +S K) =
∑

A∈IG,C∈IK

∑

B∈IH

TR
G,H(A,B)TS

H,K(B,C). (3)

Furthermore, if K = G, then

F (G⊕R H ⊕S G) =
∑

A∈IG,B∈IH

TR
G,H(A,B)TS

H,G(B,A) . (4)

Proof. We have that J ∈ IG+RH+SK iff there exist A ∈ IG, B ∈ IH , C ∈ IK such that
J = A ⊎ B ⊎ C and, due to Lemma 3,

〈ΨG(A)|ΨH(B)〉R + 〈ΨH(B)|ΨK(C)〉S = 0

which is equivalent to

〈ΨG(A)|ΨH(B)〉R 〈ΨH(B)|ΨK(C)〉S = 1

so
|IG+RH+SK | =

∑

A∈IG,B∈IH
C∈IK

〈ΨG(A)|ΨH(B)〉R 〈ΨH(B)|ΨK(C)〉S

from which (3) follows.
Similarly J ∈ IG⊕RH⊕SG iff there exist A ∈ IG and B ∈ IH such that J = A ⊎ B and

〈ΨG(A)|ΨH(B)〉R + 〈ΨH(B)|ΨG(A)〉S = 0, since Lemma 3. Thus

〈ΨG(A)|ΨH(B)〉R 〈ΨH(B)|ΨG(A)〉S = 1

which leads to

|IG⊕RH⊕SG| =
∑

A∈IG,B∈IH

〈ΨG(A)|ΨH(B)〉R 〈ΨH(B)|ΨG(A)〉S .
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In fact, the transfer matrix is an actual matrix indexed by the cartesian product of
independent sets IG × IH . We denote such matrix by

TR
G,H = (TR

G,H(A,B))A∈IG,B∈IH .

Note that TR
G,H depends on the inner product which is denoted as a bracket. This notation

is borrowed from the Dirac notation used mainly in quantum mechanics, where it has proved
of great value. So, we are going to keep using this notation when we define, for any graph
G, the column matrix full of 1’s indexed by the vertices of G which we denoted |G〉, while
〈G| is the transpose of |G〉. Then, Theorem 6 ensures that

F (G+H +K) = 〈G|TR
G,HT

S
H,K |K〉, (5)

furthermore
F (G⊕R H ⊕S G) = 〈G|TR

G,H ∗ (TS
H,G)

t|H〉 (6)

where ∗ stands for the Hadamard matrix product and the superindex t indicates matrix
transposition. Let us recall that the Hadamard matrix product A ∗ B of two matrices
A = (ai,j), B = (bi,j) of the same dimensions is given by multiplying the corresponding
entries together: A ∗ B = (ai,jbi,j). Also, note that we can write the right hand side of (6)
as a standard matrix product as follows

F (G⊕R H ⊕S G) = Tr
(

TR
G,HT

S
H,G

)

(7)

where Tr denotes the matrix trace. However the formula in (6) is less difficult to calculate
than (7), since the fastest known algorithms for computing the usual matrix product have
complexity strictly greater than quadratic, which is the complexity of the Hadamard matrix
product. Thus, the formula in (6) is useful for computer calculation.

A similar formula to (5) and (6), for a general graph, was found by Merrifield and Simmons
[12, p. 209] using an exponential operator related to the annihilation and creation operators,
instead of our transfer matrices and bra and ket vectors. However, said Merrifield-Simmons
formula is not a convenient way to handle the Zykov sum structure.

With the aforementioned notation, the proof of Theorem 6 can be generalized in order
to obtain:

Theorem 7. 1. The number of independent sets of G1 +R1
G2 +R2

· · · +Rn−1
Gn is the

matrix product 〈G1|T
R1

G1,G2
· · ·T

Rn−1

Gn−1,Gn
|Gn〉.

2. The number of independent sets of G1 ⊕R1
G2 ⊕R2

· · · ⊕Rn−1
Gn ⊕Rn

G1 is the matrix

trace Tr(TR1

G1,G2
· · ·T

Rn−1

Gn−1,Gn
TRn

Gn,G1
).

Next, the Fibonacci numbers of two classical platonic solid graphs are calculated using
Theorem 7. The remaining classical platonic solid cases are similar. Our goal here is to
show that the concept of Zykov sum is an adequate framework for using the matrix transfer
method for counting independent sets.

Throughout this paper, we calculate the transfer matrices after the lexicographic order
in the cartesian product {0, 1}|V (G)| induced by 0 < 1, for any given graph G.

7



Octahedral graph. Using the decomposition of the octahedral graph as the Zykov sum
given in Table 1, we get the following matrices:

〈C3| = (1, 1, 1, 1), TR
C3,C3

=









1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0









, |C3〉 =









1
1
1
1









.

Thus, from Theorem 7, the Fibonacci number of the octahedral graph is F (C3 +R C3) =
〈C3|T

R
C3,C3

|C3〉 = 10.

Dodecahedral graph. From Table 1, we get that the dodecahedral graph G has Fibonacci

number F (G) = 〈C5|T
R1

C5,C10

(

TR2

C5,C10

)t
|C5〉 = 5, 828, where

TR1

C5,C10

(

TR2

C5,C10

)t
=





































123 89 89 89 65 89 65 65 89 65 65
89 55 63 64 40 63 39 45 55 39 40
89 55 55 63 39 64 40 40 63 39 45
89 63 55 55 39 63 45 39 64 40 40
65 39 39 40 24 45 27 27 40 24 25
89 64 63 55 40 55 40 39 63 45 39
65 40 45 40 25 39 24 27 39 27 24
65 40 39 39 24 40 25 24 45 27 27
89 63 64 63 45 55 39 40 55 40 39
65 39 40 45 27 40 24 25 39 24 27
65 45 40 39 27 39 27 24 40 25 24





































.

4 The series of independent sets

In this section, we study the generating function of sequences of Fibonacci numbers for
families of graphs determined by Zykov sums which are structures defined by repeating a
fixed pattern of relations.

In the following, we are assuming that G is a family (Gi)i∈N of graphs.

Definition 8. We call the infinite series

FG(x) = F (G0) + F (G1)x+ F (G2)x
2 + · · · (8)

the Fibonacci series of G.

The following families, which contain repetitive patterns of open and closed Zykov sums,
include many interesting cases such as grids, tori, cylinders [2, 7, 10] and so on.

Definition 9. Let G = (Gn)n≥0 be a family of graphs. We call G a family of:

1. Strip graphs if there exists a graph G such that G0 = G, G1 = G +R G, G2 =
G+R G+R G, . . . .
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2. Ring graphs if there exists a graph G such that G0 = G, G1 = G ⊕S G, G2 = G ⊕R

G⊕S G,G3 = G⊕R G⊕R G⊕S G, . . . . In such a case G+S G is called the skewing of
G.

3. Alternating strip graphs if there exists a graph G such that G0 = G, G1 = G +R G,
G2 = G+R +G+R−1 G, G3 = G+R G+R−1 G+R G, . . . .

4. Alternating ring graphs if there exists a graph G such that G0 = G, G1 = G ⊕R G,
G2 = G⊕R G⊕R−1 G, G3 = G⊕R G⊕R−1 G⊕R G, . . . .

In any case G is called the shape of G and G+R G is called the fundamental pattern of G.

Note that in the ring cases, the fundamental pattern is an open Zykov sum, while the
family elements are closed Zykov sums.

In the following theorems, we show that the families given in Definition 9 have Fibonacci
series with minor variations of the geometric series.

Theorem 10. Let G be a family of graphs as in Definition 9. Let G be the shape of G, T
the transfer matrix of the fundamental pattern and I the identity matrix.

1. If G is a family of strip graphs then

FG(x) = 〈G|(I− xT)−1|G〉. (9)

2. If G a family of ring graphs then

FG(x) = F (G) + Tr
(

x(I− xT)−1T1

)

(10)

where T1 is the transfer matrix of the skewing of G.

Proof.

1. From Theorem 7, we get, for any n non-negative integer, F (Gn) = 〈G|Tn|G〉. So

FG(x) = 〈G|

∞
∑

n=0

Tnxn|G〉 = 〈G|(I− xT)−1|G〉.

2. Similarly, from Theorem 7, we have F (Gn) = Tr
(

Tn−1T1

)

, n ≥ 1. Then

FG(x) = F (G) +
∞
∑

n=1

Tr
(

Tn−1T1

)

xn

= F (G) + Tr
(

x(I− xT)−1T1

)

due to the linearity of the matrix trace.

Similarly, we can prove the following.
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Theorem 11. Under the notation given in Theorem 10.

1. If G is a family of alternating strip graphs then

FG(x) = 〈G|(I− x2TTt)−1(I+ xT)|G〉. (11)

2. If G is a family of alternating ring graphs then

FG(x) = Tr
(

(I− x2TTt)−1(I+ xT)
)

.

5 Examples

We choose some interesting examples in order to illustrate our methods. We deal with
several particular cases of strips, which include cylinders, grids, nanotubes and some kind of
cylinders with Petersen graph shape as well as their closed versions as rings: tori, generalized
Möbius strips, nanotori, and tori with Petersen graph shape.

Centipedes. Now, our fundamental pattern is P2+f P2 given in Figure 1 where the partial
function f : {0, 1} → {0, 1} is defined just by f(0) = 0. Next, we take the family of strip

Figure 1: Fundamental pattern of the centipedes

graphs G = (Gn)n≥0 given by open Zykov sums Gn = P2 +f · · ·+f P2, where the number of
P2 is n+ 1, n = 0, 1, . . . Then, the transfer matrix of P2 +f P2 is

T
f
P2,P2

=





1 1 1
1 0 1
1 1 1



 . (12)

Then, from (9), we get

FG(x) =
3 + 2x

1− 2x− 2x2

which is the generating function, except for the first term, of the sequence A028859 in [19].
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Figure 2: Strip of graphs with fundamental pattern P3 +R P3

Diagonal grids. Let P3 be the path graph with set of vertices {0, 1, 2}. The family G of
strip graphs given in Figure 2 has fundamental pattern P3 +R P3 where R is the relation on
V (P3) defined by 1R 0, 2R 1 (see Figure 3).

Its transfer matrix is

TR
P3,P3

=













1 1 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1
1 1 0 1 1













.

From (9) it follows that the corresponding Fibonacci series is

FG(x) = −
4x− 5

3x2 − 5x+ 1

which is the generating function of the sequence A188707. Similarly, we have that the family
of graphs R given in Figure 4 is a family of ring graphs with fundamental pattern and
skewing P3 +R P3. From (10) we have that its Fibonacci series is

FR(x) =
9x2 − 20x+ 5

3x2 − 5x+ 1
.

Figure 3: The fundamental pattern P3 +R P3
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Figure 4: A generic element of the family R

Cylinders. Let Ci be the i-cycle graph and Pn be the path graph with n vertices. Let
Id : V (Ci) → V (Ci) be the identity map. Then, the cylinder Ci × Pn is G(i, n) = Ci +Id

Ci +Id · · · +Id Ci, where the number of cycles is n + 1, n ≥ 0. Thus, the cylinders G(i, ∗)
form a family of strip graphs with fundamental pattern Ci +Id Ci and shape Ci. From (9),
for some fixed i, we can calculate the generating function FG(i,∗)(x), as shown in Table 2.

i FG(i,∗)(x) Sequence

2 − x+3
x2+2x−1

A078057

3 − x+4
x2+3x−1

A003688

4 − x2−7
x3−x2−5x+1

A051926

5 − x2−4x−11
x3−5x2−7x+1

A181989

6 − x4−x3−25x2−17x+18
x5−2x4−25x3−3x2+12x−1

A181961

7 − x4+6x3−38x2−16x+29
x5+5x4−44x3+8x2+17x−1

A182014

8 − x7+6x6−105x5+108x4+394x3−163x2−208x+47
x8+5x7−109x6+187x5+334x4−317x3−65x2+29x−1

A182019

Table 2: The Fibonacci series of some cylinders. These are the generating functions of the
integer sequences in the third column except for the first term

Tori. Let Ci be the cycle graph of length i. Then G(i, n) = Ci ⊕Id Ci ⊕Id · · · ⊕Id Ci ⊕Id Ci

where the number of cycles written is n + 1, n = 0, 1, . . .. Such graph is the torus Ci × Cn.
Thus, the family of ring graphs G(i, ∗) has fundamental pattern and skewing Ci +Id Ci.
Again, we can calculate FG(i,∗) for some particular values of i with the help of (10), as shown
in Table 3.

Generalized Petersen graphs. We are dealing with generalized Petersen graphs P (i, 2)
defined by V (P (i, 2)) = {0, 1, . . . , 2i− 1} and

E(P (i, 2)) =
{

{j, j + i} | 0 ≤ j ≤ i− 1
}

∪
{

{j, k} | j − k ≡ 0 (mod 2) and i ≤ j, k < 2i
}

∪
{

{j, k} | k ≡ j + 1 (mod i) and 0 ≤ j, k ≤ i− 1
}

.
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i FG(i,∗)(x) Sequence

3 5x2+7x−4
x3+4x2+2x−1

A051928

4 − x5+17x4−20x3−72x2−13x+7
x6−2x5−7x4+8x3+15x2+2x−1

A050402

5 −11x6−27x5−130x4+70x3+220x2+43x−11
x7−8x6+7x5+30x4−10x3−27x2−4x+1

A182041

6 −p(x)/q(x) A182052

Table 3: The Fibonacci series of several tori. In the case i = 6 we have p(x) = 9x12+67x11−
556x10−1162x9+6841x8−1421x7−12335x6+3985x5+7340x4−1182x3−1317x2−71x+18
and q(x) = x13 − 4x12 − 36x11 + 119x10 + 295x9 − 1032x8 + 115x7 + 1301x6 − 360x5 −
575x4 + 89x3 + 84x2 + 4x− 1

The Fibonacci number for generalized Petersen graphs P (i, 2) with i an odd number was
calculated by Wagner [20]. Here we calculate the Fibonacci series for the family of generalized
Petersen graphs using the transfer matrix method. Let P4 be the the path graph with vertices
V (P4) = {0, 1, 2, 3}. Let R be the relation on V (P4) defined by 0R 0, 3R 3, 2R 1 (see Figure
5).

Figure 5: Fundamental pattern in the Petersen graphs P (2i, 2)

Then, the ring graph family with shape P4, fundamental pattern P4 +R P4 and skewing
the same P4 +R P4, is the family of generalized Petersen graphs G =

(

P (2i, 2)
)

i≥0
:

P (2i, 2) = P4 ⊕R P4 ⊕R · · · ⊕R P4 ⊕R P4,

where P4 appears i+1 times, i = 0, 1, . . .. Note that we included the non-standard generalized
Petersen graphs P (0, 2) = P4 and the multigraph P (2, 2) = P4 ⊕R P4.

The related transfer matrix is

TR
P4,P4

=

























1 1 1 1 1 1 1 1
1 0 1 1 0 1 0 1
1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1
1 0 1 1 0 1 0 1
1 1 1 1 1 0 0 0
1 0 1 1 0 0 0 0
1 1 1 0 0 0 0 0

























. (13)
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Then, from (10), we get

FG(x) =
(6x2 − 11x− 8) (2x3 − 5x2 − 4x+ 1)

4x5 − 13x4 + 3x3 + 15x2 + 3x− 1

which is the generating function of A182054.
For generalized Petersen graphs of the type P (2i+1, 2), i ≥ 2 we take the family P given

in Figure 7, i.e.,

P (2i+ 1, 2) =
⊕

R1

i−1

k=1

P4 ⊕R2
M ⊕R3

P4

where M is the graph such that V (M) = {0, 1, 2, 3, 4, 5}, E(M) =
{

{0, 1}, {1, 2}, {2, 3},
{2, 4}, {4, 5}, {0, 5}

}

and relations R1 =
{

(0, 0), (3, 3), (2, 1)
}

, R2 =
{

(0, 0), (3, 3), (2, 1)
}

,
R3 = {(3, 0), (5, 3), (4, 1)}.

From the Theorem 7 and proof of (10) in Theorem 10, we get

FP(x) =
∞
∑

j=0

Tr(Tj
1T2T3)x

j = Tr
(

(I− xT1)
−1T2T3

)

where T1 = TR1

P4,P4
is given by (13); while T2 = TR2

P4,M
and T3 = TR3

M,P4
are 8×19 and 19×8

matrices respectively. Thus,

FP(x) = −
52x4 − 165x3 + 16x2 + 207x+ 76

4x5 − 13x4 + 3x3 + 15x2 + 3x− 1

which is the generating function of A182077 with a shift of one term.

Families with Petersen graph shape. Let Id : V (P (5, 2)) → V (P (5, 2)) be the identity
map. We take G as the family of strip graphs with fundamental pattern P (5, 2) +Id P (5, 2)
and shape of the Petersen graph P (5, 2), i.e., G = (Gn)n≥0 where Gn = P (5, 2)+IdP (5, 2)+Id

· · · +Id P (5, 2) with n + 1 copies of the Petersen graph, n ≥ 0 (see Figure 8). Then, the
transfer matrix TId

P (5,2),P (5,2) is a 76× 76-matrix, since F (P (5, 2)) = 76.

Figure 6: Generalized Petersen graph P (2i, 2).
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Figure 7: The family of graphs P (2i+ 1, 2)

From (9) we get

FG(x) = −
x5 + 12x4 − 130x3 + 92x2 + 237x+ 76

x6 + 11x5 − 137x4 + 172x3 + 215x2 + 39x− 1
.

Similarly, for G ′ the family of ring graphs with fundamental pattern and skewing given by
P (5, 2) +Id P (5, 2), we get from (10), that its Fibonacci series FG′(x) satisfies FG′(x) =
p(x)/q(x) where

p(x) = 59x20 + 158x19 − 17410x18 − 31425x17 + 843564x16 + 1040034x15

− 10876134x14 − 9246646x13 + 52315426x12 + 29197770x11 − 101636518x10

− 28773932x9 + 77606056x8 + 9105678x7 − 21502410x6 − 847682x5 + 1979331x4

+ 80616x3 − 50408x2 − 2203x+ 76

and

q(x) = (x− 1)
(

x2 + 2x− 1
) (

x5 + 5x4 − 4x3 − 14x2 + 3x+ 1
)

(

x6 + 11x5 − 137x4 + 172x3 + 215x2 + 39x− 1
)

(

x7 + 4x6 − 52x5 − 105x4 + 51x3 + 78x2 − 10x− 1
)

.

We obtain an additional family G ′′ if, instead of closing with the relation given by the
identity map, we take a rotation R by an angle of 2π/5. More formally, we take V (P (5, 2)) =

Figure 8: A strip graph with shape P (5, 2), the Petersen graph. The edges given by the
identity map are shown by dotted lines

15



Figure 9: A pair of rings with shape P (5, 2), the Petersen graph. The edges given
by the relation maps are shown by dotted lines. The ring on the left has relation
maps the identity map; while the ring on the right has skewing given by the rela-
tion R = {(0, 1) , (1, 2) , (2, 3) , (3, 4) , (4, 0) , (5, 6) , (6, 7) , (7, 8) , (8, 9) , (9, 5)}. The former
ring has Fibonacci number 27,053,615,385,404,201. The latter has Fibonacci number
27,050,814,022,108,001.

{0, 1, 2, . . . , 9} as the vertices set of the Petersen graph, and

E(P (5, 2)) = {{0, 1} , {0, 4} , {0, 5} , {1, 2} , {1, 6} , {2, 3} , {2, 7} , {3, 4} ,

{3, 8} , {4, 9} , {5, 7} , {5, 8} , {6, 8} , {6, 9} , {7, 9}} .

Then, the new skewing induced by R is defined as follows (see Figure 9)

R = {(0, 1) , (1, 2) , (2, 3) , (3, 4) , (4, 0) , (5, 6) , (6, 7) , (7, 8) , (8, 9) , (9, 5)} .

Then FG′′(x) = p1(x)/q1(x), where

p1(x) = 75x15 + 1284x14 − 8828x13 − 101662x12 + 376556x11 + 1642004x10

− 2174799x9 − 7893320x8 + 252699x7 + 6559072x6 + 1031350x5 − 1259454x4

− 160398x3 + 47456x2 + 2305x− 76

and

q1(x) =
(

x2 + 2x− 1
) (

x6 + 11x5 − 137x4 + 172x3 + 215x2 + 39x− 1
)

(

x7 + 4x6 − 52x5 − 105x4 + 51x3 + 78x2 − 10x− 1
)

.

Armchair nanotube graphs. Let Bn be the graph with 2n vertices {0, 1, . . . , 2n − 1}
and set of edges {{0, 1}, {2, 3}, . . . , {2n−2, 2n−1}}, i.e., Bn is the disjoint union of n copies
of the one-length path P2:

Bn = P2 +∅ · · ·+∅ P2.

We define a relation map R : V (Bn) → V (Bn) as R(i) = (i− 1) mod 2n, i = 0, . . . , 2n − 1.
An armchair nanotube graph of length n and breadth k is

NTn,k = Bn +R Bn +R−1 Bn +R · · ·+R±1 Bn

16



where Bn appears k + 1 times, k ≥ 0 (this graph forms the structure of the (n, n) armchair
carbon nanotube [14] without caps). Thomassen [16] defines a similar graph called hexagonal
cylinder circuit, however this belongs to a different family of nanotubes: zig-zag carbon
nanotubes.

By definitionNTn,∗ =
(

NTn,k

)

k≥0
is a family of alternating strip graphs with fundamental

pattern Bn +R Bn. By (11) and a calculation similar to those in the previous examples, we
get that the Fibonacci series of the armchair nanotube graphs of length 3 is

FNT3,∗
(x) = −

28x4 + 55x3 − 89x2 − 29x+ 27

28x5 + 42x4 − 109x3 + 17x2 + 13x− 1

which is the generating function of A182130.
Similarly, a nanotorus graph is the following closed Zykov sum:

Nτn,k = Bn ⊕R Bn ⊕R−1 Bn +R · · · ⊕R±1 Bn,

where, again, Bn appears k + 1 times, k ≥ 0. Now the family Nτ3,∗ = (Nτ3,k)k≥0 has
Fibonacci series FNτ3,∗(x) = p(x)/q(x), where

p(x) = 979776x18 − 75600x17 − 12197940x16 + 5916552x15 + 35833019x14

− 19220271x13 − 44070216x12 + 23310438x11 + 26177559x10 − 13274349x9

− 7520073x8 + 3654387x7 + 940365x6 − 451464x5 − 43362x4 + 24495x3

+ 25x2 − 468x+ 27

and

q(x) = (x− 1) (x+ 1)
(

3x3 − 5x2 − 5x+ 1
) (

36x4 − x3 − 20x2 − x+ 1
)

(

36x4 + x3 − 20x2 + x+ 1
) (

28x5 + 42x4 − 109x3 + 17x2 + 13x− 1
)

.

The rational function FNτ3,∗(x) is the generating function of the sequence A182141.

Generalized Möbius Ladders. Let Pn be the path graph with n vertices, V (Pn) =
{0, . . . , n− 1}, σ be a permutation of V (Pn) and Id be the identity map on V (Pn). Then a
generalized Möbius ladder M(n,m, σ) is

M(n,m, σ) = Pn ⊕Id · · · ⊕Id Pn ⊕σ Pn

where Pn appears m + 1 times, m = 0, 1, . . .; for instance, if σ : V (P2) → V (P2) is the
transposition σ(0) = 1 and σ(1) = 0 then M(2, ∗, σ) = (M(2,m, σ))m≥0 is the family of usual
Möbius ladders. The family of ring graphs M(2, ∗, σ) has fundamental pattern P2+IdP2 and
skewing P2 +σ P2. We have the transfer matrices,

TId
P2,P2

=





1 1 1
1 0 1
1 1 0



 , Tσ
P2,P2

=





1 1 1
1 1 0
1 0 1



 .
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Figure 10: The nanotube graph NT5,21 on the left and the nanotorus graph Nτ5,21
on the right. Once again, the edges given by the relation set are shown by dotted
lines. Using Theorem 7 we get that the nanotube graph NT5,21 has Fibonacci number
14,890,453,762,710,452,477,470,450,680,772,895,445,343; while the nanotorus graph Nτ5,21
has Fibonacci number 73,562,247,493,061,556,896,479,759,292,362,159,745

Then, from (10), we get

FM(2,∗,σ)(x) =
2x3 + 7x2 − 3

(x+ 1) (x2 + 2x− 1)

which is the generating function of A182143 except for the first term.
Now, we take families M(3, ∗, σi) = (M(3,m, σi))m≥0, i = 1, 2, 3 with σ1, σ2, σ3 permu-

tations of V (P3) defined in Figure 11. Thomassen [16] calls the family of graphs M(3, σ2)
quadrilateral Möbius double circuits.

We have

Tσ1

P3,P3
=













1 1 1 1 1
1 0 1 1 0
1 1 1 0 0
1 1 0 1 1
1 0 0 1 0













, Tσ2

P3,P3
=













1 1 1 1 1
1 1 1 0 0
1 1 0 1 1
1 0 1 1 0
1 0 1 0 0













,

Tσ3

P3,P3
=













1 1 1 1 1
1 1 0 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 0













, TId
P3,P3

=













1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0













.

Then

FM(3,∗,σ1)(x) =
3x5 + 6x4 − 19x3 − 30x2 − 2x+ 5

(x+ 1) (x4 − 6x2 − 2x+ 1)
,

FM(3,∗,σ2)(x) =
2x5 + x4 − 24x3 − 28x2 − 2x+ 5

(x+ 1) (x4 − 6x2 − 2x+ 1)
,

and

FM(3,∗,σ3)(x) =
4x5 + 6x4 − 25x3 − 32x2 − x+ 5

(x+ 1) (x4 − 6x2 − 2x+ 1)
.
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Figure 11: A subset of permutations of V (P3)

Some regular and almost regular graphs. Let Bn be the disjoint union of n copies of
the singleton graph K1, i.e, V (Bn) = {0, . . . , n− 1} and E(Bn) = ∅. Let R be the relation
on V (Bn) given by iRi and iRj where j ≡ i − 1 (mod n), i = 0, . . . n − 1. Note that R is
also a relation from vertices of the n-cycle Cn to those of Bn. We define

Gk
n = Cn +R Bn +R · · ·+R Bn

Rk+1
n = Cn +R Bn +R · · ·+R Bn +R Cn

where Bn appears k − 1 times, k = 1, 2, . . . and G0
n = R0

n = ∅ the empty graph, R1
n = Cn.

Furthermore, let C ′
n be the complement graph of the n-cycle graph Cn and Kn the complete

graph on n vertices with V (Kn) = {0, 1, . . . , n− 1}. Also, we define

Kk
n = C ′

n +R · · ·+R C ′
n +R Kn

P k+1
n = Kn +R C ′

n +R · · ·+R C ′
n +R Kn

where C ′
n appears k − 1 times, k = 1, 2, . . . and K0

n = P 0
n = ∅, P 1

n = Kn. The graphs
Gk

n, R
k
n, K

k
n and P k

n are called (almost) regular graphs class 1, class 2, class 3 and class 4,
respectively by Burstein, Kitaev, and Mansour [1]. Thus, from Theorem 7, we get

FG∗
n
(x) = 1 + F (Cn) x+ 〈Cn|T

R
Cn,Bn

(I− xTR
Bn,Bn

)−1|Bn〉 x
2, (14)

FR∗
n
(x) = 1 + F (Cn) x+ 〈Cn|

(

x2 TR
Cn,Cn

+ x3 TR
Cn,Bn

(I− xTR
Bn,Bn

)−1TR
Bn,Cn

)

|Cn〉, (15)

FK∗
n
(x) = 1 + (n+ 1) x+ 〈C ′

n|(I− xTR
C′

n,C
′
n
)−1TR

C′
n,Kn

|Kn〉 x
2, (16)

FP ∗
n
(x) = 1 + (n+ 1) x+ 〈Kn|

(

x2 TR
Kn,Kn

+ x3 TR
Kn,C′

n
(I− xTR

C′
n,C

′
n
)−1TR

C′
n,Kn

)

|Kn〉. (17)

Burstein et al [1] introduce algorithms for computing the Fibonacci series of the families
G∗

n, R
∗
n, K

∗
n, and P ∗

n . However these algorithms fail for the families R∗
n, K

∗
n and P ∗

n . For
instance, it is easy to see that F (R3

3) = 32, while 32 does not appear in the sequence
A026150 which is the Fibonacci numbers sequence of the family R∗

3, according to Burstein
et al. Also F (K2

4) = 25, F (P 3
4 ) = 77 are counterexamples to Theorem 3.3 and Theorem 3.4

of [1], respectively. As a consequence, since 77 does not appear in A007483, Burstein et al
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n FR∗
n
(x) FK∗

n
(x) Sequence

3 − 4x2−1
2x2−4x+1

1
2x2−4x+1

A007070

4 10x5+41x4−38x3−14x2+4x+1
7x4+15x3−14x2−3x+1

3x2+2x+1
x3−7x2−3x+1

5 55x6−193x5−303x4+149x3+39x2−6x−1
22x5−31x4−69x3+30x2+5x−1

4x2+x+1
x3−7x2−5x+1

6 516x8−248x7−3688x6+1834x5+2518x4−588x3−112x2+10x+1
108x7−84x6−532x5+178x4+280x3−66x2−8x+1

5x2+1
x3−7x2−7x+1

Table 4: Some Fibonacci series of classes 2 and 3 graphs

[1] are wrongfully relating this sequence to the class 4 graphs. The correct Fibonacci series,
after the formulas (15), (16) and (17) are shown in Tables 4 and 5.

Due to Theorem 10, the family ∅, C3, C3 +R C3, C3 +R C3 +R C3, . . . has Fibonacci series
(2x + 1)/(2x2 + 2x − 1) which is the generating function of A026150; while the family
∅, K4, K4 +R K4, K4 +R K4 +R K4, . . . has Fibonacci series −(2x+1)/(2x2 +3x− 1) which
is the generating function of A007483.

n FP ∗
n
(x) Sequence

3 − (2x−1) (2x+1)
2x2−4x+1

A161941

4 −8x3+5x2−2x−1
x3−7x2−3x+1

5 −10x3+11x2−x−1
x3−7x2−5x+1

6 − 12x3+19x2−1
x3−7x2−7x+1

Table 5: Some Fibonacci series of the class 4 graphs. The series FP ∗
3
(x) is the generating

function of two times the terms in A161941 except the first one
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