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Abstract

Given positive integers m and n, let Sm
n be the m-colored multiset {1m, 2m, . . . , nm},

where im denotes m copies of i, each with a distinct color. This paper discusses two
types of combinatorial identities associated with the permutations and combinations of
Sm

n . The first identity provides, for m ≥ 2, an (m − 1)-fold sum for
(
mn
n

)
. The second

type of identities can be expressed in terms of the Hermite polynomial, and counts color-
symmetrical permutations of S2

n, which are permutations whose underlying uncolored
permutations remain fixed after reflection and a permutation of the uncolored numbers.

1 Introduction

The primary object of study in this paper is a certain class of multisets, namely the m-colored
multisets Sm

n = {1m, 2m, . . . , nm}, where im denotes m copies of i with distinct colors. Where
does Sm

n naturally arise in combinatorics? Suppose we want to count the permutations of
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Sm
n of length n which consist of distinct integers. First, we ignore the colors of the integers

and notice we have a set of n distinct uncolored numbers. There are n! ways to arrange
these n uncolored numbers. We then decide what color to paint such numbers. Since there
are m colors, this color choice gives us a factor of mn, for a total of mnn! such permutations.
In [2], the authors studied properties of multifactorials n!m, where for a positive integer
m, n!m = n(n − m)!m, with 0!m = 1. From this recursive definition, we can show that
(mn)!m = mnn!. Therefore, the m-colored multiset provides a combinatorial meaning for
well-known multifactorial identity.

This observation leads us to wonder if m-colored multisets could provide nice combinato-
rial proofs for other well known identities. In the process of investigating this question, the
authors found two general classes of identities that are readily proven in the context of Sm

n .
The first type of identity provides a (m − 1)-sum formula for the binomial coefficient

(
mn

n

)
.

This result is Theorem 3. The second type of identity counts color-symmetrical permuta-
tions of S2

n, where a color-symmetrical permutation of S2
n is a colored permutation whose

underlying set partition structure is fixed via vertical reflection. The color-symmetrical per-
mutation identities occur in Section 3 have connections with Hermite polynomials. The
techniques used to prove the identities of Section 3 recall the methodology the first author
used to enumerate symmetrically inequivalent two dimensional proper arrays [5].

2 Enumerating Combinations and Permutations

Let i, m, and n be positive integers. Let im denote m copies of i, with the property that
each copy of i has a distinct color. Let Sm

n be the m-colored multiset {1m, 2m, . . . , nm}.
For examples,

S2
4 = {1, 1, 2, 2, 3, 3, 4, 4}, and S3

4 = {1, 1, 1, 2, 2, 4, 3, 3, 3, 4, 4, 4}.
Note that |Sm

n | = mn. If we consider different colored copies of i as distinct, the number of
permutations of Sm

n is (mn)!. From this simple observation, we are able to derive an identity
for (mn)! involving an (m − 1)-fold summation. We will now assume m ≥ 2. The proof of
this identity utilizes simple combinatorial arguments. We demonstrate the argument for the
case of m = 2, and then state the general result for m ≥ 2.

Consider S2
n = {12, 22, . . . , n2}, where each number occurs in red and blue. The number

of permutations of S2
n is (2n)!. We think of a permutation of S2

n as a horizontal row of 2n
elements arranged in 2n slots. Our analysis proceeds by carefully analyzing the manner in
which we fill in the first half, or the first n slots, of the permutation. We say a number i,
where 1 ≤ i ≤ n, has a repetition in the first half if and only if both the red i and the blue
i can be found there. Let s be the number of repetitions that occur in the first half of the
permutation. Note that 0 ≤ s ≤ [n

2
]. For each s, the number of ways to fill the first n slots

can be computed in three steps (see Figure 1).

1. Pick the locations, in the first half of the permutation, where the repetitions will occur.
The number of ways to select s pairs of slots from the n slots is

s∏

j=1

(
n−2j+2

2

)

s!
=

n!

s!(n − 2s)!2s
.
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2. Pick the numbers to fill these s pairs of slots. In order to do this, we first form an
s-permutation from D = {1, 2, . . . , n}. The kth number in this s-permutation will fill
the kth pair of slots. For each pair of slots, we must decide if we want red first, then
blue, or vice versa. Hence, the number of ways to fill these s pairs of slots is n!

(n−s)!
2s.

3. Fill the remaining n− 2s spaces in the first half of the permutation with numbers that
have not been used in Step 2. The number of ways to do this is (n−s)!

s!
2n−2s.

Step 1: x x X X

Step 2: 2 2 4 4

Step 3: 2 2 4 43

Remaining numbers: 1, 1, 3, 5, 5.

Figure 1: Constructing the first half of a permutation of S2
5 .

After completing these three steps, we have n colored numbers remaining. They fill the
second half of the permutation in n! ways. Varying s and combining the aforementioned
combinatorial reasoning proves Lemma 1.

Lemma 1. Let n be a nonnegative integer. Then,

(2n)! = n!

[n
2
]∑

s=0

n!n!2n−2s

s!s!(n − 2s)!
= (n!)2

[n
2
]∑

s=0

(
n

s

)(
n − s

n − 2s

)
2n−2s. (1)

Remark 2. Lemma 1 provides a combinatorial proof of Equation (3.99) in [1] since we
may rewrite Equation (1) as follows.

(
2n

n

)
=

[n
2
]∑

s=0

n!2n−2s

s!s!(n − 2s)!

=

[n
2
]∑

s=0

n!

(2s)!(n − 2s)!
· (2s)!

s!s!
2n−2s

=

[n
2
]∑

s=0

(
n

2s

)(
2s

s

)
2n−2s.
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Here is an alternative argument for deriving Equation (1). Let D = {1, 2, . . . , n}. The
number of permutations of S2

n is (n!)2 times the number of ways to select the n colored
numbers which occur in the first half. Let s denote the number of numbers that occur twice,
that is, both the red and blue copies are selected. We note that 0 ≤ s ≤ [n

2
]. There are

(
n

s

)

ways to select these s numbers. From the remaining n − s numbers in D, there are
(

n−s

n−2s

)

ways to select n − 2s uncolored numbers, where each uncolored number has a choice of two
colors to chose from. Summing over s yields the right side of Equation (1).

We are now in a position to generalize Lemma 1. We will only describe how to generalize
the second argument. Those readers interested in the generalization of the first argument
may contact the authors. We think of a permutation of Sm

n as a horizontal arrangement of
mn elements into mn slots. Subdivide, from left to right, these mn slots into m sections,
each containing n slots. We analyze the number of repetitions that occur the first section,
or the leftmost n slots, of the permutation.

We say a number has a repetition of type k if it appears exactly k times in the first
section. Let sk be the number of numbers of type k. The number of ways to choose n colored
numbers to fill the first section of the permutation is clearly

(
mn

n

)
. Alternatively, we could

choose these n colored numbers from D = {1, 2, . . . , n} as follows. First, we select the type
m numbers, then the type m − 1 numbers, and so forth. There are

(
n

sm

)
ways to chose the

type m numbers, each of which will use up all m colors. In general, after numbers of types
m through k + 1 are chosen, we have n − ∑m

i=k+1 si numbers left in D from which to select

sk numbers of type k. Each such number can be colored in
(

m

k

)
ways. This argument proves

the following theorem.

Theorem 3. Let n be a positive integer. Let m be a positive integer, m ≥ 2. Then,

(
mn

n

)
=

∑

s1,s2,...,sm≥0
s1+2s2+···+msm=n

m∏

k=1

(
n −

∑m

i=k+1 si

sk

)(
m

k

)sk

. (2)

Two important non-trivial examples of Theorem 3 occur when m = 3 and m = 4. Let
m = 3, and s3 = s, and s2 = t. Then, Equation (2) becomes

(
3n

n

)
=

[n
3
]∑

s=0

[n−3s
2

]∑

t=0

(
n

3s + 2t

)(
3s + 2t

s, t, 2s + t

)
3n−3s−t.

If m = 4, Equation (2) becomes

(
4n

n

)
=

[n
4
]∑

s4=0

[
n−4s4

3
]∑

s3=0

[
n−4s4−3s3

2
]∑

s2=0

A

(
n

n − 4s4 − 3s3 − 2s2

)(
4s4 + 3s3 + 2s2

s4, s3, s2, s2 + 2s3 + 3s4

)
,

where,

A =
4n−4s4−3s3−2s2(4 · 3 · 2)s3(4 · 3)s2

(3!)s3(2!)s2

.

On closer inspection of the proof of Theorem 3, we see that argument describes how to select
any l colored numbers from Sn

m. Thus, we have actually proven the next result.
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Theorem 4. Let n and m be positive integers. Let l be a positive integer such that 1 ≤ l ≤
mn. Then, (

mn

l

)
=

∑

s1,s2,...,sm≥0
s1+2s2+···+msm=l

m∏

k=1

(
n − ∑m

i=k+1 si

sk

)(
m

k

)sk

.

3 Color-Symmetrical Permutations of S2
n

We now study a special kind of reflective symmetry in the permutations of S2
n. Think of

a permutation σ of S2
n as a way to fill the 2n squares of a 1 × 2n rectangular array, and

associate with it a partition of {1, 2, . . . , 2n} in the form π(σ) = {S1, S2, . . . , Sn} such that Si

is the 2-subset containing the two positions occupied by i. We call π(σ) the set partition

associated with σ. We say a permutation is color-symmetrical if, upon reflection
about the vertical line through its middle, the resulting permutation has the same collection
of 2-subsets in its associated set partition. For example, the permutation p2 in Figure 2 is
obtained from p1 by reflection. Notice that

π(p1) = π(p2) =
{
{2, 6}, {5, 9}, {3, 4}, {7, 8}, {1, 10}

}
.

Therefore p1 is color-symmetrical, and, so is p2.

p1: 5 1 3 3 2 1 4 4 2 5 p2: 5 2 4 4 1 2 3 3 1 5

Figure 2: Two color-symmetrical permutations of S2
5 .

Another way to understand this notion of color-symmetry is as follows. Let p2 be the
permutation obtain from p1 via reflection. The reflection can be viewed as a function φ :
S2

n → S2
n such that φ(p1) = p2. We say that σ is color-symmetrical if, for each i, φ(i2) = j2,

for some j (recall that i2 means the two copies of i colored red and blue). In other words, p1

is color-symmetrical if one could obtain p2 by renaming the colored numbers while preserving
the associated set partition. Due to symmetry, if φ(i2) = j2, we also φ(j2) = i2. So in effect
we are interchanging i2 with j2 in the reflection. For example, in the two permutations p1

and p2 in Figure 2, the numbers 1 and 2 are interchanged, and so are 3 and 4. Note that it
is possible for φ(i2) = i2, as are the two copies of 5 in Figure 2.

The idea of fixing set partition structure and interchanging labels was described by Ross
Drewe in sequence A047974 of the OEIS [3]. The difference between our context, and that
of Drewe’s, is that our set label, namely the numbers, contain an extra parameter of color.

Our goal is to describe a formula for SS2
n, the number of color-symmetrical permutations

of S2
n. Our strategy is to divide the 1×2n rectangle into two halves, each with n squares. We

fill the first half, or the leftmost n squares, with an arbitrary colored permutation of length n

derived from the elements of S2
n. We then use reflective symmetry to complete the second half

of the 1× 2n rectangle. Since reflective symmetry must preserve the set partition structure,
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there are three types of numbers that can occur in the first half of the 1 × 2n rectangle.
These possibilities are the same possibilities the first author used to calculate H2m in [5]. In
particular,

• A number could map to a number that does not occur in the first half.

• A number could map to itself under reflection.

• A number could map to another number which also appears in the first half. If this
happens, we say a first-half interchange (or simply FHI) occurs.

Figure 3 illustrates these three cases for a color-symmetric permutation of S2
5 .

Filling in the first half: 5 1 2 1 3

Vertical reflection, with
1 ↔ 4, 2 ↔ 3, 5 ↔ 5:

5 1 2 1 3 2 4 3 4 5

Figure 3: Constructing a color-symmetrical permutation of S2
5 .

Going through these three possibilities, we are able to derive a formula that counts color-
symmetrical permutations of S2

n, as follows.

1. Determine, in the first half, where the repetitions occur. Under reflection, a repetition
must map to a different repetition in the second half. We arbitrarily assign a color
scheme to each repetition. If s is the number of repetitions that occur in the first
n squares, the number of ways to complete these s double repetitions in a color-
symmetrical manner is

n!

2ss!(n − 2s)!
· n!22s

(n − 2s)!
.

2. There are now n − 2s spaces in the first half that remain to be filled. We must fill
these n − 2s spaces with a colored permutation that does not have any repetitions.
The number of ways to do that is (n − 2s)!2n−2s.

3. Determine where the FHIs occur. Notice that any numbers that do not form a FHI
pair must map to themselves. Let t be the number of FHI pairs that occur among the
n − 2s non-repeating positions in the first n slots. The number of ways to place these
t FHI pairs is (n−2s)!

2tt!(n−2s−2t)!
.

Lemma 5. For n ≥ 1,

SS2
n =

[n
2
]∑

s=0

[n−2s
2

]∑

t=0

n!n!2n−s−t

s!t!(n − 2s − 2t)!
,

6



By standard convolution arguments, it is easy to show that

∞∑

n=0

SS2
n

xn

(n!)2
=

∞∑

n=0

∑

r,s,t≥0
r+2s+2t=n

(2x2)s

s!
· (2x2)t

t!
· (2x)r

r!
= e2x2 · e2x2 · e2x = e4x2+2x. (3)

We can write the right hand side of Equation (3) as

e4x2+2x =
∞∑

k,j=0

(4x2)k

k!
· (2x)j

j!
=

∞∑

k,j=0

(2x)2k+j

k!j!
=

∞∑

j=0

[ j

2
]∑

k=0

2j

k!(j − 2k)!
xj. (4)

Comparing the coefficients in (3) and (4) yields the next result.

Lemma 6. For n ≥ 1,

SS2
n =

[n
2
]∑

k=0

n!n!2n

k!(n − 2k)!
= 2nn!

[n
2
]∑

k=0

(
n

k

)(
n − k

k

)
k!. (5)

We should note that the right sum of Equation (5) is reminiscent of Hn(x), the Hermite
polynomial of degree n, whose explicit formula is [1]

Hn(x) =

[n
2
]∑

k=0

(−1)k

(
n

k

)(
n − k

k

)
k!(2x)n−2k. (6)

If we let x = i
2

in Equation (6), we obtain another representation for SS2
n.

Corollary 7. For n ≥ 1,

SS2
n = (−2i)nn!Hn

(
i

2

)
.

4 Three Variations on SS2
n

When we defined the notion of a color-symmetrical permutation of S2
n, we only concerned

ourselves with fixing the set partition associated with the permutation. The color scheme
for each part of the set partition was arbitrarily assigned, and hence played no role in deter-
mining whether a permutation of S2

n was color-symmetric. We now want to put restrictions
on our color scheme.

The most natural restriction is to require colors to map to themselves whenever possible.
Recall that for S2

n = {12, 22, . . . , n2}, we have one red i and one blue i for each i. The
aforementioned color restriction would require that if the set partition structure maps i to
j, where 1 ≤ i < j ≤ n, we also require that a red i maps to a red j, and hence, a blue i

maps to a blue j.
Note that there is no color restriction on i if the reflection maps i to itself. One possibility

for color restriction involves the repetitions in the first half of the 1 × 2n rectangle, since
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1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2

1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2

No color restrictions

1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2

Color restricted

Figure 4: Color-symmetrical permutations of S2
3 with and without color restrictions.

these repetitions have an arbitrarily assigned color scheme. Figure 4 illustrates how the color
restriction (or lack thereof) applies to a subset of color-symmetrical permutation of S2

3 which
has repetitions in the first half.

The only change in the formula associated with Step 1 in Section 3 is that the factor
22s in the numerator of the second fraction becomes a 2s. Note that Steps 2 and 3 stay the

same. We find the following double sum formula for ŜS
2

n, the number of color-symmetrical
permutations of S2

n whose double repetition blocks obey the color restriction.

Lemma 8. For n ≥ 1,

ŜS
2

n =

[n
2
]∑

s=0

[n−2s
2

]∑

t=0

n!n!2n−2s−t

s!t!(n − 2s − 2t)!
.

Using standard convolution arguments, we can show that

∞∑

n=0

ŜS
2

n

xn

(n!)2
= e3x2+2x.

With the appropriate changes to the argument used to prove Lemma 6, we can prove the
following result.

Lemma 9. For n ≥ 1,

ŜS
2

n =

[n
2
]∑

k=0

n!n!3k2n

22kk!(n − 2k)!
= 2nn!

[n
2
]∑

k=0

(
n

k

)(
n − k

k

)(
3

4

)k

k!.

8



An alternative proof to Lemma 9, which could also prove Lemma 8, is as follows.

ŜS
2

n =

[n
2
]∑

k=0

2n−k(n!)2

(n − 2k)!

∑

s,t≥0
s+t=k

1

s!t!2s

=

[n
2
]∑

k=0

2n−k(n!)2

k!(n − 2k)!

k∑

s=0

(
k

s

)
1

2s

=

[n
2
]∑

k=0

2n−k(n!)2

k!(n − 2k)!

(
3

2

)k

= 2nn!

[n
2
]∑

k=0

(
n

k

)(
n − k

k

) (
3

4

)k

.

We should also note that we can use the Hermite polynomial to calculate ŜS
2

n.

Corollary 10. For n ≥ 1,

ŜS
2

n = (−i
√

3)nn!Hn

(
i√
3

)
.

The second way to place the color restriction is in a FHI pair. This is done in the following
manner. Let 1 ≤ i < j ≤ n. Suppose both i and j appear in the first n slots. Furthermore,
suppose vertical reflection maps i to j. If we determine which color of i occurs in the first n

slots, we have also determined the color scheme for j. We demonstrate in Figure 5 the color
restriction for those color-symmetrical permutations of S2

3 which have a FHI.

1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2

1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2

No color restrictions

1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2 1 2 3 3 1 2

Color restricted

Figure 5: Color-symmetrical permutations of S2
3 with 1 and 2 interchanged.

We construct an isomorphism between those color-symmetrical permutations of S2
n with

color restriction on the repetitions and those with color restriction on the interchanges, as
follows. For each pair of slots where a repetition occurs in the first half of the permuta-
tion, switch the second colored number with its reflective image. This operation changes a
repetition into a FHI. This procedure is reversible, that is, it maps a FHI to a repetition .
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For example, this isomorphism maps the first four permutations in Figure 4 to the first four

permutations in Figure 5 (and vice versa). If we let S̃S
2

n be the number of color-symmetrical
permutations of S2

n whose FHIs obey the color restriction, the previous reasoning leads to
our next lemma.

Lemma 11. Let S̃S
2

n be as previously defined. Then,

S̃S
2

n = ŜS
2

n =

[n
2
]∑

s=0

[n−2s
2

]∑

t=0

n!n!2n−2s−t

s!t!(n − 2s − 2t)!
. (7)

We could also derive Equation (7) by carefully analyzing how we place the FHI pairs, and
their associated color scheme, in the first half of the permutation. Details of this method
are available upon request from the authors.

For the third variation, we will place the color restriction on both the repetitions and the
FHI pairs. Combining the techniques for the previous two variations, we obtain the following
result.

Lemma 12. Let
...
SS

2

n be the number of color-symmetrical permutations of S2
n which have the

color restriction on repetitions and the interchange pairs. Then,

...
SS

2

n =

[n
2
]∑

s=0

[n−2s
2

]∑

t=0

n!n!2n−2s−2t

s!t!(n − 2s − 2t)!
.

By applying standard convolution arguments, we find

∞∑

n=0

...
SS

2

n

xn

(n!)2
= e2x2+2x.

The next result is obtained from an argument similar to that of Lemma 9.

Lemma 13. For n ≥ 1,

...
SS

2

n =

[n
2
]∑

k=0

n!n!2n−k

k!(n − 2k)!
= 2nn!

[n
2
]∑

k=0

(
n

k

)(
n − k

k

)(
1

2

)k

k!. (8)

Corollary 14. For n ≥ 1,

...
SS

2

n = (−i
√

2)nn!Hn

(
i√
2

)
.

We end this section with a table that records the values of SS2
n, ŜS

2

n = S̃S
2

n, and
...
SS

2

n

for
1 ≤ n ≤ 8.
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n 1 2 3 4 5 6 7 8
SS2

n 2 24 336 9600 311040 15252480 840591360 61281239040

ŜS
2

n 2 20 264 6432 191040 8081280 401990400 25439016960
...
SS

2

n 2 16 192 3840 99840 3502080 149667840 7865946880

Table 1: Values for SS2
n, ŜS

2

n = S̃S
2

n, and
...
SS

2

n.

5 Closing Remarks and Open Questions

In this paper, we have discussed two classes of identities which are readily proven using
colored permutations and colored combinations. The first such identity is, for m ≥ 2, an
(m − 1)-fold sum for

(
mn

n

)
. The second class of identities enumerates the color-symmetrical

permutations of the 2-colored multiset S2
n. It is natural to ask for a generalization in Sm

n .
Currently, the authors are working on the cases of m = 3 and m = 4. There are two basic
differences between the m = 2 situation and the m = 3 case. When m = 3, no number
can be mapped to itself under vertical reflection. Also, one must analyze the case of even n

separately from odd n.
Another possible topic for future research involves arranging the colored permutations

of Sm
n into an m × n rectangular grid, and then using a symmetry operation of the m × n

rectangle to enumerate those colored permutations whose set partition structure is fixed with
respect to this symmetry operation. Such an enumeration will rely on the techniques the
first author used to count the symmetrical inequivalent m× n× p letter representations [5].

Instead of using the colored multiset Sm
n , we could relate the problems to the set [mn] =

{1, 2, . . . ,mn} by matching the integer i colored k from Sm
n with the integer (i − 1)m + k

from [mn]. Essentially we are grouping the integers from Sm
n according to their values, and

within the same value, lining up the integers according to their colors.
Of course, we can also match the integer i colored k from Sm

n with the integer (k−1)n+ i

from [mn]. This time, all the integers of the same color are grouped together, and within
the same color, the integers are lined up in ascending order.

These two correspondences could lead to other questions. For instance, the symmetry
in the permutations can be defined according to certain number-theoretic properties. These
symmetries may be rather different from what we have discussed above. The options are
plentiful, and we invite the readers to explore them.
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