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MACKEY FUNCTORS ON COMPACT CLOSED CATEGORIES

ELANGO PANCHADCHARAM and ROSS STREET

(communicated by George Janelidze)

Abstract
We develop and extend the theory of Mackey functors as

an application of enriched category theory. We define Mackey
functors on a lextensive category E and investigate the prop-
erties of the category of Mackey functors on E . We show that
it is a monoidal category and the monoids are Green functors.
Mackey functors are seen as providing a setting in which mere
numerical equations occurring in the theory of groups can be
given a structural foundation. We obtain an explicit description
of the objects of the Cauchy completion of a monoidal functor
and apply this to examine Morita equivalence of Green func-
tors.

1. Introduction

Groups are used to mathematically understand symmetry in nature and in math-
ematics itself. Classically, groups were studied either directly or via their represen-
tations. In the last 40 years, arising from the latter, groups have been studied using
Mackey functors.

Let k be a field. Let Rep(G) = Repk(G) be the category of k-linear represen-
tations of the finite group G. We will study the structure of a monoidal category
Mky(G) where the objects are called Mackey functors. This provides an exten-
sion of ordinary representation theory. For example, Rep(G) can be regarded as a
full reflective sub-category of Mky(G); the reflection is strong monoidal (= tensor
preserving). Representations of G are equally representations of the group algebra
kG; Mackey functors can be regarded as representations of the ”Mackey algebra”
constructed from G. While Rep(G) is compact closed (= autonomous monoidal),
we are only able to show that Mky(G) is star-autonomous in the sense of [Ba].

Mackey functors and Green functors (which are monoids in Mky(G)) have been
studied fairly extensively. They provide a setting in which mere numerical equa-
tions occurring in group theory can be given a structural foundation. One applica-
tion has been to provide relations between λ- and µ-invariants in Iwasawa theory
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and between Mordell-Weil groups, Shafarevich-Tate groups, Selmer groups and zeta
functions of elliptic curves (see [BB]).

Our purpose is to give the theory of Mackey functors a categorical simplification
and generalization. We speak of Mackey functors on a compact (= rigid = au-
tonomous) closed category T . However, when T is the category Spn(E ) of spans
in a lextensive category E , we speak of Mackey functors on E . Further, when E is
the category (topos) of finite G-sets, we speak of Mackey functors on G.

Sections 2-4 set the stage for Lindner’s result [Li1] that Mackey functors, a
concept going back at least as far as [Gr], [Dr] and [Di] in group representation
theory, can be regarded as functors out of the category of spans in a suitable category
E . The important property of the category of spans is that it is compact closed.
So, in Section 5, we look at the category Mky of additive functors from a general
compact closed category T (with direct sums) to the category of k-modules. The
convolution monoidal structure on Mky is described; this general construction (due
to Day [Da1]) agrees with the usual tensor product of Mackey functors appearing,
for example, in [Bo1]. In fact, again for general reasons, Mky is a closed category;
the internal hom is described in Section 6. Various convolution structures have been
studied by Lewis [Le] in the context of Mackey functors for compact Lie groups
mainly to provide counter examples to familiar behaviour.

Green functors are introduced in Section 7 as the monoids in Mky. An easy
construction, due to Dress [Dr], which creates new Mackey functors from a given
one, is described in Section 8. We use the (lax) centre construction for monoidal
categories to explain results of [Bo2] and [Bo3] about when the Dress construction
yields a Green functor.

In Section 9 we apply the work of [Da4] to show that finite-dimensional Mackey
functors form a ∗-autonomous [Ba] full sub-monoidal category Mkyfin of Mky.

Section 11 is rather speculative about what the correct notion of Mackey functor
should be for quantum groups.

Our approach to Morita theory for Green functors involves even more serious use
of enriched category theory: especially the theory of (two-sided) modules. So Sec-
tion 12 reviews this theory of modules and Section 13 adapts it to our context. Two
Green functors are Morita equivalent when their Mky-enriched categories of mod-
ules are equivalent, and this happens, by the general theory, when the Mky-enriched
categories of Cauchy modules are equivalent. Section 14 provides a characterization
of Cauchy modules.

2. The compact closed category Spn(E )

Let E be a finitely complete category. Then the category Spn(E ) can be defined
as follows. The objects are the objects of the category E and morphisms U // V
are the isomorphism classes of spans from U to V in the bicategory of spans in E
in the sense of [Bé]. (Some properties of this bicategory can be found in [CKS].)
A span from U to V , in the sense of [Bé], is a diagram of two morphisms with a
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common domain S, as in

(s1, S, s2) :

S

V .

s2

��<
<<

<<
<<

U

s1

����
��

��
�

An isomorphism of two spans (s1, S, s2) : U // V and (s′1, S
′, s′2) : U // V is an

invertible arrow h : S // S′ such that s1 = s′1 ◦ h and s2 = s′2 ◦ h.

S

V

s2

##FF
FF

FF
FF

F

U

s1

{{xx
xx

xx
xx

x

S′

h∼=

��s′1

aaDDDDDDDDD s′2

==zzzzzzzzz

The composite of two spans (s1, S, s2) : U // V and (t1, T, t2) : V // W is defined
to be (s1 ◦ proj1, T ◦ S, t2 ◦ proj2) : U // W using the pull-back diagram as in

S ×V T = T ◦ S

T

proj2

��9
99

99
9

W .

t2

��9
99

99
9S

proj1

����
��

��

U

s1

����
��

��

V

s2

��9
99

99
9

t1

����
��

��

pb

This is well defined since the pull-back is unique up to isomorphism. The identity
span (1, U, 1) : U // U is defined by

U

U

1

��<
<<

<<
<<

U

1

����
��

��
�

since the composite of it with a span (s1, S, s2) : U // V is given by the following
diagram and is equal to the span (s1, S, s2) : U // V

S

S

1

��9
99

99
9

V .

s2

��9
99

99
9U

s1

����
��

��

U

1

����
��

��

U

1

��9
99

99
9

s1

����
��

��

pb

This defines the category Spn(E ). We can write Spn(E )(U, V ) ∼= [E /(U×V )] where
square brackets denote the isomorphism classes of morphisms.
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Spn(E ) becomes a monoidal category under the tensor product

Spn(E )× Spn(E )
× //Spn(E )

defined by

(U, V ) � //U × V

[U S //U ′ , V
T //V ′ ] � // [U × V

S×T //U ′ × V ′ ].

This uses the cartesian product in E yet is not the cartesian product in Spn(E ). It is
also compact closed; in fact, we have the following isomorphisms: Spn(E )(U, V ) ∼=
Spn(E )(V,U) and Spn(E )(U × V,W ) ∼= Spn(E )(U, V ×W ). The second isomor-
phism can be shown by the following diagram

S

W
��<

<<
<<

<<

U × V
����

��
��

�
oo � //

S

W
��<

<<
<<

<<

U
����

��
��

�

V
��

oo � //

S

V ×W .
��<

<<
<<

<<

U
����

��
��

�

3. Direct sums in Spn(E )

Now we assume E is lextensive. References for this notion are [Sc], [CLW], and
[CL]. A category E is called lextensive when it has finite limits and finite coproducts
such that the functor

E /A× E /B // E /A + B ;

X

f

��
A

,

Y

g

��
B

� //

X + Y

f+g

��
A + B

is an equivalance of categories for all objects A and B. In a lextensive category,
coproducts are disjoint and universal and 0 is strictly initial. Also we have that the
canonical morphism

(A×B) + (A× C) // A× (B + C)

is invertible. It follows that A× 0 ∼= 0.
In Spn(E ) the object U + V is the direct sum of U and V. This can be shown as

follows (where we use lextensivity):

Spn(E )(U + V,W ) ∼= [E /((U + V )×W )]
∼= [E /((U ×W ) + (V ×W ))]
' [E /(U ×W )]× [E /(V ×W )]
∼= Spn(E )(U,W )× Spn(E )(V,W );

and so Spn(E )(W,U + V ) ∼= Spn(E )(W,U)× Spn(E )(W,V ). Also in the category
Spn(E ), 0 is the zero object (both initial and terminal):

Spn(E )(0, X) ∼= [E /(0×X)] ∼= [E /0] ∼= 1
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and so Spn(E )(X, 0) ∼= 1. It follows that Spn(E ) is a category with homs enriched
in commutative monoids.

The addition of two spans (s1, S, s2) : U // V and (t1, T, t2) : U // V is given by
(∇ ◦ (s1 + t1), S + T,∇ ◦ (s2 + t2)) : U // V as in

S

V

s2

��<
<<

<<
<<

U

s1

����
��

��
�

+

T

V

t2

��<
<<

<<
<<

U

t1

����
��

��
�

=

S + T

V + V

s2+t2

��5
55

55
5

V .

∇

��5
55

55
5U + U

s1+t1

��		
		

		

U

∇

��		
		

		

[s1,t1]

��

[s2,t2]

��

Summarizing, Spn(E ) is a monoidal commutative-monoid-enriched category.
There are functors (−)∗ : E // Spn(E ) and (−)∗ : E op // Spn(E ) which are

the identity on objects and take f : U // V to f∗ = (1U , U, f) and f∗ = (f, U, 1U ),
respectively.

For any two arrows U
f //V

g //W in E , we have (g ◦ f)∗ ∼= g∗ ◦ f∗ as we see
from the following diagram

U

V

f

��;
;;

;;

W .

g

��;
;;

;;
U

1

����
��

�

U

1

����
��

�

V

f

��;
;;

;; 1

����
��

�
pb

Similarly (g ◦ f)∗ ∼= f∗ ◦ g∗.

4. Mackey functors on E

A Mackey functor M from E to the category Modk of k-modules consists of two
functors

M∗ : E // Modk, M∗ : E op // Modk

such that:

1. M∗(U) = M∗(U) (= M(U)) for all U in E

2. for all pullbacks

P V
q //

W

s

��
U

p

��
r

//
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in E , the square (which we call a Mackey square)

M(U) M(W )
M∗(r)

//

M(V )

M∗(s)

OO
M(P )

M∗(p)

OO
M∗(q) //

commutes, and

3. for all coproduct diagrams

U
i //U + V V

joo

in E , the diagram

M(U)
M∗(i)

// M(U + V )
M∗(i)oo M∗(j) //

M(V )
M∗(j)

oo

is a direct sum situation in Modk. (This implies M(U +V ) ∼= M(U)⊕M(V ).)

A morphism θ : M // N of Mackey functors is a family of morphisms θU :
M(U) // N(U) for U in E which defines natural transformations θ∗ : M∗ // N∗
and θ∗ : M∗ // N∗.

Proposition 4.1. (Lindner [Li1]) The category Mky(E ,Modk) of Mackey func-
tors, from a lextensive category E to the category Modk of k-modules, is equivalent
to [Spn(E ),Modk]+, the category of coproduct-preserving functors.

Proof. Let M be a Mackey functor from E to Modk. Then we have a pair (M∗,M
∗)

such that M∗ : E // Modk, M∗ : E op // Modk and M(U) = M∗(U) = M∗(U).
Now define a functor M : Spn(E ) // Modk by M(U) = M∗(U) = M∗(U) and

M


S

V

s2

��9
99

99
9

U

s1

����
��

��

 =
(

M(U) M(S)
M∗(s1) // M(V )

M∗(s2) //
)
.

We need to see that M is well-defined. If h : S // S′ is an isomorphism, then the
following diagram

S′ S′
1 //

S′

1

��
S

h−1

��

h
//

is a pull back diagram. Therefore M∗(h−1) = M∗(h) and M∗(h−1) = M∗(h). This
gives, M∗(h)−1 = M∗(h). So if h : (s1, S, s2) // (s′1, S

′, s′2) is an isomorphism of
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spans, we have the following commutative diagram.

M(U)

M∗(s1)

??����������

M∗(s′1)
��?

??
??

??
??

?

M(S)

M∗(s2)

��?
??

??
??

??
?

M∗(h)

��
M(S′)

M∗(s
′
2)

??����������

M∗(h)

OO

M(V )

Therefore we get
M∗(s2)M∗(s1) = M∗(s′2)M

∗(s′1).

From this definition M becomes a functor, since

M



P

T

p2

��<
<<

<<
<<

W

t2

��<
<<

<<
<<

S

p1

����
��

��
�

U

s1

����
��

��
�

V

s2

��<
<<

<<
<<

t1

����
��

��
�

pb


=

M(U) M(P )
M∗(p1s1)// M(W )

M∗(t2p2)//

M(S)
M∗(s1) ��9

99
99

99

M(V )
M∗(s2) ��9

99
99

99
M(T )

M∗(t1)

BB�������

M∗(t2)

EE������

M∗(p1)

CC������

M∗(p2)

��<
<<

<<
<<

Mackey

= ( M(U) M(V )
M(s1,S,s2)// M(W )

M(t1,T,t2)// ),

where P = S ×V T and p1 and p2 are the projections 1 and 2 respectively, so that

M((t1, T, t2) ◦ (s1, S, s2)) = M(t1, T, t2) ◦M(s1, S, s2).

The value of M at the identity span (1, U, 1) : U // U is given by

M


U

U

1

��<
<<

<<
<<

U

1

����
��

��
�

 = ( M(U) M(U)1 // M(U)1 // )

= (1 : M(U) M(U)// ).

Condition (3) on the Mackey functor clearly is equivalent to the requirement that
M : Spn(E ) // Modk should preserve coproducts.

Conversely, let M : Spn(E ) // Modk be a functor. Then we can define two
functors M∗ and M∗, referring to the diagram

E Spn(E )
(−)∗ // Modk ,

M //

E op
(−)∗

77nnnnnnnn
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by putting M∗ = M ◦ (−)∗ and M∗ = M ◦ (−)∗. The Mackey square is obtained by
using the functoriality of M on the composite span

s∗ ◦ r∗ = (p, P, q) = q∗ ◦ p∗.

The remaining details are routine.

5. Tensor product of Mackey functors

We now work with a general compact closed category T with finite products. It
follows (see [Ho]) that T has direct sums and therefore that T is enriched in the
monoidal category V of commutative monoids. We write ⊗ for the tensor product
in T , write I for the unit, and write (−)∗ for the dual. The main example we have
in mind is Spn(E ) as in the last section where ⊗ = ×, I = 1, and V ∗ = V . A
Mackey functor on T is an additive functor M : T // Modk.

Let us review the monoidal structure on the category V of commutative monoids;
the binary operation of the monoids will be written additively. It is monoidal closed.
For A,B ∈ V , the commutative monoid

[A,B] = {f : A // B | f is a commutative monoid morphism},

with pointwise addition, provides the internal hom and there is a tensor product
A⊗B satisfying

V (A⊗B,C) ∼= V (A, [B,C]).

The construction of the tensor product is as follows. The free commutative monoid
FS on a set S is

FS = {u : S // N | u(s) = 0 for all but a finite number of s ∈ S} ⊆ NS .

For any A,B ∈ V ,

A⊗B =

(
F (A×B)/(a + a′, b) ∼ (a, b) + (a′, b)

(a, b + b′) ∼ (a, b) + (a, b′)

)
.

We regard T and Modk as V -categories. Every V -functor T // Modk pre-
serves finite direct sums. So [T ,Modk]+ is the V -category of V -functors.

For each V ∈ V and X an object of a V -category X , we write V ⊗X for the
object (when it exists) satisfying

X (V ⊗X, Y ) ∼= [V,X (X, Y )]

V -naturally in Y . Also the coend we use is in the V -enriched sense: for the functor
T : C op ⊗ C // X , we have a coequalizer∑

V,W

C (V,W )⊗ T (W,V ) //
// ∑

V

T (V, V ) //
∫ V

T (V, V )

when the coproducts and tensors exist.
The tensor product of Mackey functors can be defined by convolution (in the sense

of [Da1]) in [T ,Modk]+ since T is a monoidal category. For Mackey functors M
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and N , the tensor product M ∗N can be written as follows:

(M ∗N)(Z) =
∫ X,Y

T (X ⊗ Y, Z)⊗M(X)⊗k N(Y )

∼=
∫ X,Y

T (Y, X∗ ⊗ Z)⊗M(X)⊗k N(Y )

∼=
∫ X

M(X)⊗k N(X∗ ⊗ Z)

∼=
∫ Y

M(Z ⊗ Y ∗)⊗k N(Y ).

the last two isomorphisms are given by the Yoneda lemma.
The Burnside functor J is defined to be the Mackey functor on T taking an

object U of T to the free k-module on T (I, U). The Burnside functor is the unit
for the tensor product of the category Mky.

This convolution satisfies the necessary commutative and associative conditions
for a symmetric monoidal category (see [Da1]). [T ,Modk]+ is also an abelian
category (see [Fr]).

When T and k are understood, we simply write Mky for this category [T ,Modk]+.

6. The Hom functor

We now make explicit the closed structure on Mky. The Hom Mackey functor
is defined by taking its value at the Mackey functors M and N to be

Hom(M,N)(V ) = Mky(M(V ∗ ⊗−), N),

functorially in V . To see that this hom has the usual universal property with respect
to tensor, notice that we have the natural bijections below (represented by horizontal
lines).

(L ∗M)(U) // N(U) natural in U

L(V )⊗k M(V ∗ ⊗ U) // N(U) natural in U and dinatural in V

L(V ) // Homk(M(V ∗ ⊗ U), N(U)) dinatural in U and natural in V

L(V ) //
∫

U

Homk(M(V ∗ ⊗ U), N(U)) natural in V

L(V ) // Mky(M(V ∗ ⊗−), N) natural in V

We can obtain another expression for the hom using the isomorphism

T (V ⊗ U,W ) ∼= T (U, V ∗ ⊗W )

which shows that we have adjoint functors

T ⊥

V⊗−
++
T .

V ∗⊗−
jj
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Since M and N are Mackey functors on T , we obtain a diagram

T ⊥

V⊗−
++

N ��<
<<

<<
<<

T
V ∗⊗−

kk

M����
��

��
�

Modk

and an equivalence of natural transformations

M =⇒ N(V ⊗−)
M(V ∗ ⊗−) =⇒ N.

Therefore, the Hom Mackey functor is also given by

Hom(M,N)(V ) = Mky(M,N(V ⊗−)).

7. Green functors

A Green functor A on T is a Mackey functor (that is, a coproduct preserving
functor A : T // Modk) equipped with a monoidal structure made up of a natural
transformation

µ : A(U)⊗k A(V ) // A(U ⊗ V ),

for which we use the notation µ(a ⊗ b) = a.b for a ∈ A(U), b ∈ A(V ), and a
morphism

η : k // A(1),

whose value at 1 ∈ k we denote by 1. Green functors are the monoids in Mky. If
A,B : T // Modk are Green functors then we have an isomorphism

Mky(A ∗B,C) ∼= NatU,V (A(U)⊗k B(V ), C(U ⊗ V )).

Referring to the square

T ⊗T Modk ⊗Modk
A⊗B //

Modk ,

⊗k

��
T

⊗

��

C
//

we write this more precisely as

Mky(A ∗B,C) ∼= [T ⊗T ,Modk](⊗k ◦ (A⊗B), C ◦ ⊗).

The Burnside functor J and Hom(A,A) (for any Mackey functor A) are monoids
in Mky and so are Green functors.

We denote by Grn(T ,Modk) the category of Green functors on T . When T
and k are understood, we simply write this as Grn(= Mon(Mky)) consisting of
the monoids in Mky.
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8. Dress construction

The Dress construction ([Bo2], [Bo3]) provides a family of endofunctors D(Y,−)
of the category Mky, indexed by the objects Y of T . The Mackey functor defined
as the composite

T
−⊗Y //T

M //Modk

is denoted by MY for M ∈ Mky; so MY (U) = M(U⊗Y ). We then define the Dress
construction

D : T ⊗Mky // Mky

by D(Y, M) = MY . The V -category T ⊗Mky is monoidal via the pointwise struc-
ture:

(X, M)⊗ (Y, N) = (X ⊗ Y, M ∗N).

Proposition 8.1. The Dress construction

D : T ⊗Mky // Mky

is a strong monoidal V -functor.

Proof. We need to show that D((X, M) ⊗ (Y, N)) ∼= D(X, M) ∗ D(Y, N); that is,
MX ∗MY

∼= (M ∗N)X⊗Y . For this we have the calculation

(MX ∗NY )(Z) ∼=
∫ U

MX(U)⊗k NY (U∗ ⊗ Z)

=
∫ U

M(U ⊗X)⊗k N(U∗ ⊗ Z ⊗ Y )

∼=
∫ U,V

T (V,U ⊗X)⊗M(V )⊗k N(U∗ ⊗ Z ⊗ Y )

∼=
∫ U,V

T (V ⊗X∗, U)⊗M(V )⊗k N(U∗ ⊗ Z ⊗ Y )

∼=
∫ V

M(V )⊗k N(V ∗ ⊗X ⊗ Z ⊗ Y )

∼= (M ∗N)(Z ⊗X ⊗ Y )
∼= (M ∗N)X⊗Y (Z).

Clearly we have D(I, J) ∼= J . The coherence conditions are readily checked.

We shall analyse this situation more fully in Remark 8.5 below.
We are interested, after [Bo2], in when the Dress construction induces a family of

endofunctors on the category Grn of Green functors. That is to say, when is there a
natural structure of Green functor on AY = D(Y, A) if A is a Green functor? Since
AY is the composite

T
−⊗Y //T

A //Modk

with A monoidal, what we require is that −⊗Y should be monoidal (since monoidal
functors compose). For this we use Theorem 3.7 of [DPS]:
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if Y is a monoid in the lax centre Zl(T ) of T then − ⊗ Y : T // T is
canonically monoidal.

Let C be a monoidal category. The lax centre Zl(C ) of C is defined to have
objects the pairs (A, u) where A is an object of C and u is a natural family of
morphisms uB : A⊗B // B ⊗A such that the following two diagrams commute

A⊗B ⊗ C B ⊗ C ⊗A
uB⊗C //

B ⊗A⊗ C

uB⊗1C

##GGGGGGGGGG

1B⊗uC

;;wwwwwwwwww

A⊗ I I ⊗A
uI //

A .

∼=
{{wwwwwwwwww

∼=
##GGGGGGGGGG

Morphisms of Zl(C ) are morphisms in C compatible with the u. The tensor product
is defined by

(A, u)⊗ (B, v) = (A⊗B,w)

where wC = (uC ⊗ 1B) ◦ (1A ⊗ vC). The centre Z(C ) of C consists of the objects
(A, u) of Zl(C ) with each uB invertible.

It is pointed out in [DPS] that, when C is cartesian monoidal, an object of Zl(C )
is merely an object A of C together with a natural family A ×X // X. Then we
have the natural bijections below (represented by horizontal lines) for C cartesian
closed:

A×X // X natural in X

A // [X, X] dinatural in X

A //
∫

X

[X, X] in C .

Therefore we obtain an equivalence Zl(C ) ' C /
∫

X
[X, X].

The internal hom in E , the category of finite G-sets for the finite group G, is
[X, Y ] which is the set of functions r : X // Y with (g.r)(x) = gr(g−1x). The G-set∫

X
[X, X] is defined by∫

X

[X, X] =
{

r = (rX : X −→ X)
∣∣∣ f ◦ rX = rY ◦ f for all G-maps f : X −→ Y

}
with (g.r)X(x) = grX(g−1x).

Lemma 8.2. The G-set
∫

X

[X, X] is isomorphic to Gc, which is the set G made a

G-set by conjugation action.

Proof. Take r ∈
∫

X
[X, X]. Then we have the commutative square

G G
rG //

X

x̂

��
X

x̂

��
rX

//
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where x̂(g) = gx for x ∈ X. So we see that rX is determined by rG(1) and

(g.r)G(1) = grG(g−11)

= grG(g−1)

= grG(1)g−1.

As a consequence of this Lemma, we have Zl(E ) ' E /Gc where E /Gc is the
category of crossed G-sets of Freyd-Yetter ([FY1], [FY2]) who showed that E /Gc

is a braided monoidal category. Objects are pairs (X, | |) where X is a G-set and
| | : X // Gc is a G-set morphism (“equivariant function”) meaning |gx| = g|x|g−1

for g ∈ G, x ∈ X. The morphisms f : (X, | |) // (Y, | |) are functions f such that
the following diagram commutes.

X Y
f //

Gc

| |
}}zz

zz
zz

zz
zz

| |
!!DD

DD
DD

DD
DD

That is, f(gx) = gf(x).
Tensor product is defined by

(X, | |)⊗ (Y, | |) = (X × Y, ‖ ‖),

where ‖(x, y)‖ = |x||y|.

Proposition 8.3. [DPS, Theorem 4.5] The centre Z(E ) of the category E is equiv-
alent to the category E /Gc of crossed G-sets.

Proof. We have a fully faithful functor Z(E ) //Zl(E ) and so Z(E ) // E /Gc. On
the other hand, let | | : A // Gc be an object of E /Gc; so |ga|g = g|a|. Then the
corresponding object of Zl(E ) is (A, u) where

uX : A×X // X ×A

with
uX(a, x) = (|a|x, a).

However this u is invertible since we see that

uX
−1(x, a) = (a, |a|−1x).

This proves the proposition.

Theorem 8.4. [Bo3, Bo2] If Y is a monoid in E /Gc and A is a Green functor
for E over k then AY is a Green functor for E over k, where AY (X) = A(X × Y ).

Proof. We have Z(E ) ' E /Gc, so Y is a monoid in Z(E ). This implies − × Y :
E // E is a monoidal functor (see Theorem 3.7 of [DPS]). It also preserves pull-
backs. So − × Y : Spn(E ) // Spn(E ) is a monoidal functor . If A is a Green
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functor for E over k then A : Spn(E ) // Modk is monoidal. Then we get AY =
A ◦ (−× Y ) : Spn(E ) // Modk is monoidal and AY is indeed a Green functor for
E over k.

Remark 8.5. The reader may have noted that Proposition 8.1 implies that D takes
monoids to monoids. A monoid in T ⊗Mky is a pair (Y,A) where Y is a monoid
in T and A is a Green functor; so in this case, we have that AY is a Green functor.
A monoid Y in E is certainly a monoid in T . Since E is cartesian monoidal (and so
symmetric), each monoid in E gives one in the centre. However, not every monoid
in the centre arises in this way. The full result behind Proposition 8.1 and the centre
situation is: the Dress construction

D : Z(T )⊗Mky // Mky

is a strong monoidal V -functor; it is merely monoidal when the centre is replaced
by the lax centre.

It follows that AY is a Green functor whenever A is a Green functor and Y is a
monoid in the lax centre of T .

9. Finite dimensional Mackey functors

We make the following further assumptions on the symmetric compact closed
category T with finite direct sums:

• there is a finite set C of objects of T such that every object X of T can be
written as a direct sum

X ∼=
n⊕

i=1

Ci

with Ci in C ; and

• each hom T (X, Y ) is a finitely generated commutative monoid.

Notice that these assumptions hold when T = Spn(E ) where E is the category
of finite G-sets for a finite group G. In this case we can take C to consist of a
representative set of connected (transitive) G-sets. Moreover, the spans S : X // Y
with S ∈ C generate the monoid T (X, Y ).

We also fix k to be a field and write Vect in place of Modk.
A Mackey functor M : T // Vect is called finite dimensional when each M(X)

is a finite-dimensional vector space. Write Mkyfin for the full subcategory of Mky
consisting of these.

We regard C as a full subcategory of T . The inclusion functor C // T is dense
and the density colimit presentation is preserved by all additive M : T // Vect.
This is shown as follows:
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∫ C

T (C,X)⊗M(C) ∼=
∫ C

T (C,
n⊕

i=1

Ci)⊗M(C)

∼=
n⊕

i=1

∫ C

T (C,Ci)⊗M(C)

∼=
n⊕

i=1

∫ C

C (C,Ci)⊗M(C)

∼=
n⊕

i=1

M(Ci)

∼= M(
n⊕

i=1

Ci)

∼= M(X).

That is,

M ∼=
∫ C

T (C,−)⊗M(C).

Proposition 9.1. The tensor product of finite-dimensional Mackey functors is fi-
nite dimensional.

Proof. Using the last isomorphism, we have

(M ∗N)(Z) =
∫ X,Y

T (X ⊗ Y, Z)⊗M(X)⊗k N(Y )

∼=
∫ X,Y,C,D

T (X ⊗ Y,Z)⊗T (C,X)⊗T (D,Y )⊗M(C)⊗k N(D)

∼=
∫ C,D

T (C ⊗D,Z)⊗M(C)⊗k N(D).

If M and N are finite dimensional then so is the vector space T (C ⊗ D,Z) ⊗
M(C) ⊗k N(D) (since T (C ⊗ D,Z) is finitely generated). Also the coend is a
quotient of a finite direct sum. So M ∗N is finite dimensional.

It follows that Mkyfin is a monoidal subcategory of Mky (since the Burnside
functor J is certainly finite dimensional under our assumptions on T ).

The promonoidal structure on Mkyfin represented by this monoidal structure
can be expressed in many ways:

P (M,N ;L) = Mkyfin(M ∗N,L)
∼= NatX,Y,Z(T (X ⊗ Y,Z)⊗M(X)⊗k N(Y ), L(Z))
∼= NatX,Y (M(X)⊗k N(Y ), L(X ⊗ Y ))
∼= NatX,Z(M(X)⊗k N(X∗ ⊗ Z), L(Z))
∼= NatY,Z(M(Z ⊗ Y ∗)⊗k N(Y ), L(Z)).
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Following the terminology of [DS1], we say that a promonoidal category M is ∗-
autonomous when it is equipped with an equivalence S : M op // M and a natural
isomorphism

P (M,N ;S(L)) ∼= P (N,L;S−1(M)).

A monoidal category is ∗-autonomous when the associated promonoidal category
is.

As an application of the work of Day [Da4] we obtain that Mkyfin is ∗-autonomous.
We shall give the details.

For M ∈ Mkyfin, define S(M)(X) = M(X∗)∗ so that S : Mkyop
fin

// Mkyfin is
its own inverse equivalence.

Theorem 9.2. The monoidal category Mkyfin of finite-dimensional Mackey func-
tors on T is ∗-autonomous.

Proof. With S defined as above, we have the calculation:

P (M,N ;S(L)) ∼= NatX,Y (M(X)⊗k N(Y ), L(X∗ ⊗ Y ∗)∗)
∼= NatX,Y (N(Y )⊗k L(X∗ ⊗ Y ∗),M(X)∗)
∼= NatZ,Y (N(Y )⊗k L(Z ⊗ Y ∗),M(Z∗)∗)
∼= NatZ,Y (N(Y )⊗k L(Z ⊗ Y ∗), S(M)(Z))
∼= P (N,L;S(M)).

10. Cohomological Mackey functors

Let k be a field and G be a finite group. We are interested in the relationship
between ordinary k-linear representations of G and Mackey functors on G.

Write E for the category of finite G-sets as usual. Write R for the category
Repk(G) of finite -dimensional k-linear representations of G.

Each G-set X determines a k-linear representation kX of G by extending the
action of G linearly on X. This gives a functor

k : E // R.

We extend this to a functor

k∗ : T op // R,

where T = Spn(E ), as follows. On objects X ∈ T , define

k∗X = kX.

For a span (u, S, v) : X // Y in E , the linear function k∗(S) : kY // kX is defined
by

k∗(S)(y) =
∑

v(s)=y

u(s) ;
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this preserves the G-actions since

k∗(S)(gy) =
∑

v(s)=gy

u(s) =
∑

v(g−1s)=y

gu(g−1s) = gk∗(S)(y).

Clearly k∗ preserves coproducts.
By the usual argument (going back to Kan, and the geometric realization and

singular functor adjunction), we obtain a functor

k̃∗ : R // Mky(G)fin

defined by
k̃∗(R) = R(k∗−, R)

which we shall write as R− : T // Vectk. So

RX = R(k∗X, R) ∼= G-Set(X, R)

with the effect on the span (u, S, v) : X // Y transporting to the linear function

G-Set(X, R) // G-Set(Y,R)

which takes τ : X // R to τS : Y // R where

τS(y) =
∑

v(s)=y

τ(u(s)).

The functor k̃∗ has a left adjoint

colim(−, k∗) : Mky(G)fin
// R

defined by

colim(M,k∗) =
∫ C

M(C)⊗k k∗C

where C runs over a full subcategory C of T consisting of a representative set of
connected G-sets.

Proposition 10.1. The functor k̃∗ : Repk(G) // Mky(G) is fully faithful.

Proof. For R1, R2 ∈ R, a morphism θ : R−
1

// R−
2 in Mky(G) is a family of

linear functions θX such that the following square commutes for all spans (u, S, v) :
X // Y in E .

G-Set(X, R1) G-Set(X, R2)
θX //

G-Set(Y,R2)

( − )S

��
G-Set(Y, R1)

( − )S

��

θY

//

Since G (with multiplication action) forms a full dense subcategory of G-Set, it
follows that we obtain a unique morphism f : R1

// R2 in G-Set such that

f(r) = θG(r̂)(1)
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(where r̂ : G // R is defined by r̂(g) = gr for r ∈ R); this is a special case of
Yoneda’s Lemma. Clearly f is linear since θG is. By taking Y = G, S = G and
v = 1G : G // G, commutativity of the above square yields

θX(τ)(x) = f(τ(x));

that is, θX = k̃∗(f)X .

An important property of Mackey functors in the image of k̃∗ is that they are
cohomological in the sense of [We], [Bo4] and [TW]. First we recall some classical
terminology associated with a Mackey functor M on a group G.

For subgroups K 6 H of G, we have the canonical G-set morphism σH
K :

G/K // G/H defined on the connected G-sets of left cosets by σH
K (gK) = gH.

The linear functions

rH
K = M∗(σH

K ) : M(G/H) // M(G/K) and

tHK = M∗(σH
K ) : M(G/K) // M(G/H)

are called restriction and transfer (or trace or induction).
A Mackey functor M on G is called cohomological when each composite tHKrH

K :
M(G/H) // M(G/H) is equal to multiplication by the index [H : K] of K in H.
We supply a proof of the following known example.

Proposition 10.2. For each k-linear representation R of G, the Mackey functor
k̃∗(R) = R− is cohomological.

Proof. With M = R− and σ = σH
K , notice that the function

tHKrH
K = M∗(σ)M∗(σ) = M(σ,G/K, 1)M(1, G/K, σ) = M(σ,G/K, σ)

takes τ ∈ E (G/H, R) to τG/K ∈ E (G/H, R) where

τG/K(H) =
∑

σ(s)=H

τ(σ(s)) =
∑

σ(s)=H

τ(H) = (
∑

σ(s)=H

1)τ(H)

and s runs over the distinct gK with σ(s) = gH = H; the number of distinct gK
with g ∈ H is of course [H : K]. So τG/K(xH) = [H : K]τ(xH).

Lemma 10.3. The functor k∗ : T op // R is strong monoidal.

Proof. Clearly the canonical isomorphisms

k(X1 ×X2) ∼= kX1 ⊗ kX2, k1 ∼= k

show that k : E // R is strong monoidal. All that remains to be seen is that these
isomorphisms are natural with respect to spans (u1, S1, v1) : X1

// Y1, (u2, S2, v2) :
X2

// Y2. This comes down to the bilinearity of tensor product:∑
v1(s1)=y1

v2(s2)=y2

u1(s1)⊗ u2(s2) =
∑

v1(s1)=y1

u1(y1)⊗
∑

v2(s2)=y2

u2(y2).
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We can now see that the adjunction

colim(−, k∗) k̃∗
�

fits the situation of Day’s Reflection Theorem [Da2] and [Da3, pages 24 and 25].
For this, recall that a fully faithful functor Φ : A // X into a closed category X
is said to be closed under exponentiation when, for all A in A and X in X , the
internal hom [X, ΦA] is isomorphic to an object of the form ΦB for some B in A .

Theorem 10.4. The functor colim(−, k∗) : Mky(G)fin
// R is strong monoidal.

Consequently, k̃∗ : R // Mky(G)fin is monoidal and closed under exponentiation.

Proof. The first sentence follows quite formally from Lemma 10.3 and the theory
of Day convolution; the main calculation is:

colim(M ∗N, k∗)(Z) =
∫ C

(M ∗N)(C)⊗k k∗C

=
∫ C,X,Y

T (X × Y,C)⊗M(X)⊗k N(Y )⊗k k∗C

∼=
∫ X,Y

M(X)⊗k N(Y )⊗k k∗(X × Y )

∼=
∫ X,Y

M(X)⊗k N(Y )⊗k k∗X ⊗ k∗Y

∼= colim(M,k∗)⊗ colim(N, k∗).

The second sentence then follows from [Da2, Reflection Theorem].

In fancier words, the adjunction

colim(−, k∗) k̃∗
�

lives in the 2-category of monoidal categories, monoidal functors and monoidal
natural transformations (all enriched over V ).

11. Mackey functors for Hopf algebras

In this section we provide another example of a compact closed category T
constructed from a Hopf algebara H (or quantum group). We speculate that Mackey
functors on this T will prove as useful for Hopf algebras as usual Mackey functors
have for groups.

Let H be a braided (semisimple) Hopf algebra (over k). Let R denote the category
of left H-modules which are finite dimensional as vector spaces (over k). This is a
compact closed braided monoidal category.

We write Comod(R) for the category obtained from the bicategory of that name
in [DMS] by taking isomorphisms classes of morphisms. Explicitly, the objects
are comonoids C in R. The morphisms are isomorphism classes of comodules S :
C � //D from C to D; such an S is equipped with a coaction δ : S // C ⊗ S ⊗D
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satisfying the coassociativity and counity conditions; we can break the two-sided
coaction δ into a left coaction δl : S // C ⊗S and a right coaction δr : S // S⊗D
connected by the bicomodule condition. Composition of comodules S : C

� //D and
T : D

� //E is defined by the (coreflexive) equalizer

S ⊗D T // S ⊗ T
1⊗δl //

δr⊗1
// S ⊗D ⊗ T .

The identity comodule of C is C : C � //C . The category Comod(R) is compact
closed: the tensor product is just that for vector spaces equipped with the extra
structure. Direct sums in Comod(R) are given by direct sum as vector spaces.
Consequently, Comod(R) is enriched in the monoidal category V of commutative
monoids: to add comodules S1 : C � //D and S2 : C � //D , we take the direct sum
S1 ⊕ S2 with coaction defined as the composite

S1 ⊕ S2
δ1⊕δ2 // C ⊗ S1 ⊗D ⊕ C ⊗ S2 ⊗D ∼= C ⊗ (S1 ⊕ S2)⊗D.

We can now apply our earlier theory to the example T = Comod(R). In par-
ticular, we call a V -enriched functor M : Comod(R) // Vectk a Mackey functor
on H.

In the case where H is the group algebra kG (made Hopf by means of the diagonal
kG // k(G×G) ∼= kG⊗k kG), a Mackey functor on H is not the same as a Mackey
functor on G. However, there is a strong relationship that we shall now explain.

As usual, let E denote the cartesian monoidal category of finite G-sets. The
functor k : E // R is strong monoidal and preserves coreflexive equalizers. There
is a monoidal equivalence

Comod(E ) ' Spn(E ),

so k : E // R induces a strong monoidal V -functor

k̂ : Spn(E ) // Comod(R).

With Mky(G) = [Spn(E ),Vect]+ as usual and with Mky(kG) =
[Comod(R),Vect]+, we obtain a functor

[k̂, 1] : Mky(kG) // Mky(G)

defined by pre-composition with k̂. Proposition 1 of [DS2] applies to yield:

Theorem 11.1. The functor [k̂, 1] has a strong monoidal left adjoint

∃k̂ : Mky(G) // Mky(kG).

The adjunction is monoidal.

The formula for ∃k̂ is

∃k̂(M)(R) =
∫ X∈Spn(E )

Comod(R)(k̂X, R)⊗M(X).
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On the other hand, we already have the compact closed category R of finite-
dimensional representations of G and the strong monoidal functor

k∗ : Spn(E )op // R.

Perhaps Rop(' R) should be our candidate for T rather than the more complicated
Comod(R). The result of [DS2] applies also to k∗ to yield a monoidal adjunction

[Rop,Vect] ⊥
[k∗,1]

// Mky(G).
∃k∗oo

Perhaps then, additive functors Rop // Vect would provide a suitable generaliza-
tion of Mackey functors in the case of a Hopf algebra H. These matters require
investigation at a later time.

12. Review of some enriched category theory

The basic references are [Ke], [La] and [St].
Let COCTV denote the 2-category whose objects are cocomplete V -categories

and whose morphisms are (weighted-) colimit-preserving V -functors; the 2-cells are
V -natural transformations.

Every small V -category C determines an object [C ,V ] of COCTV . Let

Y : C op // [C ,V ]

denote the Yoneda embedding: Y U = C (U,−).
For any object X of COCTV , we have an equivalence of categories

COCTV ([C ,V ],X ) ' [C op,X ]

defined by restriction along Y . This is expressing the fact that [C ,V ] is the free
cocompletion of C op. It follows that, for small V -categories C and D , we have

COCTV ([C ,V ], [D ,V ]) ' [C op, [D ,V ]]
' [C op ⊗D ,V ].

The way this works is as follows. Suppose F : C op⊗D // V is a (V -) functor. We
obtain a colimit-preserving functor

F̂ : [C ,V ] // [D ,V ]

by the formula

F̂ (M)V =
∫ U∈C

F (U, V )⊗MU

where M ∈ [C ,V ] and V ∈ D . Conversely, given G : [C ,V ] // [D ,V ], define
∨
G : C op ⊗D // V

by
∨
G(U, V ) = G(C (U,−))V.
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The main calculations proving the equivalence are as follows:
∨
F̂ (U, V ) = F̂ (C (U,−))V

∼=
∫ U ′

F (U ′, V )⊗ C (U,U ′)

∼= F (U, V ) by Yoneda;

and,

∨̂
G(M)V =

∫ U ∨
G(U, V )⊗MU

∼= (
∫ U

G(C (U,−))⊗MU)V

∼= G(
∫ U

C (U,−)⊗MU)V since G preserves weighted colimits

∼= G(M)V by Yoneda again.

Next we look how composition of Gs is transported to the F s. Take

F1 : C op ⊗D // V , F2 : Dop ⊗ E // V

so that F̂1 and F̂2 are composable:

[C ,V ]

[D ,V ]
F̂1

88pppppppppppp
[E ,V ].

F̂2

&&NNNNNNNNNNNN

F̂2◦F̂1

44

Notice that

(F̂2 ◦ F̂1)(M) = F̂2(F̂1(M))

=
∫ V ∈D

F2(V,−)⊗ F̂1(M)V

∼=
∫ U,V

F2(V,−)⊗ F1(U, V )⊗MU

∼=
∫ U

(
∫ V

F2(V,−)⊗ F1(U, V ))⊗MU.

So we define F2 ◦ F1 : C op ⊗ E // V by

(F2 ◦ F1)(U,W ) =
∫ V

F2(V,W )⊗ F1(U, V ); (1)

the last calculation then yields

F̂2 ◦ F̂1
∼= F̂2 ◦ F1.
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The identity functor 1[C ,V ] : [C ,V ] // [C ,V ] corresponds to the hom functor of
C ; that is,

∨
1[C ,V ](U, V ) = C (U, V ).

This gives us the bicategory V -Mod. The objects are (small) V -categories C . A
morphism F : C � //D is a V -functor F : C op ⊗ D // V ; we call this a module
from C to D (others call it a left D-, right C -bimodule). Composition of modules
is defined by (1) above.

We can sum up now by saying that

(̂ ) : V -Mod // COCTV

is a pseudofunctor (= homomorphism of bicategories) taking C to [C ,V ], taking
F : C � //D to F̂ , and defined on 2-cells in the obious way; moreover, this pseud-
ofunctor is a local equivalence (that is, it is an equivalence on hom-categories):

(̂ ) : V -Mod(C ,D) ' COCTV ([C ,V ], [D ,V ]).

A monad T on an object C of V -Mod is called a promonad on C . It is the
same as giving a colimit-preserving monad T̂ on the V -category [C ,V ]. One way
that promonads arise is from monoids A for some convolution monoidal structure
on [C ,V ]; then

T̂ (M) = A ∗M.

That is, C is a promonoidal V -category [Da1]:

P : C op ⊗ C op ⊗ C // V

J : C // V

so that

T̂ (M) = A ∗M =
∫ U,V

P (U, V ;−)⊗AU ⊗MV.

This means that the module T : C � //C is defined by

T (U, V ) = T̂ (C (U,−))V

=
∫ U ′,V ′

P (U ′, V ′;V )⊗AU ′ ⊗ C (U, V ′)

∼=
∫ U ′

P (U ′, U ;V )⊗AU ′.

A promonad T on C has a unit η :
∨
1 // T with components

ηU,V : C (U, V ) // T (U, V )

and so is determined by

ηU,V (1U ) : I // T (U,U),
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and has a multiplication µ : T ◦ T // T with components

µU,W :
∫ V

T (V,W )⊗ T (U, V ) // T (U,W )

and so is determined by a natural family

µ′U,V,W : T (V,W )⊗ T (U, V ) // T (U,W ).

The Kleisli category CT for the promonad T on C has the same objects as C
and has homs defined by

CT (U, V ) = T (U, V );

the identites are the ηU,V (1U ) and the composition is the µ′U,V,W .

Proposition 12.1. [CT ,V ] ' [C ,V ]T̂ . That is, the functor category [CT ,V ] is
equivalent to the category of Eilenberg-Moore algebras for the monad T̂ on [C ,V ].

Proof. (sketch) To give a T̂ -algebra structure on M ∈ [C ,V ] is to give a morphism
α : T̂ (M) // M satisfying the two axioms for an action. This is to give a natural
family of morphisms

T (U, V )⊗MU // MV ;

but that is to give

T (U, V ) // [MU,MV ];

but that is to give

CT (U, V ) // V (MU,MV ). (2)

Thus we can define a V -functor

M : CT
// V

which agrees with M on objects and is defined by (2) on homs; the action axioms
are just what is needed for M to be a functor. This process can be reversed.

13. Modules over a Green functor

In this section, we present work inspired by Chapters 2, 3 and 4 of [Bo1], casting
it in a more categorical framework.

Let E denote a lextensive category and CMon denote the category of com-
mutative monoids; this latter is what we called V in earlier sections. The functor
U : Modk

// CMon (which forgets the action of k on the k-module and retains
only the additive monoid structure) has a left adjoint K : CMon // Modk which
is strong monoidal for the obvious tensor products on CMon and Modk. So each
category A enriched in CMon determines a category K∗A enriched in Modk: the
objects of K∗A are those of A and the homs are defined by

(K∗A )(A,B) = KA (A,B)
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since A (A,B) is a commutative monoid. The point is that a Modk-functor K∗A
// B is the same as a CMon-functor A // U∗B.

We know that Spn(E ) is a CMon-category; so we obtain a monoidal Modk-
category

C = K∗Spn(E ).

The Modk-category of Mackey functors on E is Mkyk(E ) = [C ,Modk]; it
becomes monoidal using convolution with the monoidal structure on C (see Section
5). The Modk-category of Green functors on E is Grnk(E ) = Mon[C ,Modk]
consisting of the monoids in [C ,Modk] for the convolution.

Let A be a Green functor. A module M over the Green functor A, or A-module
means A acts on M via the convolution ∗. The monoidal action αM : A ∗M // M
is defined by a family of morphisms

ᾱM
U,V : A(U)⊗k M(V ) // M(U × V ),

where we put ᾱM
U,V (a⊗m) = a.m for a ∈ A(U), m ∈ M(V ), satisfing the following

commutative diagrams for morphisms f : U // U ′ and g : V // V ′ in E .

A(U)⊗k M(V ) M(U × V )
ᾱM

U,V //

M(U ′ × V ′)

M∗(f×g)

��
A(U ′)⊗k M(V ′)

A∗(f)⊗kM∗(g)

��

ᾱM
U′,V ′

//

M(U) A(1)⊗k M(U)
η⊗1 //

M(1× U)

ᾱM

��
∼=

''NNNNNNNNNNNN

A(U)⊗k A(V )⊗k M(W ) A(U)⊗k M(V ×W )
1⊗ᾱM

//

M(U × V ×W ) .

ᾱM

��
A(U × V )⊗k M(W )

µ⊗1

��

ᾱM

//

If M is an A-module, then M is in particular a Mackey functor.

Lemma 13.1. Let A be a Green functor and M be an A-module. Then MU is an
A-module for each U of E , where MU (X) = M(X × U).

Proof. Simply define ᾱMU

V,W = ᾱM
V,W×U .

Let Mod(A) denote the category of left A-modules for a Green functor A. The
objects are A-modules and morphisms are A-module morphisms θ : M // N (that
is, morphisms of Mackey functors) satisfying the following commutative diagram.

A(U)⊗k M(V ) M(U × V )
ᾱM

U,V //

N(U × V )

θ(U×V )

��
A(U)⊗k N(V )

1⊗kθ(U)

��

ᾱN
U,V

//
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The category Mod(A) is enriched in Mky. The homs are given by the equalizer

Mod(A)(M,N) Hom(M,N)// Hom(A ∗M,N)
Hom(αM ,1) //

Hom(A ∗M,A ∗N) .

(A∗−) $$JJJJJJJJJJ

Hom(1,αN )

;;wwwwwwwwww

Then we see that Mod(A)(M,N) is the sub-Mackey functor of Hom(M,N) defined
by

Mod(A)(M,N)(U) ={θ ∈ Mky(M(−× U), N−) | θV×W (a.m) = a.θW (m)
for all V,W, and a ∈ A(V ),m ∈ M(W × U)}.

In particular, if A = J (Burnside functor) then Mod(A) is the category of Mackey
functors and Mod(A)(M,N) = Hom(M,N).

The Green functor A is itself an A-module. Then by the Lemma 13.1, we see
that AU is an A-module for each U in E . Define a category CA consisting of the
objects of the form AU for each U in C . This is a full subcategory of Mod(A) and
we have the following equivalences

CA(U, V ) ' Mod(A)(AU , AV ) ' A(U × V ).

In other words, the category Mod(A) of left A-modules is the category of
Eilenberg-Moore algebras for the monad T = A ∗ − on [C ,Modk]; it preserves
colimits since it has a right adjoint (as usual with convolution tensor products). By
the above, the Modk-category CA (technically it is the Kleisli category C∨

T
for the

promonad
∨
T on C ; see Proposition 12.1) satisfies an equivalence

[CA,Modk] ' Mod(A).

Let C be a Modk-category with finite direct sums and Ω be a finite set of objects
of C such that every object of C is a direct sum of objects from Ω.

Let W be the algebra of Ω × Ω - matrices whose (X, Y ) - entry is a morphism
X // Y in C . Then

W = {(fXY )X,Y ∈Ω | fXY ∈ C (X, Y )}

is a vector space over k, and the product is defined by

(gXY )X,Y ∈Ω(fXY )X,Y ∈Ω =
( ∑

Y ∈Ω

gY Z ◦ fXY

)
X,Z∈Ω

.

Proposition 13.2. [C ,Modk] ' ModW
k (= the category of left W -modules).

Proof. Put

P =
⊕
X∈Ω

C (X,−).

This is a small projective generator so Exercise F (page 106) of [Fr] applies and W
is identified as End(P).
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In particular; this applies to the category CA to obtain the Green algebra WA of
a Green functor A: the point being that A and WA have the same modules.

14. Morita equivalence of Green functors

In this section, we look at the Morita theory of Green functors making use of
adjoint two-sided modules rather than Morita contexts as in [Bo1].

As for any symmetric cocomplete closed monoidal category W , we have the
monoidal bicategory Mod(W ) defined as follows, where we take W = Mky. Objects
are monoids A in W (that is, A : E // Modk are Green functors) and morphisms
are modules M : A � //B (that is, algebras for the monad A ∗− ∗B on Mky) with
a two-sided action

αM : A ∗M ∗B // M

ᾱM
U,V,W : A(U)⊗k M(V )⊗k B(W ) // M(U × V ×W ).

Composition of morphisms M : A � //B and N : B � //C is M ∗B N and it is defined
via the coequalizer

M ∗B ∗N
αM∗1N //

1M∗αN

// M ∗N // M ∗B N = N ◦M

that is,

(M ∗B N)(U) =
∑
X,Y

Spn(E )(X × Y, U)⊗M(X)⊗k N(Y )/ ∼B .

The identity morphism is given by A : A � //A.
The 2-cells are natural transformations θ : M // M ′ which respect the actions

A(U)⊗k M(V )⊗k B(W ) M(U × V ×W )
ᾱM

U,V,W //

M ′(U × V ×W ) .

θU×V×W

��
A(U)⊗k M ′(V )⊗k B(W )

1⊗kθV ⊗k1

��

ᾱM′
U,V,W

//

The tensor product on Mod(W ) is the convolution ∗. The tensor product of the
modules M : A

� //B and N : C
� //D is M ∗N : A ∗ C

� //B ∗D .
Define Green functors A and B to be Morita equivalent when they are equivalent

in Mod(W ).

Proposition 14.1. If A and B are equivalent in Mod(W ) then Mod(A) ' Mod(B)
as categories.

Proof. Mod(W )(−, J) : Mod(W )op // CAT is a pseudofunctor and so takes
equivalences to equivalences.

Now we will look at the Cauchy completion of a monoid A in a monoidal category
W with the unit J . The W -category PA has underlying category Mod(W )(J,A) =
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Mod(Aop) where Aop is the monoid A with commuted multiplication. The objects
are modules M : J � //A ; that is, right A-modules. The homs of PA are defined by
(PA)(M,N) = Mod(Aop)(M,N) (see the equalizer of Section 13).

The Cauchy completion QA of A is the full sub-W -category of PA consisting of
the modules M : J � //A with right adjoints N : A � //J . We will examine what
the objects of QA are in more explicit terms.

For motivation and preparation we will look at the monoidal category W =
[C ,S ] where (C ,⊗, I) is a monoidal category and S is the cartesian monoidal
category of sets. Then [C ,S ] becomes a monoidal category by convolution. The
tensor product ∗ and the unit J are defined by

(M ∗N)(U) =
∫ X,Y

C (X ⊗ Y, U)×M(X)×N(Y )

J(U) = C (I, U).

Write Mod[C ,S ] for the bicategory whose objects are monoids A in [C ,S ] and
whose morphisms are modules M : A � //B . These modules have two-sided action

αM : A ∗M ∗B // M

ᾱM
X,Y,Z : A(X)×M(Y )×B(Z) // M(X ⊗ Y ⊗ Z) .

Composition of morphisms M : A
� //B and N : B

� //C is given by the coequalizer

M ∗B ∗N
αM∗1N //

1M∗αN

// M ∗N // M ∗B N

that is,

(M ∗B N)(U) =
∑
X,Z

C (X ⊗ Z,U)×M(X)×N(Z)/ ∼B

where

(u, m ◦ b, n) ∼B (u, m, b ◦ n)
(t ◦ (r ⊗ s),m, n) ∼B (t, (Mr)m, (Ns)n)

for u : X ⊗ Y ⊗Z // U, m ∈ M(X), b ∈ B(Y ), n ∈ N(Z), t : X ′ ⊗Z ′ // U, r :
X // X ′, s : Z // Z ′.

For each K ∈ C , we obtain a module A(K ⊗−) : J � //A . The action

A(K ⊗ U)⊗A(V ) // A(K ⊗ U ⊗ V )

is defined by the monoid structure on A.

Proposition 14.2. Every object of the Cauchy completion QA of the monoid A in
[C ,S ] is a retract of a module of the form A(K ⊗−) for some K ∈ C .

Proof. Take a module M : J � //A in Mod[C ,S ]. Suppose that M has a right
adjoint N : A � //J . Then we have the following actions: A(V )× A(W ) // A(V ⊗
W ), M(V )×A(W ) // M(V ⊗W ), A(V )×N(W ) // N(V ⊗W ) since A is a monoid,
M is a right A-module, and N is a left A-module respectively.
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We have a unit η : J // M ∗A N and a counit ε : N ∗M // A for the adjunction.
The component ηU : C (I, U) // (M ∗A N)(U) of the unit η is determined by

η′ = ηU (1I) ∈
∑
X,Z

C (X ⊗ Z, I)×M(X)×N(Z)/ ∼A;

so there exist u : H ⊗K // I, p ∈ M(H), q ∈ N(K) such that η′ = [u, p, q]A.
Then

ηu(f : I // U) = [fu : H ⊗K // U, p, q]A.

We also have ε̄Y,Z : NY × MZ // A(Y ⊗ Z) coming from ε. The commutative
diagram

M(U)
∑

X,Y,Z

C (X ⊗ Y ⊗ Z,U)×M(X)×N(Y )×M(Z)/ ∼ηU∗1 //

M(U)

1∗εU

��

1

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

yields the equations

m = (1 ∗ εU )(ηU ∗ 1)(m)
= (1 ∗ εU )[u⊗ 1U , p, q, m]A
= M(u⊗ 1U )(p ε̄K,U (q, m))

(3)

for all m ∈ M(U).
Define

M(U)
iU

11 A(K ⊗ U)
rUrr

by iU (m) = ε̄K,U (q, m), rU (a) = M(u⊗1U )(p.a). These are easily seen to be natural
in U . Equation (3) says that r ◦ i = 1M . So M is a retract of A(K ⊗−).

Now we will look at what are the objects of QA when W = Mky which is a
symmetric monoidal closed, complete and cocomplete category.

Theorem 14.3. The Cauchy completion QA of the monoid A in Mky consists of
all the retracts of modules of the form

k⊕
i=1

A(Yi ×−)

for some Yi ∈ Spn(E ), i = 1, . . . , k.

Proof. Take a module M : J � //A in Mod(W ) and suppose that M has a right
adjoint N : A � //J . For the adjunction, we have a unit η : J // M ∗A N and
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a counit ε : N ∗ M // A. We write ηU : Spn(E )(1, U) // (M ∗A N)(U) is the
component of the unit η and it is determined by

η′ = η1(11) ∈
k∑

i=1

Spn(E )(X × Y, 1)⊗M(X)⊗N(Y )/ ∼A .

Put

η′ = η1(11) =
k∑

i=1

[(Si : Xi × Yi
// 1)⊗mi ⊗ ni]A

where mi ∈ M(Xi) and ni ∈ N(Yi). Then

ηU (T : 1 // U) =
k∑

i=1

[(Si × T )⊗mi ⊗ ni]A.

We also have ε̄Y,Z : NY ⊗ MZ // A(Y × Z) coming from ε. The commutative
diagram

M(U)
k∑

i=1

Spn(E )(Xi × Yi × U,U)⊗M(Xi)⊗N(Yi)⊗M(U)/ ∼A
ηU∗1 //

M(U)

1∗εU

��

1

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

yields

m =
k∑

i=1

[M(Pi × U)⊗mi ⊗ ε(ni ⊗m)]

where m ∈ M(U) and Pi : Xi × Yi
// U .

Define a natural retraction

M(U)
iU

00

k⊕
i=1

A(Yi × U)
rUrr

by

rU (ai) = M(Pik
× U)(mi.ai), iU (m) =

k∑
i=1

ε̄Yi,U (ni ⊗m).

So M is a retract of
k⊕

i=1

A(Yi ×−).

It remains to check that each module A(Y ×−) has a right adjoint since retracts
and direct sums of modules with right adjoints have right adjoints.

In C = Spn(E ) each object Y has a dual (in fact it is its own dual). This implies
that the module C (Y,−) : J � //J has a right dual (in fact it is C (Y,−) itself) since
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the Yoneda embedding C op // [C ,Modk] is a strong monoidal functor. Moreover,
the unit η : J // A induces a module η∗ = A : J � //A with a right adjoint
η∗ : A

� //J . Therefore, the composite

J
�C (Y,−) // J

�η∗ // A ,

which is A(Y ×−), has a right adjoint.

Theorem 14.4. Green functors A and B are Morita equivalent if and only if
QA ' QB as W -categories.

Proof. See [Li2] and [St].
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