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Abstract

Let X be a nilpotent space such that there exists N > 1
with HV(X,Q) # 0 and H"(X,Q) = 0if n > N. Let Y be a
m-connected space with m > N + 1 and H*(Y,Q) is finitely
generated as algebra. We assume that the odd part of the ra-
tional Hurewicz homomorphism: mqq(X) ® Q — Hoqa(X, Q)
is non-zero. We prove that if the space F(X,Y") of continuous
maps from X to Y is rationally formal, then Y has the ratio-
nal homotopy type of a finite product of Eilenberg Mac Lane
spaces. At the opposite, we exhibit an example of a rationally
formal space F(S2,Y) where Y is not rationally equivalent to
a product of Eilenberg Mac Lane spaces.

1. Introduction

All the spaces we consider, have the rational homotopy type of CW complexes
of finite type. Let X be a nilpotent space such that there exists N > 1 with
HY(X,Q) # 0 and H*(X,Q) = 0 if n > N. Let Y a m-connected space with
m > N + 1.

Under these hypothesis, the space F(X,Y) of continuous maps from X to Y is
simply connected. The rational homotopy type of this space has been determined
in [1], [5], [8], [10] where Sullivan models or Lie models are computed.

In his paper L’homologie des espaces fonctionnels [9], Thom studied the homo-
topy type of the space of continous maps from X to Y homotopic to a given map f.
He proved that if Y is an Eilenberg-Mac Lane space then F(X,Y’) has the homo-
topy type of a product of Eilenberg Mac Lane spaces. This implies that if H*(Y, Q)
is a free commutative algebra, then H*(F(X,Y),Q) is a free commutative algebra
for any X. Another proof is given in [10]. Recall that a 1- connected space has
the rational homotopy of a product of Eilenberg-Mac Lane spaces if and only if its
cohomology algebra is free commutative.

In rational homotopy theory, the notion of rational formality plays a crucial
role (see below 2.4), since the rational homotopy type of a formal space is entirely
determined by the data of the singular cohomology algebra.

In the following, we will write ”formality” instead of ”rational formality” since we
always work with nilpotent spaces in the context of rational homotopy theory.
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An open question is a converse to Thom’s result.
Question: What conditions should be satisfied by X and Y if 7(X,Y) is a formal
space?

In [3] it is proved that for X = S! and H*(Y,Q) a finitely generated algebra,
if F(X,Y) is a formal space, then Y has the rational homotopy type of a product
of Eilenberg Mac Lane spaces. The proof relies on the theory of Sullivan mini-
mal models. With similar methods, Yamaguchi proves in [12] that if ¥ satisfies
dim H*(Y,Q) < 400 and dim7.(Y) ® Q < 400, then the formality of F(X,Y)
implies that Y has the rational homotopy type of a product of odd dimensional
spheres. In this paper we prove:

Main Theorem : Let X be a nilpotent space such that there exists N > 1 with
HN(X,Q) # 0 and H*(X,Q) = 0 if n > N. Let Y be a m-connected space with
m > N + 1. We assume that:

1. the odd part of the rational Hurewicz homomorphism:
Todd(X) @ Q — Hyqq(X, Q) is non-zero.

2. H*(Y,Q) is finitely generated as algebra.

Then, if F(X,Y) is formal, Y has the rational homotopy type of a finite product
of Eilenberg Mac Lane spaces.

Corollary. Under the hypothesis of the Main Theorem, F(X,Y) has the rational
homotopy type of a product of Eilenberg Mac Lane spaces.

Remark 1. If 7 (X) is non-zero, assumption 1. is satisfied. If w1 (X) = 0, the dual
of the rational Hurewicz map can be identified with the map: H*(AV,d) — V
induced by the projection where (A V,d) is a minimal Sullivan model of X, ([4],
page 210). So assumption 1. is equivalent to the following: X has a minimal Sullivan
model (A\V,d) with Kerd N Voqq # 0.

Remark 2. Suppose X is formal and there exists ¢ odd such that

H1(X,Q) # 0. Let 2d+1 = inf{q, odd, H(X,Q) # 0}, then there exists a nonzero
element @ € H?*1(X) and a does not belong to H+(X) - H*(X). So X has a
minimal bigraded model in the sense of [7], p : (A V,d) — H*(X) with a generator
t € Vy, (dt =0), |t| = 2d+ 1 and p(t) = a. Such a space satisfies assumption 1. of
the theorem.

Example 6.5 in [7] provides a non formal space X satisfying the assumption 1.
of the main theorem.

Remark 3. Probably assumption 2. is not necessary.

The proof uses simultaneously the theory of minimal Quillen models of a space in
the category of Lie differential graded algebras and the theory of minimal Sullivan
models of a space in the category of commutative differential graded algebras. For
that reason, we should ask the connectivity hypothesis on Y to ensure F(X,Y)
to be 1l-connected. The idea of the proof is the following: we use Lie models to
prove that, under the hypothesis of the theorem, the formality of F(X,Y") implies
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the formality of some F(SP,Y) with p odd (theorem 3.1). Then we work with a
Sullivan model for F(S?,Y), p odd, and we mimick the proof of [3] (theorem 3.5).

In the last section, we give an explicit example where X = S2, Y is not a
product of Eilenberg Mac Lane spaces and however F(S2,Y) is formal. This proves
that assumption 1. is necessary.

2. Algebraic models in rational homotopy theory

All the graded vector spaces, algebras, coalgebras and Lie algebras V' are defined
over Q and are supposed of finite type, i.e. dim V,, < oo for all n.
If v has degree n, we denote |v| = n.

For precise definitions we refer to [4] or [6].
If V= {Vi}icz is a (lower) graded Q-vector space (when we need upper graded
vector space we put V; = V! as usual.)

We denote by sV the suspension of V, we have: (sV),, = V,,_1, (sV)* = V"L

A morphism betwen two differential graded vector spaces is called a quasi-
isomorphism if it induces an isomorphism in homology.

2.1. Commutative differential graded algebras

In the following we consider only commutative differential algebras graded in
positive degrees, (A = ®,>0A",d) with a differential d of degree +1 satisfying
H°(A,d) = Q and dim A" is finite for all n. We denote by CDGA the category of
commutative differential graded algebras. Such an algebra is called a commutative
cochain algebra. If V' = {V?},5; is a graded Q-vector space we denote by AV the
free graded commutative algebra generated by V. A commutative cochain algebra
of the form (/\ V,d) where d satifies some nilpotent conditions is called a Sullivan
algebra,([4],12) . A Sullivan algebra is called minimal if dV ¢ AT V. AT V.

Definition 1. A Sullivan model for a commutative cochain algebra (A, d) is a quasi-
isomorphism of differential graded algebras:

(/\V.d) = (A.d)

with (A V,d) a Sullivan algebra.
If d is minimal, we say that (A\V,d) is a minimal Sullivan model.

Any commutative cochain algebra has a minimal Sullivan model. If H*(4,d) = 0,
then two minimal Sullivan models are isomorphic. Any path connected space X
admits a Sullivan model which is the Sullivan model of the cochain algebra Apr (X),
where Ap;, denotes the contravariant functor of piecewise linear differential forms.
Any simply connected space admits a minimal Sullivan model which contains all
the informations on the rational homotopy type of the space, ([4], 12).

Proposition 2.1. Let (AV,d) be a Sullivan algebra such that dim V' < oo for
all i and dim H*((A\V,d) < oco. Then there exist a commutative cochain algebra

(A,d) with dim A < oo and a quasi-isomorphism of differential graded algebras:
(AV,d) — (A,d).
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Proof. Let p be an integer such that H*(AV,d) = 0 for all n > p. We define a
graded subspace I C (A V) so that:

I"=0,k<p, I"=(A\V) k>p

1" @ (kerd)? = (\ V)"

Then I = @I is a differential ideal and H*(I,d) = 0 for all k. Put A = (\ V/I,d),
then dim A < co and the projection: (A V,d) — (A, d) is a quasi-isomorphism. [

2.2. Differential graded Lie algebras

In the following we consider only differential graded Lie algebras: L = (L;);>1
and the differential has degree —1.

Recall that TV denotes the tensor algebra on a graded vector space V, it is a
graded Lie algebra if we endow it with the commutator bracket. The sub Lie algebra
generated by V is called the free graded Lie algebra on V and it is denoted L(V).
A free differential Lie algebra (L(V), 0) is called minimal if 9(V) C [L(V),L(V)].

Definition 2. A free Lie model of a chain Lie algebra (L,d) is a quasi-isomorphism
of differential Lie algebras of the form

m: (L(V),0) — (L,d)

If O is minimal, it is called a minimal free Lie model. Every chain Lie algebra (L, d)
admits a minimal free Lie model, unique up to isomorphism. Every simply connected
space has a minimal free Lie model (IL(V'), 9) containing all the informations on the
rational homotopy type of the space, ([4], 24) called the minimal Quillen model.

A differential graded Lie algebra is called a model for a space Y if its minimal
free Lie model is the minimal Quillen of the space.

2.3. Dictionary between Sullivan models and Lie models

A way of constructing Sullivan algebras from differential graded Lie algebras
is given by the functor C* which is obtained by dualizing the Cartan-Chevalley
construction that associates a cocommutative differential coalgebra to a differential
Lie algebra,([4], 23 ). In fact C*(L,dy) is a Sullivan algebra (A V, d) with differential
d = do+dy, do(V) € V and dq (V) € A*(V). More precisely V and sL are dual
graded vector spaces, dy is dual of d, d; corresponds by duality to the Lie bracket
on L.

2.4. Formal commutative differential algebras and formal spaces
Definition 3. A commutative cochain algebra (A, d) is formal if its minimal model
is quasi-isomorphic to (H = H*(A,d),0). A space M whose Sullivan minimal model
(AV,d) is quasi-isomorphic to (H*(M),0) is called formal.

Examples of formal spaces are given by Eilenberg-Mac Lane spaces, spheres,
complex projective spaces. Connected compact Kahler manifolds ([2]) and quotients
of compact connected Lie groups by closed subgroups of the same rank are formal.
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Symplectic manifolds need not be formal. Product and wedge of formal spaces are
formal.

We give now a property for the conservation of formality between two cochain
algebras, it will be a key point in the proof of the main theorem. A variant of this
result is proved in [3].

Proposition 2.2. Let (A,da) and (B,dg) two commutative differential graded
algebras satisfying H'(A) = 0. We assume that there exist two CDGA morphisms
f:(A,da) — (B,dg) and g : (B,dg) — (A,da) satisfying: go f = Id. If (B,dp)
is formal, then (A,d4) is formal.

Proof. From ([6],9), ou ([4],14), the morphism f has a Sullivan minimal model, ie,
there exists a commutative diagram of CDGA algebras:

(A, dy) L (B,dp)
ma ] 1 ms

(AU.d) - (AU AV.)

where (AU, d) is a Sullivan minimal algebra, (AU,d) — (AU @ AV,d') is a
minimal relative Sullivan algebra and the vertical maps are quasi-isomorphisms.
The existence of g satisfying g o f = Id implies that there exists a retraction ¢ :
(NUSAV,d) — (AU, d) satisfying goi homotopic to the identity map. A classical
argument implies that d’ is minimal. Now we use the fact that (B, dpg) is formal, so
there exists a CDGA map p: (AU ® AV,d') — (H*(B),0) such that p* = m3.
Consider

0 =g opoi:(/\Ud) — (H*(A),0)

Then we have: 0% = g* o p* 0ix = g* omp 04" = g* o f* om’ = m7. This proves
that (A, d4) is formal. O

3. Proof of the Main Theorem

It relies on the results of [8] and [10] and does not use the computations of [5]
or [1].
It is an immediate consequence of theorem 3.1 and theorem 3.5.

Theorem 3.1. Let X and Y be spaces satisfying the hypothesis of the Main The-
orem. If F(X,Y) is formal then there exists an integer 2d + 1 > 1 such that
F(S*H1Y) is formal.

To prove Theorem 3.1, we will use the Lie model for the space F(X,Y") explained
in Proposition 3.2.

Since X is a nilpotent space with finite dimensional cohomology, it has a fi-
nite dimensional model (A, d4) in the category of commutative differential graded
algebras (Proposition 2.1).

Proposition 3.2. ([8],section 6), ([10] theoreme 1). Let X be a nilpotent space
such that there exists N > 1 with HY (X, Q) # 0 and H"(X,Q) =0 if n > N. Let
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Y be a m-connected space with m > N + 1. If (A,da) is a finite dimensional model
of X satisfying A™ =0 if n > N. If (L,dy) is a Lie model of Y, then (A® L, D)
is a Lie model for the space F(X,Y) where the structure of differential graded Lie
algebra on A ® L is the following:

1. |la®ll=—la|+|l| fac A, l€eL

2 la@ld @)= (=1)1“IMaa @ [1,1]

3. Da®l)=dia®l+ (—-1)*a®d(l)
Furthermore the projection: (A,da) — A° = Q extends to a morphism of differential
Lie algebras: (AQL, D) — (L,dr) which is a model of the fibrationp : F(X,Y) =Y,
defined by p(f) = f(xg) if xo is a fized point in X and the inclusion Q — A extends
to a morphism of differential Lie algebras which is a model of the canonical section
of the fibration p.

This Lie model permits us to prove two lemmas (lemma 3.3 and lemma 3.4), the
first one is used to prove theorem 3.1 and the second one is used to prove theorem
3.5.

Lemma 3.3. Let X be a space satisfying the hypothesis of the main theorem. Let
(A,da) be a finite dimensional model of X. Then there exists an exterior algebra
At with [t| = 2d+1 > 1 and morphismsi: (At,0) — (A,da), q: (A,da) — (At,0)
in the CDGA category satisfying: qoi = Id.

Proof of lemma 3.3. If X has a minimal Sullivan model (A V, d) with KerdNV,4q #
0. Let ¢ be an odd generator of V with dt = 0 and |t| = 2d + 1. We denote
by i the inclusion (At,0) — (AV,d), the linear projection V — Qt extends to
a morphism of differential algebras qo : (AV,d) — (At,0) since d is minimal.
Let m : (AV,d) — (A,da) be the finite dimensional model of X | (Proposition
2.1). From the construction of (A4,d4), it is easy to check that ¢o factors through
(A,da),ie, there exists q : (A,da) — (A t,0) such that gom = go. Put i = moig
then we have: qoi = Id. O

Proof of theorem 3.1. Using Proposition 3.2 and Lemma 3.3, we define differential
Lie morphisms I = i®pq : (A$,0) @ (L,dr) — (A,da) ® (L,dy) and Q = ¢® Id :
(A,da) ® (L,dr) — (At,0) ® (L,dy,) satisfying Q o I = Id. Here (A,d4) is a
finite dimensional model of X in the category CDGA, (L,d;) is a Lie model of Y
and (A t,0) is a finite model of S24*1. Let C* be the functor defined in section
2 from the category of differential Lie algebras to the category of commutative
differential algebras. Denote g =C*(I) : C*(A® L) — C(At® L) and f = C*(Q) :
C(INt® L) — C*(A® L), f and g are two morphisms in the category CDGA, we
use Proposition 2.2 to conclude. O

Lemma 3.4. Let X be a nilpotent space such that there exists N > 1 with
HN(X,Q) # 0 and H"(X,Q) = 0 if n > N. Let Y be a m-connected space with
m > N+1. If F(X,Y) is formal, then' Y is formal.

Proof of lemma 3.4. From Proposition 3.2, the projection: (A,ds) — A = Q ex-
tends to a morphism of differential Lie algebras: ¢ : (A® L, D) — (L, dy) which is
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a model of the fibration p : F(X,Y) — Y, the inclusion Q — A extends to a mor-
phism of differential Lie algebras i : (L,dy) — (A,da) ® (L,dr) which is a model
of the canonical section of the fibration p, so that g o ¢ = Id. Let C* be the functor
defined in section 2 from the category of differential Lie algebras to the category of
commutative differential algebras. Denote g = C*(i) and f = C*(¢q). As above, we
use Proposition 2.2 to conclude. O

This lemma is proved also in [3] and [12], using other arguments.

Now we come back to the category CDGA and we will prove the following theorem
using similar arguments to those developed in [3].

Theorem 3.5. Let Y be a m-connected space such that H*(Y,Q) is finitely gener-
ated as algebra. We assume that there exists p > 1, p odd, with m = p+1 such that
F(SP,Y) is formal. Then Y has the rational homotopy type of a finite product of
Eilenberg Mac Lane spaces.

Proof of Theorem 3.5. We have proved in Lemma 3.4 that Y is formal. Put At =
H*(SP). Let (L,dr) be a Lie model of Y, then C*(L) = (AV,d) is a Sullivan
algebra. From proposition 3.2, a Sullivan model of F(S?,Y) is C*(L @ L, D), where
Ly =Qt® Lnyp ~ Lytp, Dy = dp, D2 = —dp(x), (—1)1*[a,b] = [a, ], [a,b] = 0.
So we have C*(L @ L,D) = (A(V @ SV),d) with SV = V"P, The inclusion
C*(L) — C*(L ® L, D) is a relative Sullivan model of the fibration F(SP,Y) — Y.
We extend the identity map S : V' — SV to a derivation of graded algebras of
degree —p: AV — AV @ A SV. The differential d on C*(L & L, D) = \(V & SV)
is defined by the condition d(Sv) = —S(dv) for v € V.

Since Y is formal, we will work with its bigraded minimal model (A Z,d) in the
sense of Halperin-Stasheff, (7], Z = @,2", Z" = @02y and d(Z) C (A 2)}H].
Since H*(Y,Q) is finitely generated as algebra, we have dim Zy < oo where Zp =
@nZy. Let Z™ = Z"P and Z = ®Z", the identity map S defined by S(z) = z
is extended to an algebra derivation of degree —p on (A\(Z @ Z),d) by putting
S(2) = 0. It is clear that (A\(Z @ Z),d) is a minimal Sullivan model of F(SP,Y)
where d(z) = —S5(dz). O

A generalization of lemme 3 in [3] can be formulated as follows.

Proposition 3.6. Let X = SP, p odd, and Y be spaces satisfying the hypothesis of
the main theorem. If F(SP,Y') is formal and (\ Z,d) is the bigraded minimal model
of Y, then the minimal Sullivan algebra (\(Z @ Z),d) bigraded by (Z), = (Z,) is
the bigraded model of F(SP,Y) in the sense of Halperin-Stasheff.

The proof of this proposition is postponed to the end of this section.

Recall a key lemma (lemme 1) in [3].

Lemma 3.7. Let (A(Wo @ W4),d) be the bigraded minimal model of a formal
space such that dim Wy < oo. Then for any nonzero element in W™, there ewist
an element w' € W_f_dd, an integer n = 2, and a decomposable element Q) without
nonzero component in w™ such that dw' = w™ + Q.
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Now we finish the proof of Theorem 3.5.

Consider the bigraded model of F(SP,Y) defined by proposition 3.6. Suppose
that Z¢v" £ 0 and consider a nonzero element z € Z¢"*". Since d(Z) C Z - \ Z,
there does not exist element w’ € Z @ Z such that dw’ = 2" + Q for some n > 2.
Lemma 3.7 implies that Zi”e” = 0. Since p is odd, and Z™ = Z"*P, it follows that
799 = 0. If we apply lemma 3.7 to (A Z,d) we get Z$"" = 0. Finally we have
7 = Zy and d = 0.

This achieves the proof of Theorem 3.5 and also the proof of the Main Theorem.
We note that if p was even we could not conclude.

Proof of Proposition 3.6. We have to prove that H,(\(Z® Z),d) =0 for alln > 1.
Suppose that this affirmation is not true. Let g be the lowest non-zero integer
such that Hy(A(Z & Z),d) # 0. Let | be the lowest non-zero integer such that
l 7 gl 7 ‘S eas
H,(\N(Z® Z),d) # 0. Let [a] be a non-zero element in H (\(Z @ Z),d). It is easy

to check that [«] does not belong to HY - HT where H' = Z H”(/\(Z ®Z),d).

n>0
Since (A(Z @ Z), d) is the minimal model of a formal space, it is classical to prove

that there exist z € Z; and v € (A Z ® Z), such that a = z + v, [3]. It remains to
prove that such a cocycle cannot occur in (A Z ® Z), with ¢ > 1.

In [3], Proposition 3.6 is proved when p = 1 using technical calculations. Here we
give a direct proof for any odd integer p.

The map S : (A(Z ® Z),d) — (\N(Z @ Z),d) defined by S(a) = (—1)1*/S(a) for
a € N(Z ® Z) is a morphism of cochain complexes of degree —p. We have a short
exact sequence of complexes:

0— (KerS,d) L (\(Z & 2),d) 2 (ImS,d)_, — 0

where j is the inclusion.

Furthermore, we have: (KerS)" = (ImS)" for all n > 1. Since (A(Z & 2),d)
is formal, a reformulation of theorem A of [11] in this context implies that the
cohomology long exact sequence associated to the exact sequence above splits into
short exact sequences:

0— H""(KerS,d) — H""?(\(Z & Z),d) — H"(ImS,d) — 0

for all n > 1.

Now we work with the cocycle « = z + ~, we have 0 = da = dS(z) + d~y. Since
52 =0, we get d(S(y) = —Sdy = 0. So S7 is a cocycle in ImS. Since S* is surjective
in cohomology, there exists a cocycle 3 € (A(Z @ Z))"*P so that [SB] = [S7] in
H*(ImS,d). So there exists u such that S3 = Sy +dSy, that is S(y — 8 —du) = 0.
Since KerS = ImS, there exists ¢ € (A Z), such that v — 8 — dp = Sy and ¢ is
decomposable.

Recall that o = z + 7 is a cocycle in (AZ ® Z), with ¢ > 1. We have o =
Siz+¢)+0+du. Put 2/ = 2+ ¢ and 8/ = B+ du, we have a« = ' + ', so
dz' = 0. Since 2’ € (\" Z),, we get dz’ = 0. This is a contradiction with the fact
that (A Z,d) is the bigraded minimal model in the sense of [7]. O
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4. A counterexample to the non-formality of F(S?,Y) when
p is even.

Let Y = K(Q,4) vV K(Q,4), it is a 3-connected space whose minimal Sullivan
model is (A(z1,z2,¥),d) with dzy = 0, dze = 0, dy = x122, |71]| = |z2] = 4 and
ly| = 7. We have H*(Y,Q) = Q[z1,x2]/(z122) and Y is formal. The propositions
proved in section 3 show that a minimal model of F(S?Y) is the following:

(/\7d) = (/\(fll‘hl'z,y,j}l,.fg,:lj),d)

with |Z1| = |Z2| = 2 and |y| = 5. We have dT; = dZy = 0 and dj = T122 + 21Z2. It
is easy to check that the polynomials (dy, dy) form a regular sequence in Q[z1, x2]
so (A, d) is a Koszul complex, hence it is formal.
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