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A GEOMETRIC DECOMPOSITION OF SPACES INTO CELLS OF
DIFFERENT TYPES
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Abstract
We develop the theory of CW(A)-complexes, which generalizes
the classical theory of CW-complexes, keeping the geometric
intuition of J.H.C. Whitehead’s original theory. We obtain this
way generalizations of classical results, such as Whitehead The-
orem, which allow a deeper insight in the homotopy properties
of these spaces.

1. Introduction

It is well known that CW-complexes are spaces which are built up out of simple
building blocks or cells. In this case, balls are used as models for the cells and
these are attached step by step using attaching maps, which are defined in the
boundary spheres of the balls. Since their introduction by J.H.C. Whitehead in
the late fourties [6], CW-complexes have played an essential role in geometry and
topology. The combinatorial structure of these spaces allows the development of
tools and results (e.g. simplicial and cellular aproximations, Whitehead Theorem,
Homotopy excision, etc.) which lead to a deeper insight of their homotopy and
homology properties.

The main properties of CW-complexes arise from the following two basic facts:
(1) The n-ball D™ is the topological (reduced) cone of the (n — 1)-sphere S*~! and
(2) The n-sphere is the (reduced) n-suspension of the 0-sphere S°. For example,
the homotopy extension properties of CW-complexes are deduced from (1), since
the inclusion of the (n — 1)-sphere in the n-disk is a closed cofibration. Item (2)
is closely related to the definition of classical homotopy groups of spaces and it is
used to prove results such as Whitehead Theorem or Homotopy excision and in the
construction of Eilenberg-MacLane spaces. These two basic facts suggest also that
one might replace the original core S° by any other space A and construct spaces
built up out of cells of different shapes or types using suspensions and cones of the
base space A.

The main purpose of this paper is to develop the theory of such spaces. More pre-
cisely, we define the notion of CW-complexes of type A (or CW (A)-spaces for short)
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generalizing CW-complexes (which constitute a special case of CW(A)-complexes,
when A = SY). As in the classical case, we study these spaces from two different
points of view: the constructive and the descriptive approachs. We use both points
of view to prove generalizations of classical results such as Whitehead Theorem and
use these new results to study their homotopy properties.

Of course, some classical results are no longer true for general cores A. For
example, the notion of dimension of a space (as a CW(A)-complex) is not always
well defined. Recall that in the classical case, the good definition of dimension is
deduced from the famous Invariance of Dimension Theorem. By a similar argument,
we can prove that in particular cases (for example when the core A is itself a finite
dimensional CW-complex) the dimension of a CW(A)-complex is well defined. We
study this and other invariants and exhibit many examples and counterexamples to
clarify the main concepts.

It is clear that, in general, a topological space may admit many different de-
compositions into cells of different types. We study the relationship between such
different decompositions. In particular, we obtain results such as the following.

Theorem 1.1. Let A be a CW (B)-complezx of finite dimension and let X be a
generalized CW (A)-complex. Then X is a generalized CW (B)-complex. In partic-
ular, if A is a standard finite dimensional CW-complex, then X is a generalized
CW-complex and therefore it has the homotopy type of a CW-complex.

By a generalized complex we mean a space which is obtained by attaching cells
in countable many steps, allowing cells of any dimension to be attached in any step.

We also analyze the changing of the core A by a core B via amap a: A — B
and obtain the following result.

Theorem 1.2. Let A and B be pointed topological spaces with closed base points,
let X be a CW(A) and let a: A — B and 3 : B — A be continuous maps.

i. If Ba =1dy, then there exists a CW(B)Y and maps ¢ : X =Y and¢: Y —
X such that v = Idx.

it. If B is a homotopy equivalence, then there is a CW(B)Y and a homotopy
equivalence ¢ : X — Y.

iti. If ba=1da and af ~1d 4 then there exists a CW(B)Y and maps p: X — Y
and ¥ Y — X such that Y = Idx and piyp =Idx.

In particular, when the core A is contractible, all CW(A)-complexes are also
contractible.

Finally we start developing the homotopy theory of these spaces and obtain the
following generalization of Whitehead Theorem.

Theorem 1.3. Let X and Y be CW (A)-complexes and let f : X — Y be a con-
tinuous map. Then f is a homotopy equivalence if and only if it is an A-weak
equivalence.
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We emphasize that our approach tries to keep the geometric intuition of White-
head’s original theory. There exist many generalizations of CW-complexes in the
literature. We especially recommend Baues’ generalization of complexes in Cofibra-
tion Categories [1]. There is also a categorical approach to cell complexes by the
first named author of this paper [4]. The main advantage of the geometric point
of view that we take in this article is that it allows the generalization of the most
important classical results for CW-complexes and these new results can be applied
in several concrete examples.

Throughout this paper, all spaces are assumed to be pointed spaces, all maps are
pointed maps and homotopies are base-point preserving.

2. The constructive approach and first results

We denote by CX the reduced cone of X and by XX its reduced suspension.
Also, S™ denotes the n-sphere and D™ denotes the n-disk.

Let A be a fixed pointed topological space.

Definition 2.1. We say that a (pointed) space X is obtained from a (pointed) space
B by attaching an n-cell of type A (or simply, an A-n-cell) if there exists a pushout
diagram

Zn—1A49>B

cyn—lg T> X

The A-cell is the image of f. The map g is the attaching map of the cell, and f is
its characteristic map.
We say that X is obtained from B by attaching a 0-cell of type A if X = BV A.

Note that attaching an S%-n-cell is the same as attaching an n-cell in the usual
sense, and that attaching an S™-n-cell means attaching an (m +mn)-cell in the usual
sense.

The reduced cone CA of A is obtained from A by attaching an A-1-cell. In
particular, D? is obtained from D' by attaching a D!'-1-cell. Also, the reduced
suspension A can be obtained from the singleton * by attaching an A-1-cell.

Of course, we can attach many n-cells at the same time by taking various copies
of X"~ 1A and CX" 1A,

V | anga
acJ b
Z\L push k
\V CxnlA Y
aelJ + fa

acJ
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Definition 2.2. A CW-structure with base A on a space X, or simply a CW(A)-
structure on X, is a sequence of spaces * = X1, X% X1 ... X" ... such that, for
n € Ny, X™ is obtained from X"~! by attaching n-cells of type A, and X is the
colimit of the diagram

x=X1T o X0 Xt XL

We call X" the n-skeleton of X.

We say that the space X is a CW(A)-complez: (or simply a CW(A)), if it admits
some CW(A)-structure. In this case, the space A will be called the core or the base
space of the structure.

Note that a CW(A) may admit many different structures of CW-complex with base
A.

Examples 2.3.
1. A CW(S9) is just a CW-complex and a CW(S™) is a CW-complex with no
cells of dimension less than n.
2. The space D" admits several different CW(D?)-structures. For instance, we
can take X” = D"t! for 0 < r < n — 1 since CD" = D"+!. We may also take
X%=...=X""2=x%and X" ! = D" since there is a pushout

Zn72D1 — anl

*
il push l
1 _ D

Cyn2pt =Cp" ! ——= ¥ D"~

As in the classical case, instead of starting attaching cells from a base point x,
we can start attaching cells on a pointed space B.
A relative CW(A )-complez is a pair (X, B) such that X is the colimit of a diagram

B=Xp'- X} - Xp—...> X% — ...

where X} is obtained from ngl by attaching n-cells of type A.

It is clear that one can build a space X by attaching cells (of some type A)
without requiring them to be attached in such a way that their dimensions form an
increasing sequence. That means, for example, that a 2-cell may be attached on a
5-cell. In general, those spaces might not admit a CW(A)-structure and they will be
called generalized CW(A)-complexes (see 2.5). If the core A is itself a CW-complex,
then a generalized CW(A)-complex has the homotopy type of a CW-complex. This
generalizes the well-known fact that a generalized CW-complex has the homotopy
type of a CW-complex.

Before we give the formal definition we show an example of a generalized CW-
complex which is not a CW-complex.

Example 2.4. We build X as follows. We start with a 0-cell and we attach a 1-cell
by the identity map obtaining the interval [—1;1]. We regard 1 as the base point.
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Now, for each n € N we define g, : S — [-1,1] by g.(1) = 1, g,(=1) = 1/n.
We attach 1-cells by the maps g,. This space X is an example of a generalized
CW-complex (with core S°).

It is not hard to verify that it is not a CW-complex. To prove this, note that the
points of the form 1/n must be 0-cells by a dimension argument, but they also have
a cluster point at 0.

Definition 2.5. We say that X is obtained from B by attaching cells (of different
dimensions) of type A if there is a pushout

+ ga
v ZnuflA aeJ

_—
acJ

B
;\L push l
X

(VAV(VCEme—ta)
acJy acJ + fa
aeJ
where n, € N for all @ € J. We say that X is a generalized CW(A)-complex if X is
the colimit of a diagram

x=X0 5 X' 5 X2 5 XML

where X™ is obtained from X"~! by attaching cells (of different dimensions) of type
A.

We call X" the n-th layer of X.

One can also define generalized relative CW(A)-complexes in the obvious way.

For standard CW-complexes, by the classical Invariance of Dimension Theo-
rem, one can prove that the notion of dimension is well defined. Any two different
structures of a CW-complex must have the same dimension.

For a general core A this is no longer true. However, we shall prove later that
for particular cases (for example when A is a finite dimensional CW-complex) the
notion of dimension of a CW(A)-complex is well defined.

Definition 2.6. Let X be a CW(A). We consider X endowed with a particular
CW (A)-structure K. We say that the dimension of K isnif X" = X and X"~ ! # X,
and we write dim(K) = n. We say that K is finite dimensional if dim(K) = n for
some n € Np.

Important remark 2.7. A CW(A) may admit different CW(A)-structures with
different dimensions. For example, let A = \/ S™ and let X = \/ A. Then X has a

neN jEN
zero-dimensional CW(A) structure. But we can see X = (\/ A)V3A, which induces
JEN
a 1-dimensional structure. Note that \/ A = ('} A)V 3 A since both spaces consist
JEN jEN

of countably many copies of S™ for each n € N.
Another example is the following. It is easy to see that if B is a topological space
with the indiscrete topology then its reduced cone and suspension also have the
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indiscrete topology. So, let A be an indiscrete topological space with 1 < #A < ¢. If
A is just a point then its reduced cone and suspension are also singletons, so * can
be given a CW (%) structure of any dimension. If #A4 > 2 then #(X"A) = ¢ for all n,
and X" A are all indiscrete spaces. Since they have all the same cardinality and they
are indiscrete then all of them are homeomorphic. But each X" A has an obvious
CW(A) structure of dimension n. Thus, the homeomorphisms between X" A and
™A, for all m, allow us to give X" A a CW(A) structure of any dimension (greater
than zero).

Given a CW(A)-complex X, we deﬁne the boundary of an n-cell e by e =

e” N X"~ 1 and the interior of €™ by e =e" e".

A cell eff’ is called an immediate face of e, if eﬁ Neq # &, and a cell eff’ is called
a face of e if there exists a finite sequence of cells

m1

eﬁ = 65 76[31

€ty et =eq
such that e "7 is an immediate face of e le for 0 < j <k.
Finally, we call a cell principal if it is not a face of any other cell.

Remark 2.8. Note that eg N e’ﬁn # @ if and only if n = m, a = 3. Thus, if e is a
face of ef, and e’ # eg, then m < n.

As in the classical case, we can define subcomplexes and cellular maps in the
obvious way.

Remark 2.9. If X is a CW(A), then X = eciﬁ.

n,o

Proposition 2.10. Let X be a CW(A) and suppose that the base point of A is closed
in A. Then the interiors of the n-cells are open in the n-skeleton. In particular,
X" 1 s a closed subspace of X™.

Proof. For n = —1 and n =0 it is clear. Let n > 1. We have a pushout diagram

+ ga
v En_lA acJ
_—
acJ

zl push

\V CnlA X" = X" U Jer

aeJ + fa
aed

Xn—l

Consider a cell ef3. In order to verify that ej; is open in X™ we have to prove that

(—i—fg)_l(e%,') is open in \/JCZ”_lA. Since (—i—fg)_l(eog) =y A - yrtA s
(¢S

o
open in CX" 1A, then ej3 is open in X™. O
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Proposition 2.11. Let A be a finite dimensional CW-complex, A # *, and let X
be a CW(A). Let K and K' be CW(A)-structures in X and let n,m € Ng U {oo}
denote their dimensions. Then n = m.

Proof. We suppose first that K and K’ are finite dimensional and n > m.
Let k = dim(A) and let e? be an n-cell of X. We have a homeomorphism e ~

CYn=tA—¥""1A and e” is open in X. Let e be a cell of maximum dimension of
the CW-complex CX" !4 and let U = e. Thus U is open in X and homeomorphic
to D;‘)'*‘k.

Now, U intersects some interiors of cells of type A of K'. Let ey be one of those
cells with maximum dimension. Suppose eq is an m/-cell, with m/ < m. Then e,
is open in the m’-skeleton of X with the K’ structure. It is not hard to see that
V=Un 600 is open in U, extending eoo to an open subset of X as in 2.12 below.

In a similar way, ey ~ CE™ "1 A— %™ =14 and V meets some interiors of cells of
the CW-complex CYX™ ~1A. We take e; a cell (of type S°) of maximum dimension

o
among those cells and we denote k&’ = dim(e1). Then e; is homeomorphic to D¥'.
o

Let W = Vej. One can check that W is open in e1 ~ D¥ and that it is also open

in U ~ Dk,
By the invariance of dimension theorem, n+k =k, but also &’ < m+k < n+k.
Thus n = m.

It remains to be shown that if m = oo then n = oo. Suppose that m = oo and
o

n # oo. Let k = dim(A). We choose €' an I-cell of K’ with | > n + k. Then e’ is

open in the I-skeleton (K')!. As in the proof of 2.12 below, we can extend e! to an
open subset U of X with U N (K')"=! = @. Now we take a cell e; of K such that

erNU # @ and with the property of being of maximum dimension among the cells
of K whose interior meets U. Let r = dim(e;). We have that U C K. As before,

we extend eol to an open subset V of X with VNK™™! =@, VNK" = eol. So
Une, = UNV is open in X. Proceeding analogously, since ¢; ~ CX" 1A — X1 4,
we can choose a cell ey of e; (of type S°) with maximum dimension such that
W =¢en(Uney) #@. Again, W is open in X. Let s = dimey. So W is open in
o [e]

ex >~ D? and s <r+ k <n+k <. On the other hand, W must meet the interior

of some cell of type S° belonging to one of the cells of X’ with dimension greater
than or equal to [ (since U N (K')!~! = @). So, a subset of W is homeomorphic to

an open set of D? with ¢ > [, a contradiction. O
Recall that a topological space Y is T1 if the points are closed in X.

Proposition 2.12. Let A be a pointed T1 topological space, let X be a CW(A)
and K C X a compact subspace. Then K meets only a finite number of interiors of
cells.
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[e] [e]
Proof. Let A = {a/ K Nel> # @}. For each o € A choose z, € K Nel~. We
want to show that for any o € A there exists an open subspace U, C X such that

Uy D el and zg ¢ U, for any 5 # a.
For each n, let J,, be the index set of the n-cells. We denote by ¢” the attaching

map of e and by fZ its characteristic map.
[e]

Fix g8 € A. Take U; = egﬁ, which is open in X"2. If ng = —1, we take Uy =
(V A—{z.})Vv( V A), which is open in the 0-skeleton.
a€eJoNA a€Jo—A

Now, for ng+n—1 > 1 we construct inductively open subspaces U,, of Xnotn-l
with U,y C U,, U, N X™#*"=2 = U,,_; and such that x,, ¢ U, if a # 3.

If the base point ag ¢ U,,_1, we take

Un=Un1 U U Fie((ga=) " (Un—1) x (1 = £q,1])

a€Jngin—1

with 0 < g, < 1 chosen in such a way that z,, ¢ U, if a # . Note that U, is open
in Xnetn-l,
If ag € U,,_1 we take

Up=Up 1 U U fga(((gga)_l(Unfl)

O‘e‘]"ﬂ‘*'"_l
X(1—ea, 1)U (Wy, x DU (ST 1A x [0,€))))

with W, = V. N (97) Y (U,—_1), where V,, C 3"+ "~1 4 is an open neighbour-
hood of the base point not containing z/, (where z, = f2=(z),,ts)), and 0 < g4 < 1,
0 < ¢!, < 1, chosen in such a way that x, ¢ U, if « # . Note that U,, is open in
Xn;g«#nfl.

[e]
We set Ug = |J Up. Thus K C |J el C |J U,, and x4 ¢ Ug if a # (. Since
neN aEA aEA
{Ua}aen is an open covering of K which does not admit a proper subcovering, A

must be finite. O

Lemma 2.13. Let A and B be Hausdorff spaces and suppose X is obtained from
B by attaching cells of type A. Then X is Hausdorff.

Proof. Let x,y € X. If x,y lie in the interior of some cell, then it is easy to choose
the open neighbourhoods. If one of them belongs to B and the other to the interior
of a cell, let’s say « € el'», we work as in the previous proof. Explicitly, if z = f,(a,t)
with a € ™71 A, t € I then we take U’ C ©™= "1 A open set such that ¢ € U’ and
ag ¢ U', where ag is the basepoint of "1 A. We define U = f,(U’ x (¢/2,(1 +
t)/2)), and V = X — fo (U’ x [t/2,(1 +1)/2)).

If x,y € B, since B is Hausdorff there exist U’, V' C B open disjoint sets such
that z € U’ and y € V'. However, U’ and V' need not be open in X. Suppose first
that z, y are both different from the base point. So we may suppose that neither
U’ nor V' contain the base point. We take

U=0"U | fal(ge) " (T") x (1/2;1])

acJ
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V=V"U{J/fallga) " (V") x (1/2;1)

acJ

If = is the base point then we take

U=U"UJfall(92)""(U") x I) U (E" 71 A x [0;1/2)))
aelJ

O

Proposition 2.14. Let A be a Hausdorff space and let X be a CW(A). Then X is
a Hausdorff space.

Proof. By the previous lemma and induction we have that X" is a Hausdorff space
for all n > —1. Given x,y € X, choose m € N such that z,y € X™. As X™ is a
Hausdorff space, there exist disjoint sets Uy and Vj, which are open in X" such
that x € Uy and y € Vj. Proceeding in a similar way as we did in the previous
results we construct inductively sets Uy, Vi for k € N such that Uy, Vj, € X™F are
open sets, U, NV = @, Uy N XML = U1 and V, N X™TrF—1 = V., for all
ke N. We take U = Uy, V= V. O

Remark 2.15. Let X be a CW(A) and S C X a subspace. Then S is closed in X if
and only if S Nel is closed in e} for all n, a.

Lemma 2.16. Let X, Y be CW(A)’s, B C X a subcomplex, and f : B — Y a
cellular map. Then the pushout

B Y
zi push \L
X B
is a CW(A).

Proof. We denote by {e’ ,}acs, the n-cells (of type A) of the relative CW(A)-
complex (X, B) and by {e} ,}aes; the n-cells of Y. We will construct X . Y at-

taching the cells of Y with the same attaching maps and at the same time we will
attach the cells of (X, B) using the map f: B — Y.
Let JJ = JoUJ} and Z° = \/ A. We define fy: X° — Z° by fo|po = f|po and
aeJy
fol U ey . the inclusion.

aeJy

Suppose that Z" ! and f,_; : X"~ ! — Z"! with f,_1|gn—1 = f are defined.
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We define Z™ by the following pushout.

+ 9o
V Zn—lA aeJy!

- > Zn—l

aeJ!!
zi push Gn—1
cer—lg

aé{h’f + fi 7"

where J/! = J, U J/, and

"o fn—loga ifaEJn
o gl if e J)

where g,, and g/, are the attaching maps. We define f,, : X™ — Z" by f,|p» = f|pn,
folxn—1 = fno1 and fy] U ex, = f(;/ (e fu(fa(x)) = f(;/(x)) Note that f, is well

a€dn
defined.
Let Z be the colimit of the Z™. By construction it is not difficult to verify that
Z satisfies the universal property of the pushout. O

Corollary 2.17. Let X be a CW(A) and B C X a subcomplex. Then X/B is a
CW(A).

Theorem 2.18. Let X be a CW(A). Then the reduced cone CX and the reduced
suspension XX are CW(A)’s. Moreover, X is a subcomplex of both of them.

Proof. By the previous lemma, it suffices to prove the result for CX.

Let e be the n-cells of X and, for each n, let J, be the index set of the n-
cells. We denote by g the attaching maps and by f the characteristic maps. Let
in—1: X"t — X™ be the inclusions. We construct Y = CX as follows.

Let YO= \/ A= X"

aedy
We construct Y'! from Y and from the O-cells and the 1-cells of X by the pushout

+ 94
acJ
\/ A 1‘> YO
acJ]
zl push i
V CA |
_—
acJ] + £

aeJ{
where J; = Jo U J;. The maps g/, for « € Jj, are defined as
; o ifaedy
Yo = Jgo faed;

and i, : A — \/ A is the inclusion of A in the a-th copy. Note that X! is a
acJo
subcomplex of Y.
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Note also that the 1-cells of Y are divided into two sets. The ones with a € J;
are the 1-cells of X, and the others are the cone of the 0-cells of X.
Inductively, suppose we have constructed Y"1, We define Y™ as the pushout

/

+ 9.
\/ En_lA aeJl,

- s> vn—1
aelJ)], Y

il push A

n—1
\V Csnla o
C!EJ;L + f’
aeJ], «

where J/, = J,_1 U J, and

1) Yo for a € J,
o = faUCgy forae J,_1.

We prove now that Y™ = CX"~ 1 U Je?. We have the following commutative
(03

diagram.

( 4+ g,)vid d+( + g.)

V Zn—lAaeJn_1 Yn—l V. v En—lA a€dn Y"—l

acJ!, aedy,

aé/JaiJ, iin_lvn!‘fﬁ push

V CcxtA CcXnlv ) cEnlA CX" L uJen

aelJ), ( . fL)vid acdn Id+( & 7a) o
a€dp_1 *EIn

The right square is clearly a pushout. To prove that the left square is also a
pushout it suffices to verify that the following is also a pushout.

/

+ 9.
v En—lA a€d, _q Yn—l — an—2 U U en—l

[e%

a€Jp_1 a€d, 1
QEXLIZ\L inc
n—1
V Cx" A oxn-1
a€dn—1 —+ f/
«
a€dp_1

For simplicity, we will prove this in the case that there is only one A-(n-1)-cell.
Let
j:urlA - CxnlAa
i1 : C(X"71A) x {1} — CCxn 14
in: (B"71A) x {1} x [/ ~— CCE"~ 1A
i:X"A =034 LAJ Cxr—14A - CxrAa

be the corresponding inclusions.
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Let ¢ : CC(Z""tA) — CX(X"1A) be a homeomorphism, such that p=1i =
i1 + i2. Note that Cj = i5. There are pushout diagrams

C
EnflA 9 anl CznflA 4“[’) anfl
jl push linc Cj—izl push lCinc
CEnIA — > X" = X"l uen CCEn1A —5= CX™

It is not hard to check that the diagram

nA _— n— n— f+C
by A—CE 1AE4JCE 1A—g>CXn71U6n

CX"A — cxn
(ChHe

satisfies the universal property of pushouts.
Now we take Y to be the colimit of Y™, which satisfies the desired properties. [

Remark 2.19.

1. The standard proof of the previous theorem for a CW-complex X uses the
fact that X x I is also a CW-complex. For general cores A, it is not always
true that X x I is a CW(A)-complex when X is.

2. It is easy to see that if X is a CW(A), then ¥X is a CW(A). Just apply
the ¥ functor to each of the pushout diagrams used to construct X. In this
way we give ¥ X a CW(A) structure in which each of the cells is the reduced
suspension of a cell of X. This is a simple and interesting structure. However,
it does not have the property of having X as a subcomplex.

Lemma 2.20. Let A be a topological space and let (X, B) be a relative CW(A) (resp.
a generalized relative CW(A)). Let Y be a topological space, and let f: B —Y be
a continuous map. We consider the pushout diagram

Then (X ngJ YY) is a relative CW(A) (resp. a generalized relative CW(A)).

Moreover, if (X, B) has a CW(A)-stucture of dimensionn € Ny (resp. a CW(A)-
structure with a finite number of layers) then (XJLBJY, Y) can also be given a CW(A)-

stucture of dimension n (resp. a CW(A)-structure with a finite number of layers).
Theorem 2.21. Let A be a CW(B) of finite dimension and let X be a generalized

CW(A). Then X is a generalized CW(B). In particular, if A is a CW-complex of
finite dimension then X is a generalized CW-complex.


http://jhrs.rmi.acnet.ge

Journal of Homotopy and Related Structures, vol. 1(1), 2006 257

Proof. Let
x=X0 5 X' S X"

be a generalized CW(A) structure on X. Then, for each n € N we have a pushout
diagram

+ Yo
Cp=\ Ztel4_ oc/
—_—
acJ

il push

Dy =(V A)V(VCEr—t4)
a€Jy aed + fa

)(nfl

where n, € N for all o € J.

We have that (D,,,C,,) is a relative CW(B) by 2.18, and it has finite dimension
since A does. So, by 2.20, (X", X"~ 1) is a relative CW(B) of finite dimension. Then,
for each n € N, there exist spaces Y, for 0 < j < m,,, with m,, € N such that Y/ is
obtained from Y,J~! by attaching cells of type B of dimension j and Y,/ ! = X"~1,
Y = X™. Thus, there exists a diagram

x=X'=v' -V -V - .. Y™ =X'=
Y, ' sy =X =Y

where each space is obtained from the previous one by attaching cells of type B. It
is clear that X, the colimit of this diagram, is a generalized CW(B). O

In the following example we exhibit a space X which is not a CW-complex but
is a CW(A), with A a CW-complex.

Example 2.22. Let A = [0; 1]U{2}, with 0 as the base point. We build X as follows.
We attach two O-cells to get AV A. We will denote the points in AV A as (a, ),
where a € A and j = 1,2. We define now, for each n € N, maps g, : A — AV A
in the following way. We set g,(a) = (a,1) if a € [0;1] and g,(2) = (1/n,2). We
attach 1-cells of type A by means of the maps g,,. By a similar argument as the one
in 2.4, the space X obtained in this way is not a CW-complex.

If A is a finite dimensional CW-complex and X is a generalized CW(A), the
previous theorem says that X is a generalized CW-complex, and so it has the ho-
motopy type of a CW-complex. The following result asserts that the last statement
is also true for any CW-complex A.

Proposition 2.23. If A is a CW-complex and X is a generalized CW(A) then X
has the homotopy type of a CW-complex.

Proof. Let
xCX'CX?C...CcX"C...
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be a generalized CW(A) structure on X. We may suppose that all the 0-cells are
attached in the first step, that is,

X! = \/A v \/2"aA
3 «

with n, € N. It is clear that X' is a CW complex.

We will construct inductively a sequence of CW-complexes Y,, for n € N with
Y,_1 C Y, subcomplex and homotopy equivalences ¢,, : X™ — Y, such that
¢n|X"—1 = Pp_1.

We take Y7 = X! and ¢; the identity map. Suppose we have already constructed
Yi,..., Y, and ¢1,..., ¢ satisfying the conditions mentioned above. We consider
the following pushout diagram.

t9a
yma ey
ey
\(éll push ir  push l’y,’c
CznailA k+1 /
\r{ T X 8 Yin

Note that § is a homotopy equivalence since iy is a closed cofibration and ¢y is
a homotopy equivalence.
We deform ¢y, o (+9g4) to a cellular map ¢ and we define Yj 1 as the pushout
(03

\/ZTL"‘_IA P Yk
\éil push L"/k
YCZ"“_lA — Y

There exists a homotopy equivalence k : Y 41 — Yeq1 with kfy;, = Id. Let
ix : X* — X**1 be the inclusion. Then kBiy = kv, ¢x and kv}, = 7 is the inclusion.
Let ¢r+1 = kB. Then, ¢4 is a homotopy equivalence and ¢p41|x+ = Pk

We take Y to be the colimit of the Y,,’s. Then Y is a CW-complex. As the
inclusions iy, v are closed cofibrations, by proposition A.5.11 of [3], it follows that
X is homotopy equivalent to Y. O

We prove now a variation of theorem 2.21.

Theorem 2.24. Let A be a generalized CW(B) with B compact, and let X be a
generalized CW(A). If A and B are T1 then X is a generalized CW(B).

Proof. Let

x=X" 5 X' 5. S X" ...

be a generalized CW(A)-structure on X. Let C,,, D,, be as in the proof of 2.21.
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We have that (D,,,C,) is a relative CW(B) by 2.18. By 2.20, (X", X"~ 1) is also
a relative CW(B), but it need not be finite dimensional, so we can not continue
with the same argument as in the proof of 2.21. But using the compactness of B,
we will show that the cells of type B may be attached in a certain order to obtain
spaces Z" for n € N such that X is the colimit of the Z™’s.

Let J denote the set of all cells of type B belonging to some of the relative
CW(B)’s (X", X" 1) for n € N. We associate an ordered pair (a,b) € (Np)? to
each cell in J in the following way. Note that each cell of type B is included in
exactly one cell of type A. The number a will be the smallest number of layer in
which that A-cell lies. In a similar way, if we regard that A-cell as a relative CW(B)
(Cxn=1A, 3"~ A) (or more precisely, the image of this by the characteristic map),
we set b to be the smallest number of layer (in (CX"~'A,¥"1A)) in which the
B-cell lies. If e is the cell, we denote ¢(e) = (a,b).

We will consider in (Ng)? the lexicographical order with the first coordinate
greater than the second one.

Now we set the order in which the B-cells are attached. Let J; be the set of all
the cells whose attaching map is the constant. We define inductively J,, for n € N
to be the set of all the B-cells whose attaching map has image contained in the
union of all the cells in J,_;. Clearly J,_1 C J,. We wish to attach first the cells
of Ji, then those of Jy — Jq, etc. This can be done because of the construction of

the J,. We must verify that there are no cells missing, i.e., that J = J J,.
neN

Suppose there exists one cell in J, which we call e;, which is not in any of the
Jn. The image of its attaching map, denoted K, is compact, since B is compact and
therefore it meets only a finite number of interiors of A-cells. For each of these cells

e we consider the relative CW(B) (ex,ea — ei;), where e 4 is the cell of type A.

Then K Ney is closed in K and hence compact, so it meets only a finite number
of interiors of B-cells of the relative CW(B) (ex,e4 — €4).

Thus K meets only a finite number of interiors of B-cells in J.

This implies that K, which is the image of the attaching map of e;, meets the
interior of some cell e; which does not belong to any of the J,, because of the
finiteness condition.

Recall that ez is an immediate face of ey, which easily implies that ¢(e2) < @(e1).

Applying the same argument inductively we get a sequence of cells (e, )nen such
that ¢(ent1) < @(ey) for all n.

But this induces an infinite decreasing sequence for the lexicographical order,
which is impossible. Hence, J = |J Jp,.
neN
Let Z" = |J e. It is clear that (Z", Z"1) is a relative CW(B).
ecJ,
Since colimits commute, we prove that X = colim Z" is a generalized CW(B)-
complex.

O
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3. The descriptive approach

We will investigate now the descriptive approach and compare it with the con-
structive approach introduced in the previous section. We shall prove that in many
cases a constructive CW(A)-complex is the same as a descriptive one.

As before, let A be a fixed pointed topological space.

Definition 3.1. Let X be a pointed topological space (with base point z). A
cellular complex structure of type A on X is a collection K = {e? : n € Ny, a € J,,}
of subsets of X, which are called the cells (of type A), such that g € e? for all n
and «, and satisfying conditions (1), (2) and (3) below.

Let K* = {e’,r < n,a € J,} for n € Ng, K™t = {{xo}}. K" is called the
n-skeleton of K. Let |[K™| = | e}, |[K"| C X a subspace.

r<n
acJ,

We call e = e N|K"~ | the boundary of the cell e? and e = e —e™ the interior
of the cell e}.
The collection I must satisfy the following properties.

(1) X = Ueg =IK|

erNe >m=n,a=
2) egNep #2 8
(3) For every cell e with n > 1 there exists a continuous map

L]
n

zveasz)

fr(CEm A S A ag) — (e

such that f? is surjective and f7 : CX""1A — " 14 — " is a homeomor-
phism. For n = 0, there is a homeomorphism f2 : (A, ag) — (€%, zo).

The dimension of K is defined as dim K = sup{n : J,, # @}.

Definition 3.2. Let K be a cellular complex structure of type A in a topological
space X. We say that IC is a cellular CW-complex with base A if it satisfies the
following conditions.

(C) Every compact subspace of X intersects only a finite number of interiors of
cells.

(W) X has the weak (final) topology with respect to the cells.
In this case we will say that X is a descriptive CW(A).

We study now the relationship between both approaches.

Theorem 3.3. Let A be a T1 space. If X is a constructive CW(A), then it is a
descriptive CW(A).

Proof. Let K = {el}n.o U{{zo}}. It is not difficult to verify that /C defines a cellular
complex structure on X.

It remains to prove that it satisfies conditions (C) and (W). Note that condition
(C) follows from 2.12, while (W) follows from 2.15. O
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Note that the hypothesis of T1 on A is necessary. For example, take A = {0,1}
with the indiscrete topology and 0 as base point. Let X = \/ A. The space X also
jeEN
has the indiscrete topology and it is a constructive CW(A). If it were a descriptive
CW(A), it could only have cells of dimension 0 since X is countable. But X is not
finite, then it must have infinite many cells, but it is a compact space. This implies
that (C) does not hold, thus X is not a descriptive CW(A).

Theorem 3.4. Let A be a compact space and let X be a descriptive CW(A). If X
is Hausdorff then it is a constructive CW(A).

Proof. We will prove that |[K"| can be obtained from |K"~!| by attaching A-n-cells.

For n = 0 this is clear since we have a homeomorphism \/ f2: \/ A — |K°|.
a€Jy a€Jo

For any n € N, there is a pushout

+ falgn-1a
EnflA a€Jn _
aé(]n |1Cn 1|
zl push J/
cEr—1tA
Oté{]n + fr |]Cn‘

acdn

The topology of |K"| coincides with the pushout topology since X is hausdorff
and A is compact. O

It is interesting to see that 3.4 is not true if X is not Hausdorff, even in the case
A is compact and Hausdorff. For example, take A = S° with the usual topology, and

X = [-1;1] with the following topology. The proper open sets are [—1;1), (—1;1]
and the subsets U C (—1;1) which are open in (—1;1) with the usual topology. It
is easy to see that X is a descriptive CW(A). We denote D' = [—1;1] with the

usual topology. Take €® = {—1;1}, e = X. Let f: A — {—1;1} and f!: CA =
D' — ¢! be the identity maps on the underlying sets. Both maps are continuous and

surjective. The maps f° and f! o D' — ¢! are homeomorphisms. So conditions
D

(1), (2) and (3) of the definition of cellular complex are satisfied. Condition (C) is
obvious, and (W) follows from the fact that e! = X. So X is a descriptive CW(A).
But it is not a constructive CW(A) because it is not Hausdorff.

In a similar way one can define the notion of descriptive generalized CW(A)-
complez. The relationship between the constructive and descriptive approachs of
generalized CW(A)-complexes is analogous to the previous one.

4. Changing cores

Suppose we have two spaces A and B and maps a: A — B and §: B — A. Let
X be a CW(A). We want to construct a CW(B) out of X, using the maps « and £.
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‘We shall consider two special cases. First, we consider the case fa = Id 4, that is,
A is a retract of B. In this case, we construct a CW(B) Y such that X is a retract
of Y.

We denote g7, f7 the adjunction and characteristic maps of the A-n-cells (v €
Jn). Let YO = \/ B and let ¢y : X° — Y? be the map Va and let ¢ : Y? — X©

eJo

be the map \/ﬁ.7 Clearly ¥gpg = Id xo.

By induction suppose we have constructed Y~ and maps ¢,_; : X? ! — Y71
and ¥,_1 : Y"1 — X" ! such that 9,_10,—1 = Idx-1 and such that ¢y, ¥y
extend @p_1, Yr—1 for all £ < n — 1. We define Y™ by the following pushout.

en1( + giu"T1p)
~EJIn

\/ En_lB% n—1
vEJn v
Vil push J
V cxr-lp n
YETn + hD Y
YEIn
Since
+ frCE™MIp) (Vi) = + (frCErTis
(4 BOSTB)(vI) = 4 (fC85)

+ n'znfl = + (i nEnfl
E(iSIE) = 4 (inegyzng)
— inczbn,l g—] (apn,ng;anlﬂ)

YEIn

there exists a map ¢, : Y" — X" extending ¢, such that ¢, + hJ =
+ (f;zcznflﬁ) and ¢pnj = incyp_1.
YE€JIn

On the other hand we have the following commutative diagram

\/ Y| 'YGIng’y 1
n—
v€Jn X
%a Pn—1
Wn—l( + nEnflﬂ
n—1 yean]
Vi 'yé/l by B Yn—l
inc
1 Vi
V CxnlA . .
YEJIn + f7 A !
J .
@:a e o ¢n
V Czn1B A
YEIn + kD
YEJIn

where the front and back faces are pushouts. Then the dotted arrow exists and we
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have @, = jop—1+( + hZ{LCE"_la). Also, ¥, = Idxn, since
YEJIn

Unpn = Unjpn_1 + ( 2} wnh:(}znfla)
YEJIn
= incn_1on-1 +( + fresnTlpesnla) =
’YE n
=inc+ ( + fI') =Idx~
1 (’)’EJnf’y) X

Let Y = colim Y. Then there exist maps ¢ : X — Y and ¥ : ¥ — X induced by
the 9,,’s and ¢,,’s and they satisfy ¢ = Idx. So, X is a retract of Y.

The second special case we consider is the following. Suppose A and B have
the same homotopy type, that is, there exists a homotopy equivalence §: B — A
with homotopy inverse . Suppose, in addition, that the base points of A and B
are closed. Let X be a CW(A). We will construct a CW(B) which is homotopy
equivalent to X.

Again we take Y° = \/ B. Let ¢g : XY — Y? be the map Va. So, ¢g is a
YE€Jo
homotopy equivalence.

Now, let n € N and suppose we have constructed Y"1 and a homotopy equiv-
alence p,_1 : X" ! — Y"1 We define Y™ as in the first case. Consider the
commutative diagrams

+ gryenT'B
V wn-1lp vedn Y xn-1
v€Jn
‘Pn—l( + "En716)
n—1 Inl Y
iB ’Yé{]nz B i Yn—l
’ Jinc
\/ Cznle v anl U en j
YEJIn - B
\/ Cxn1B Sy
YEJIn + h::
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. g} g:}E"*IB
\/ ) B YEIn Xn—l
vE€Jn
V\Z’:lﬁ K
+ g7
1 L
iB \/ A e Xn_l
YE€In
inc
V Cerip - g
ey X" U@% inc
vETn l N
T P2
vCE’”‘xﬁ
v cyn—14 {Xn
YEJIn + fy
YEIn

Since the front and rear faces of both cubical diagrams are pushouts, the dotted
arrows p; and py exist. Now ¢,_1, VE" 13 and VCX" 13 are homotopy equiva-
lences and i4 and ip are closed cofibrations. Then, by proposition 7.5.7 of [2], p;
and po are homotopy equivalences. We have the following commutative diagram.

$Pn—1 Id
Yn—l - Xn—l e N Xn—l

)
Y" p1 anl Ue% D2 X”

where 7, j and k are the inclusions. Let py ! be a homotopy inverse of py. Then
plpglk = p1p2_1p2j ~ p1j = i@,_1. Since k : X* 1 — X" is a cofibration, ¢,_1
extends to some ¢, : X" — Y™ and ¢, is homotopic to p;p; 1 and thus, it is a
homotopy equivalence.

Again, we take Y = colim Y™. Then the maps ¢, for n € N induce a map
¢ : X — Y which is a homotopy equivalence by proposition A.5.11 of [3].

We summarize the previous results in the following theorem.

Theorem 4.1. Let A and B be pointed topological spaces. Let X be a CW(A), and
letaw: A— B and 8 : B — A be continuous maps.

i. If Ba =1dy, then there exists a CW(B)Y and maps ¢ : X =Y and¢: Y —
X such that v = Idx.

1. Suppose A and B have closed base points. If 8 is a homotopy equivalence, then
there exists a CW(B)Y and a homotopy equivalence ¢ : X — Y.

1i. Suppose A and B have closed base points. If Ba = Ida and af ~ Id4 then
there exists a CW(B)Y and maps ¢ : X — Y and ¢ :' Y — X such that
Yo =Idx and ip ~ Idy.

Note that item (iii) follows by a similiar argument.

The previous theorem has an easy but interesting corollary.
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Corollary 4.2. Let A be a contractible space (with closed base point) and let X be
a CW(A). Then X is contractible.

This corollary also follows from a result analogous to Whitehead Theorem which
we prove in the next section.

5. Homotopy theory of CW(A)-complexes

In this section we start to develop the homotopy theory of CW(A)-complexes.
The main result of this section is theorem 5.10 which generalizes the famous White-
head Theorem.

Let X be a (pointed) topological space and let r € Ny. Recall that the sets 7/ (X)
are defined by 74(X) = [£"A, X], the homotopy classes of maps from X" A to X.
It is well known that these are groups for » > 1 and Abelian for r > 2.

Similarly, for B C X one defines 72(X,B) = [(CX""1A4,%""1A), (X, B)] for
r € N, which are groups for r > 2 and Abelian for r > 3.

Note that 75° (X) = m,(X) and 75" (X) = 7,4, (X). Note also that 72 (X) are
trivial if A is contractible.

Definition 5.1. Let (X, B) be a pointed topological pair. The pair (X, B) is called
A-0-connected if for any given continuous function f : A — X there exists a map
g : A — B such that ig ~ f, where i : B — X is the inclusion.

|

Definition 5.2. Let n € N. The pointed topological pair (X, B) is called A-n-
connected if it is A-O-connected and 72 (X, B) =0 for 1 <r < n.

—_—
g

2l

X

Definition 5.3. Let f : X — Y be a continuous map, and let A be a topological
space. The map f is called an A-0-equivalence if for any given continuous function
g: A —Y, there exists a map h: A — X such that fh ~g.

* — X

| A

AT>Y

Given n € N, the map f is called an A-n-equivalence if it induces isomorphisms
fe 1 mA(X, 20) — 7Y, f(0)) for 0 < 7 < n and an epimorphism for 7 = n.
Also, f is called an A-weak equivalence if it is an A-n-equivalence for all n € N.

Remark 5.4. Let f: X — Y be map and let n € N. We denote by Z¢ the mapping
cylinder of f. Then f is an A-n-equivalence if and only if the topological pair (Zy, X)
is A-n-connected.
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Lemma 5.5. Let X, S, B be pointed topological spaces, S C X a subspace, xg € S
and by € B the base points. Let f : (CB,B) — (X,S) be a continuous map. Then
the following are equivalent.

i) There exists a base point preserving homotopy H : (CB x I, B x I) — (X, 5)
such that Hig = f, Hii(x) = zo Vo € CB.

ii) There exists a (base point preserving) homotopy G : CB x I — X | relative to
B, such that Gig = f, Gi1(CB) C S.

iii) There exists a (base point preserving) homotopy G : CB x I — X, such that
Gip = f, Gi;(CB) C S.

Proof. i) = ii) Define G as follows.

_f H([z, £%5].1) fo<s<1-14
Gl s),1) = { H([z,1],2—2s) if1—L<s<1
It is clear that G is well defined and continuous. Note that
Gio([z,5)) = H([z,%],0) = H([z,s],0) = f(z,s)
Gii([z, s]) = H([z,2s],1) =29 € S ifsé%
Gi1([z,s]) = H([z,1],2-2s) € S if s> 3
since H(Bx I)C S.
i1) = 4i1) Obvious.
iii) = i) We define H by
_ [ G(lz,s],20) ifo<t< s
H{lz,s],t) = { Gir(f,s(2—20)) ifL<i<1

O

Lemma 5.6. Let X, Y be pointed topological spaces and let f : X — Y be an
A-n-equivalence. Let r € N, r <n and let i4 : X" 1A — CX""1A be the inclusion.
Suppose that g : X" 1A — X and h: C¥"'A =Y are continuous maps such that
hia = fg. Then, there exists a continuous map k : CL" 1A — X such that kiy = g
and fk~ h rel X771 A.

Zr_lA*g>X

127

CET’lA?Y

Proof. Consider the inclusions ¢ : X — Zy and j:Y — Z¢. Let r: Zy — Y be the
usual retraction. Note that there is a homotopy commutative diagram

Zr—lA*g>X

Ccxr—14 T Zy
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Let H : ¥""'A x I — Z; be the homotopy from jhis to ig defined by H(a,t) =
[g(a),t] for a € "1 A, t € I. Consider the commutative diagram of solid arrows

%0

xrtA YA X T
1S

CEr 1A —> O A x I

Since i4 is a cofibration there exists a map H' such that the whole diagram com-
mutes, which induces a commutative diagram

Zr—lA*g>X

r—1 7
Cxr—A s T
The pair (Z¢, X ) is A-n-connected, so by lemma 5.5 there exists a continuous func-
tion k: CX"'A — X such that kig = g, ik ~ H"i; rel "' A. Then
fk=rik~rH'iy ~rH'ig =rjh=h
Note that the homotopy is relative to X"~ A, thus fk ~ h rel X7~ 1 A. O
Theorem 5.7. Let f : X — Y be an A-n-equivalence (n = oo is allowed) and
let (Z, B) be a relative CW(A) which admits a CW(A)-structure of dimension less
than or equal ton. Let g : B — X and h : Z — Y be continuous functions such

that h|g = fg. Then there exists a continuous map k : Z — X such that k|lg = ¢
and fk ~h rel B.

B——X
7
il K |f
ZT>Y
Proof. Let
S = {(Z,K,K')/)BCZ CZ A—subcomplex , k' : Z' — Z with k'|p =g

and K': Z' x I - Y,K': fk' ~ h|z rel B}
It is clear that S # @. We define a partial order in S in the following way.
(Z' K, K') < (Z",K",K") if and only if Z' C Z" k" |z =K K"|zx1 =K

It is clear that every chain has an upper bound since Z has the weak topology.
Then, by Zorn’s lemma, there exists a maximal element (Z', k', K’). We want to
prove that Z’ = Z. Suppose Z’' # Z, then there exist some A-cells in Z which are
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not in Z’. Choose e an A-cell with minimum dimension. We want to extend the
maps k' and K’ to Z' Ue. If e is an A-O-cell this is easy to do since f is an A-0-
equivalence and all homotopies are relative to the base point. Suppose then that
dime > 1. Let ¢ : (CX""1A,%""1A) — (Z,Z') be the characteristic map of e, let
Y = Plsr—14, and let Z” = Z' U e. We have the following diagram.

’

sria s g s x

al ww] s

Cxr—1A——27"'—>Y
® h g
Here, the homotopy of the right square is relative to B. Let a : I — I be defined
by a(t) = 1 — t. Since iz is a cofibration we can extend K'(Id X «) to some
H:Z7" x I —Y, and then we obtain a commutative diagram

ZT_IALZ/L>X

W e

cyr—ta T> zZ" i Y

By the previous lemma, there exists [ : CX""!A — X such that liy = k¢ and
fl~ Hiy¢ rel 'L A. Let G denote this homotopy.

Now, since the left square is a pushout, there is a map v : Z”” — X’ such that v¢ = [,
viz: = k'. So v extends k’. We want now to define a homotopy K" : fvy =~ h|z~
extending K’. We consider CX"71A4 x [0,2]/ ~ where we identify (b,t) ~ (b,t)
for b € ¥771A, t,¢ € [1,2]. There is a homeomorphism 3 : CX" 1A x [0,2]/ ~—
CY" 1A x I defined by

(la, 5], 555) ifo<t<1
ﬁ([a’s]’t):{ (la, 5] t o2 if1<t<2

2—s
We have the following commutative diagram.

=N
®»®w

7 2—s

Id;

g7 2N g g

iax1dy push izk
K'(Idxa)

r—1 "
() AXIWZ xf

(H(px1d)+G(Idxa)

Note that

(H(gf) X Id]) + G(Id X Oé))ﬂil(iA X Id]) = H(¢ X Id[)(iA X Id]) =
= H(iz/ X Id[)(?/} X Id]) = K/(Id X Oé)(’l/) X Id])

Then, the map K exists. We take K" = IN((Id X ). O
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Remark 5.8. If (Y, B) is a relative CW(A) which is A-n-connected for all n € N
then ¢ : B — Y is an A-n-equivalence for all n € N and we have

Idg
B—>>B
7
J{ - i
Yoy

Thus B is a strong deformation retract of Y. In particular, if X is a CW(A) with
72(X) = 0 for all n € Ny, then X is contractible.

n

The following proposition follows immediately from 5.7.

Proposition 5.9. Let f : Z — Y be an A-n-equivalence (n = oo is allowed) and
let X be a CW(A) which admits a CW(A)-structure of dimension less than or equal
to n. Then, the map f. :[X,Z] — [X,Y] is surjective.

Finally we obtain a generalization of Whitehead’s theorem.

Theorem 5.10. Let X, Y be CW(A)’s and f : X — Y a continuous map. Then f
is a homotopy equivalence if and only if it is an A-weak equivalence.

Proof. Suppose f is an A-weak equivalence. We consider f, : [V, X] — [V, Y]. By
the previous proposition, f, is surjective, then there exists g : ¥ — X such that
fg =~ Idy. Then g is also an A-weak equivalence, so applying the above argument,
there exists an h : X — Y such that gh ~ Idx. Then f ~ fgh ~ h, and so,
gf ~ gh ~1dx. Thus f is a homotopy equivalence. O

We finish with some results concerning the connectedness of CW(A)-complexes.

Lemma 5.11. Let A be an l-connected CW-complex, let B be a topological space,
and suppose X is obtained from B by attaching a 1-cell of type A. Then (X, B) is
(I + 1)-connected.

Proof. Let g be the attaching map of the cell and f its characteristic map. Since A
is an [-connected CW-complex, (CA, A) is a relative CW-complex which is (I 4 1)-
connected. Then there exists a relative CW-complex (Z, A’) such that A is a strong
deformation retract of A’, CA is a strong deformation retract of Z and (Z4/)"*! =
A’ . Let r: A’ — A be the retraction and let ix : B — X be the inclusion. Consider
the pushout

Then (Y, B) is a relative CW-complex with (Y)'*! = B, and hence it is (I + 1)-
connected. The inclusions i : A — A" and j : CA — Z and the identity map of B
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induce a map ¢ : X — Y with pix = iyIldg. Now, i4, i4 are closed cofibrations
and i, j and Idp are homotopy equivalences, then, by proposition 7.5.7 of [2], ¢ is
a homotopy equivalence. Thus, (X, B) is (I + 1)-connected. O

Note that the previous lemma can be applied when attaching a cell of any positive
dimension, since attaching an A-n-cell is the same as attaching a (X"~!A)-1-cell.
The following lemma deals with the case in which we attach an A-0O-cell. The proof
is similar to the previous one.

Lemma 5.12. Let A be an [-connected CW-complex, B a topological space, and
suppose X is obtained from B by attaching a 0-cell of type A (i.e., X = BV A).
Then (X, B) is l-connected.

Now, using both lemmas we are able to prove the following proposition.

Proposition 5.13. Let A be an l-connected CW-complex, and let X be a CW(A).
Then the pair (X, X™) is (n + 1+ 1)-connected.

Proof. Let r <n+1+1and f:(D",S"1) — (X" X"). We want to construct
amap f':(D",8"71) — (X"t X™) such that f/(D") C X", and f ~ f’ rel S"1.
Since f(D") is compact, it intersects only a finite number of interiors of (n + 1)-
cells (note that A is T1). By an inductive argument, we may suppose that we are
attaching just one (n + 1)-cell of type A, which is equivalent to attaching a 1-cell
of type " A. Since X" A is (n + [)-connected, (X" X") is (n + [ + 1)-connected.
The result of the proposition follows. O

Proposition 5.14. Let A be an l-connected CW-complex, with dim(A) = k € Ny,
and let X be a CW(A). Then the pair (X, X™) is A-(n — k + 1 + 1)-connected.

Proof. We prove first the A-0-connectedness in case k < n+ 1+ 1. We have to find
a dotted arrow in a diagram

* > X"

|l

A== X
This map exists because A is a CW-complex with dim(4) = k and (X, X™) is
(n + 1+ 1)-connected.
Now we prove the A-r-connectedness in case 1 < r < n—k+1+ 1. By lemma
5.5, it suffices to find a dotted arrow in a diagram

Sl —— X"

| )

rflrrﬁ
Cxr—A 7 X

This map exists because (CX" 1A, X7"1A) is a CW-complex of dimension 7 + k,
(X,X™) is (n+ 14 1)-connected, and r + k <n+1+ 1. O
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