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We give an extension of the spectral mapping theorem on hypergroups and prove that if K is a
commutative strong hypergroup with ̂K = Xb(K) and κ is a weakly continuous representation of
M(K) on a W∗-algebra such that for every t ∈ K, κt is an ∗-automorphism, spκ is a synthesis set
for L1(K) and κ(L1(K)) is without order, then for any μ in a closed regular subalgebra of M(K)
containing L1(K), σ(κ(μ)) = μ̂(spκ), where spκ is the Arveson spectrum of κ.
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1. Introduction and notation

Hypergroups were introduced in a series of papers by Jewett [1], Dunkle [2], and Spector [3]
in 70’s. They are in fact extensions of topological groups with the difference that hypergroups
do not have necessarily an algebraic structure. Roughly speaking, the product of two elements
of a hypergroup is a probability measure. A hypergroup is a locally compact space which
has enough structure so that a convolution on the space of finite regular Borel measures
can be defined. Therefore, the extension of Fourier analysis on hypergroups is made with
more difficulties and usually with different proofs in the group case. Classical examples of
hypergroups are locally compact groups, the space of conjugacy classes of a compact group,
spaces of orbits in the group of automorphisms, and double-cosets of certain nonnormal
closed subgroups of a compact group. We will state definition and some basic properties of
hypergroups in Section 2. Throughout this paper,K is a commutative strong hypergroup with
̂K = Xb(K). In Section 4, we give some examples of this type of hypergroups. We denote by
M (K) the space of all regular complex Borel measures on K, byM+(K) the subset of positive
measures inM (K), and by δx the Dirac measure at the point x.

A C∗-algebra M is called W∗-algebra if for a Banach algebra M∗, (M∗)
∗ = M. Any W∗-

algebra is unitary (with unit 1M). The famous examples of W∗-algebras are von Neumann
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algebras. We can consider σ(M,M∗) (i.e.,wk∗-) topology onM [4]. In this paper,M is always
a W∗-algebra. We denote by Bσ(M) the set of all (σ(M,M∗), σ(M,M∗))-continuous operators
onM.

Let κ : M(K)→Bσ(M) be a norm-decreasing algebra-homomorphism. For any t ∈ K,we
denote κt = κ(δt). Suppose that κ has the following properties.

(1) For any t ∈ K, κt : M→M is an ∗-automorphism. (Then by [5, Theorem 4.8, page 253]
any κt is an isometry.)

(2) For any x ∈ M and ρ ∈ M∗, the function t �→ 〈κt(x), ρ〉 is continuous.
(3) κe = IM, where e is the identity of K and IM is the identity mapping on M.

Let x ∈ M and ρ ∈ M∗. Obviously for any measure υ ∈ M(K) with finite support, we
have 〈κ(υ)(x), ρ〉 =

∫

K〈κt(x), ρ〉dυ(t). Let μ ∈ M(K). Since the set E containing all measures
in M(K) that have finite support is dense in M(K), there exists a net (υβ) ⊆ E such that υβ→μ
in M(K). Then by [1, Lemma 2.2C], we have

∫

Kfdυβ→
∫

Kfdμ, where f(t) = 〈κt(x), ρ〉 (t ∈ K).
On the other hand, by continuity of κ,

∫

Kfdυβ = 〈κ(υβ)(x), ρ〉→〈κ(μ)(x), ρ〉. Then, for any
μ ∈ M(K) we have

〈

κ(μ)(x), ρ
〉

=
∫

K

〈

κt(x), ρ
〉

dμ(t), (1.1)

where x ∈ M and ρ ∈ M∗.

2. Basic properties of hypergroups

First, we recall the definition and basic properties of a hypergroup. The main references are
[1, 6].

Definition 2.1. Let K be a locally compact Hausdorff space. The space K is a hypergroup if
there exists a binary mapping (x, y) �→ δx∗δy from K ×K into M+(K) satisfying the following
conditions.

(1) The mapping (δx, δy) �→ δx∗δy extends to a bilinear associative operator ∗ from
M(K) ×M(K) intoM (K) such that

∫

K

fd(μ∗ν) =
∫

K

∫

K

∫

K

fd
(

δx∗δy
)

dμ(x)dν(y) (2.1)

for all continuous functions f on K vanishing at infinity.

(2) For each x, y ∈ K the measure δx∗δy is a probability measure with compact support.

(3) The mapping (μ, ν) �→ μ∗ν is continuous from M+(K) × M+(K) into M+(K); the
topology on M+(K) being the cone topology.

(4) There exists an e ∈ K such that δe∗δx = δx = δx∗δe, for all x ∈ K.

(5) There exists a homeomorphism involution x �→ x− from K onto K such that, for all
x, y ∈ K, we have (δx∗δy)− = δy−∗δx− , where for μ ∈ M(K), μ− is defined by

∫

K

f(t)dμ−(t) =
∫

K

f
(

t−
)

dμ(t), (2.2)
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and also,

e ∈ supp
(

δx∗δy
)

iff y = x−, (2.3)

where supp(δx∗δy) is the support of the measure δx∗δy.
(6) The mapping (x, y) �→ supp(δx∗δy) from K × K into the space C(K) of compact

subsets ofK is continuous, where C(K) is given the topology whose subbasis is given
by all

CU,V =
{

A ∈ C(K) : A ∩U/=∅, A ⊆ V
}

, (2.4)

whereU, V are open subsets of K.

Note that δx∗δy is not necessarily a Dirac measure. A hypergroup K is commutative if
δx∗δy = δy∗δx, for all x, y in K. Each commutative hypergroup K carries a Haar measure m
such that δx∗m = m, for all x ∈ K, as shown by Spector [7]. In any commutative hypergroup
K, we have m = m− (see [1, Section 5.3]). Let f, g be Borel functions on K and μ ∈ M(K). For
any x, y ∈ K we denote fx(y) = f(x∗y) := ∫

Kfd(δx∗δy). Also we define

(μ∗f)(x) :=
∫

K

f
(

y−∗x)dμ(y), (f∗g)(x) :=
∫

k

f(x∗y)g(y−)dm(y), (2.5)

where x ∈ K. If x, y ∈ K and A,B ⊆ K, we denote {x}∗{y} = supp(δx∗δy), and A∗B =
⋃

x∈A,y∈B{x}∗{y}.
A complex-valued continuous function ξ on K is said to be multiplicative if ξ(x∗y) =

ξ(x)ξ(y) holds for all x, y ∈ K. The space of all multiplicative functions on K is denoted by
Xb(K). A nonzero multiplicative function ξ on K is called a character if ξ(x−) = ξ(x), for all
x in K. The dual ̂K of K is the locally compact Hausdorff space of all characters with the
topology of uniform convergence on compacta. In general, ̂K is not necessarily a hypergroup.
A hypergroup K is called strong if its dual ̂K is also a hypergroup with complex conjugation
as involution, pointwise product as convolution, that is

η(x)χ(x) =
∫

̂K

ξ(x)dδη∗δχ(ξ), (2.6)

for all η, χ ∈ ̂K and x ∈ K, and has the constant function 1 as the identity element.
For any p > 0, we denote Lp(K) = Lp(K,m) and Lp( ̂K) = Lp( ̂K,π), where π is the

Plancherel measure on ̂K associated with m. The structure space Δ(L1(K)) of Banach algebra
L1(K) doses not necessarily equal with ̂K and we only have Δ(L1(K)) = Xb(K), while ̂K ⊆
Xb(K).

For any f ∈ L1(K) and μ ∈ M(K), the Fourier-Stieltjes transform μ̂ of μ and the Fourier
transform ̂f of f are defined by

μ̂(ξ) =
∫

K

ξ(t)dμ(t), ̂f(ξ) =
∫

K

ξ(t)f(t)dm(t), (2.7)

where ξ ∈ ̂K. For any f, g ∈ L2(K), we have ̂f, ĝ ∈ L2( ̂K) and ̂f∗ĝ = ̂fg [6].
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3. The main result

Recall that for any complex commutative algebraA,Δ(A), the structure space ofA, is a locally
compact Hausdorff space with Gelfand topology and for each a ∈ A, the Gelfand transform â
is in C0(Δ(A)). For an ideal I of A, the hull of I is defined by h(I) = ξ ∈ Δ(A) : â(ξ) = 0 for
every a ∈ I}. For each closed F ⊆ Δ(A), we denote k(F) = {a ∈ A : â(ξ) = 0 for every ξ in
F} and J0(F) = {a ∈ A : â = 0 on some neighborhood of F, and supp(â) is compact}, where
supp(â) is the support of the function â. We denote J(F) = J0(F), the closure of J(F). For any
Banach algebra A, the spectrum of any a ∈ A is denoted by σA(a).

Definition 3.1. The Arveson spectrum of κ is defined by

spκ := h
({

f ∈ L1(K) : κ(f) = 0
})

=
{

ξ ∈ ̂K : for any f ∈ L1(K), κ(f) = 0 implies ̂f(ξ) = 0
}

.
(3.1)

The Arveson spectrum and spectral subspaces on hypergroups have been studied in [8]. In this
paper, we concentrate on an extension of the spectral mapping theorem to hypergroups. The
spectral mapping theorem gives the relation σ(κ(μ)) = μ̂(spκ) for some measures μ ∈ M(K).
In the case that K is a locally compact Abelian group, Connes proved the spectral mapping
theorem for every Dirac measure μ [9]. Then, D’Antoni et al. proved that the spectral mapping
theorem holds for those measures whose continuous part belongs to L1(G) [10]. Furthermore,
Eschmeier proved the spectral mapping theorem for κ as the translation group representation,
in the case that M is Banach algebra L1(G) or M(G) and the convolution operator induced
by μ has the weak 2-SDP [11]. Takahasi and Inoue proved the spectral mapping theorem for
any regular subalgebra ofM(G) in the case that G is compact [12]. Also, Seferoğlu proved that
σ(κ(μ)) = μ̂(spec(κ)) holds when κ(L1(G)) is without order and spκ is a synthesis set for L1(G)
[13]. (A subset C of Banach algebraA is called without order if for all a ∈ A, a.C = {0} implies
a = 0 [14].)

A Banach algebra A is called regular if for any closed subset E of Δ(A) and any ϕ ∈
Δ(A) \E, there is an a ∈ A such that â(ϕ) = 1 and â ≡ 0 on E. For any commutative and strong
hypergroupK with ̂K = Xb(K), L1(K) is a regular Banach algebra [15]. Also, since the Fourier
transform̂ : L1(K)→C0( ̂K) is a norm-decreasing ∗-homomorphism, L1(K) is semisimple. If A
is a regular commutative Banach algebra, then for any closed F ⊆ Δ(A), h(J(F)) = F. If A is
also semisimple, then k(F) and J(F) are the largest closed ideal and the smallest ideal with hull
equal to F, respectively [16]. F is called a set of spectral synthesis if and only if J(F) = k(F).
Then, for such sets, k(F) is the only closed ideal in A such that its hull is F.

It is well known that the correspondence F �→ h(k(F)) is a proper closure operation and
that the topology onΔ(A) determined by this operation, called hull-kernel topology, is weaker
than the Gelfand topology [17]. A commutative Banach algebra A is regular if and only if the
Gelfand and the hull-kernel topologies coincide on Δ(A) (see [18, Theorem 3.2.10]). Another
property of commutative regular semisimple Banach algebras appears in the following lemma.
It is given here for the convenience of the reader.

Lemma 3.2. Let A be a commutative regular semisimple Banach algebra, let B be a unitary Banach
algebra (with unit 1B), and let κ : A→B be a continuous one-to-one homomorphism.
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(i) If A is unitary with unit 1A and κ(1A) = 1B, then for any a ∈ A,

σB

(

κ(a)
)

= â
(

Δ(A)
)

. (3.2)

(ii) If A is without unit, then for any a ∈ A,

σB

(

κ(a)
)

= â
(

Δ(A)
)

. (3.3)

Proof. See [13, Lemmas 1 and 2] for the proof.

Lemma 3.3. Suppose that κ : M(K)→B(M) is the function introduced in Section 1. Let κ(L1(K)) be
without order and let spκ be a spectral synthesis set for L1(K). Then, κ(μ) = 0 if and only if μ̂|spκ = 0.

Proof. Let μ ∈ M(K) and κ(μ) = 0. For any f ∈ L1(K), μ∗f ∈ L1(K) and κ(μ∗f) = κ(μ)κ(f) = 0.
Then

μ∗f ∈ kh
({μ∗f}) ⊆ kh

({

f ∈ L1(K) : κ(f) = 0
})

= k(spκ). (3.4)

So μ̂(ξ) ̂f(ξ) = ̂μ∗f(ξ) = 0, where ξ ∈ spκ. For each ξ ∈ ̂K, there exists a g ∈ C+
c ( ̂K) such

that ξ ∈ supp(g). We can consider h ∈ Cc(K) such that ̂h ≥ 0 and ̂h > g on supp(g) (see [6,
Proposition 2.2.5]). In other words, the set { ̂f : f ∈ Cc(K)} separates the points of ̂K. Then, for
any ξ ∈ spκwe have μ̂(ξ) = 0.

Conversely, let μ ∈ M(K) and μ̂|spκ ≡ 0. Then, for each ξ ∈ ̂K and f ∈ L1(K) we have
̂μ∗f(ξ) = μ̂(ξ) ̂f(ξ) = 0. Now, since k(spκ) is the only closed ideal in L1(K)whose hull is spκ,

μ∗f ∈ k(spκ) = kh
({

f ∈ L1(K) : κ(f) = 0
})

=
{

f ∈ L1(K) : κ(f) = 0
}

. (3.5)

Therefore, κ(μ)·κ(L1(K)) = 0. Since κ(L1(K)) is without order, κ(μ) = 0.
Let M0(K) be a closed subalgebra of M(K) which contains L1(K). Then, ̂K can be

considered as a subset of Δ(M0(K)) and for every μ in K, the restriction of the Gelfand
transform Tμ of μ to ̂K coincides with the Fourier-Stieltjes transform μ̂ of μ. This implies that
M0(K) is a semisimple algebra.

Theorem 3.4. Suppose that κ : M(K)→Bσ(M) is the function introduced in Section 1. Let κ(L1(K))
be without order and let spκ be a spectral synthesis set. Then, for any μ ∈ M0(K),

σB(M)
(

κ(μ)
)

= μ̂(spκ), (3.6)

whereM0(K) is a closed regular subalgebra ofM(K) containing L1(K).

Proof. Since L1(K) ⊆ M0(K) ⊆ M(K), ̂K ∼= Δ(L1(K)) is a subset of Δ(M0(K)). For each μ ∈
M0(K), we denote by Tμ the Gelfand transform of μ. We have Tμ ∈ C0(Δ(M0(K))) and μ̂ =
Tμ|

̂K. The function κ̃ : M0(K)/Iκ→B(M) naturally defined by κ̃(μ+ Iκ) := κ(μ) is a continuous
one to one homomorphism, where Iκ = {μ ∈ M0(K) : κ(μ) = 0}. (Iκ clearly is a closed ideal of
M0(K).)

Since 0→Iκ→M0(K)→M0(K)/Iκ→0 is an exact sequence, by [18, page 324] we have
Δ(M0(K)/Iκ) ∼= h(Iκ). Consider spκ as a subset ofΔ(M0(K)) and denote by spκg the closure of
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spκ in Gelfand topology. By regularity of M0(K), Gelfand and hull-kernel topologies coincide
onΔ(M0(K)). So spκg is closed in hull-kernel topology. But the only hull-kernel-closed subsets
of Δ(M0(K)) are hull-sets. Then, there exists a subset I ⊆ M0(K) such that spκg = h(I).
Therefore,

hk
(

spκg) = hkh(I) = h(I) = spκg. (3.7)

On the other hand, for every μ ∈ M0(K), μ ∈ k(spκg) if and only if Tμ = 0 on spκg . This is also
equivalent to vanishing μ̂ on spκ. By Lemma 3.3, this holds if and only if κ(μ) = 0. Therefore,
h(Iκ) = spκg .

By the regularity of M0(K), the Banach algebra M0(K)/Iκ is also regular. For any
μ ∈ M0(K), μ + Iκ ∈ rad(M0(K)/Iκ) if and only if μ̂ + Iκ = 0 on Δ(M0(K)/Iκ). This is
also equivalent to vanishing Tμ on h(Iκ). By the previous paragraph, this holds if and only
if κ(μ) = 0, that is, μ ∈ Iκ. Therefore, M0(K)/Iκ is a semisimple algebra.

In the sequel, we consider two cases.

Case 1. Let spκg be compact. There exists υ ∈ M0(K) such that Tυ = 1 on a neighborhood spκg .
Then, for any μ ∈ M0(K)we have

T(μ∗υ − μ) = TμTυ − Tμ = 0 on spκg. (3.8)

So μ̂∗υ − μ = 0 on spκ and by Lemma 3.3 μ∗υ−μ ∈ Iκ(�). Then, for any μ ∈ M0(K), (μ+ Iκ)(υ+
Iκ) = μ + Iκ. By (�), for any f ∈ L1(K),

0 = κ(υ∗f − f) = κ(υ)κ(f) − κ(f) =
(

κ(υ) − IB(M)
)·κ(f). (3.9)

That is (κ(υ) − IB(M))·κ(L1(K)) = 0. Now, since κ(L1(K)) is without order, κ(υ) = IB(M).
Therefore, κ̃(υ + Iκ) = IB(M). Now, we are in a position using Lemma 3.2(i) for κ̃, M0(K)/Iκ
and B(M). Then, for every μ ∈ M0(K),

σB(M)
(

κ̃
(

μ + Iκ
))

= μ̂ + Iκ

(

Δ
(

M0(K)
Iκ

))

, (3.10)

and so

σB(M)
(

κ(μ)
)

= Tμ
(

spκg). (��)

Now compactness of spκg in Δ(M0(K)) and continuity of Tμ on Δ(M0(K)) imply that
Tμ(spκg) is compact and so is closed. This fact by using relation μ̂(spκ) = Tμ(spκ) ⊆ Tμ(spκg)
shows that

μ̂(spκ) ⊆ Tμ
(

spκg). (3.11)

On the other hand, since Tμ is continuous, we have

Tμ
(

spκg) ⊆ Tμ(spκ) = μ̂(spκ). (3.12)

Thus,

μ̂(spκ) = Tμ
(

spκg). (3.13)

Now by (��), σB(M)(κ(μ)) = μ̂(spκ).
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Case 2. Let spκg be noncompact. Then, by Δ(M0(K)/Iκ) ∼= spκg, M0(K)/Iκ is not unitary. So
by Lemma 3.2(ii), for any μ ∈ M0(K),

σB(M)
(

κ̃
(

μ + Iκ
))

= μ̂ + Iκ

(

Δ
(

M0(K)
Iκ

))

. (3.14)

Now the inclusion μ̂(spκ) ⊆ Tμ(spκg) implies μ̂(spκ) ⊆ Tμ(spκg). Also since Tμ is continuous,
we have Tμ(spκg) ⊆ μ̂(spκ), and so that Tμ(spκg) ⊆ μ̂(spκ). Therefore,

σB(M)
(

κ(μ)
)

= Tμ
(

spκg) = μ̂(spκ). (3.15)

4. Examples

In this section, we give some examples of hypergroups K that are commutative strong
hypergroups and ̂K = Xb(K) (we refer to these conditions by notation (℘)). Observe that
any locally compact Abelian group has these properties. Also, if G is a locally compact
Abelian group and H is a compact subgroup of Aut(G), then the space GH containing all H-
orbits is a commutative hypergroup satisfying in (℘). In fact, ̂GH

∼= ( ̂G)H . We refer to [19]
for more details. As another example, let G be a group such that G/Z is compact, where
Z = {x ∈ G : for any y ∈ G, xy = yx}. If K is the hypergroup containing all conjugacy
classes ofG, thenK and its dual ̂K satisfy in (℘) [6]. On the other hand, an interesting example
of Naimark given in [1, Section 9.5] does not satisfy in conditions (℘).
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