
Homology, Homotopy and Applications, vol.7(1), 2005, pp.151–167

EXTENSIONS OF RACKS AND QUANDLES

NICHOLAS JACKSON

(communicated by Ronald Brown)

Abstract
A rack is a set equipped with a bijective, self-right-distrib-

utive binary operation, and a quandle is a rack which satisfies
an idempotency condition.

In this paper, we introduce a new definition of modules over
a rack or quandle, and show that this definition includes the
one studied by Etingof and Graña [9] and the more general
one given by Andruskiewitsch and Graña [1]. We further show
that this definition coincides with the appropriate specialisa-
tion of the definition developed by Beck [3], and hence that
these objects form a suitable category of coefficient objects in
which to develop homology and cohomology theories for racks
and quandles.

We then develop an Abelian extension theory for racks and
quandles which contains the variants developed by Carter, El-
hamdadi, Kamada and Saito [6, 7] as special cases.

1. Introduction

A rack (or wrack) is a set X equipped with a self-right-distributive binary oper-
ation (often written as exponentiation) satisfying the following two axioms:

(R1) For every a, b ∈ X there is a unique c ∈ X such that cb = a.

(R2) For every a, b, c ∈ X, the rack identity holds:

abc = acbc

In the first of these axioms, the unique element c is often denoted ab, although b
should not itself be regarded as an element of the rack. Association of exponents
should be understood to follow the usual conventions for exponential notation. In
particular, the expressions abc and acbc

should be interpreted as (ab)c and (ac)(b
c)

respectively.
A rack which, in addition, satisfies the following idempotency criterion is said to

be a quandle.

(Q) For every a ∈ X, aa = a.
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There is an obvious notion of a homomorphism of racks: a function f : X → Y
such that f(ab) = f(a)f(b) for all a, b ∈ X. We may thus form the categories Rack
and Quandle.

For any element x ∈ X the map πx : a 7→ ax is a bijection. The subgroup of
Sym X generated by {πx : x ∈ X} is the operator group of X, denoted Op X. This
assignment is not functorial since there is not generally a well-defined group homo-
morphism Op f : Op X → Op Y corresponding to an arbitrary rack homomorphism
f : X → Y . The group Op X acts on the rack X, and divides it into orbits. Two
elements x, y ∈ X are then said to be in the same orbit (denoted x ∼ y or x ∈ [y])
if there is a (not necessarily unique) word w ∈ Op X such that y = xw. A rack with
a single orbit is said to be transitive. The set of orbits of X is denoted Orb X.

Given any group G, we may form the conjugation rack Conj G of G by tak-
ing the underlying set of G and defining the rack operation to be conjugation
within the group, so gh := h−1gh for all g, h ∈ G. This process determines a
functor Conj : Group → Rack which has a left adjoint, the associated group functor
As: Rack → Group. For a given rack X, the associated group As X is the free group
on the elements of X modulo the relations

ab = b−1ab

for all a, b ∈ X.
Racks were first studied by Conway and Wraith [8] and later (under the name

‘automorphic sets’) by Brieskorn [4], while quandles were introduced by Joyce [13].
A detailed exposition may be found in the paper by Fenn and Rourke [10].

A trunk T is an object analogous to a category, and consists of a class of objects
and, for each ordered pair (A,B) of objects, a set HomT(A,B) of morphisms. In
addition, T has a number of preferred squares

C D
k

//

A

C

g

²²

A B
f // B

D

h

²²

of morphisms, a concept analogous to that of composition in a category. Morphism
composition need not be associative, although it is in all the cases discussed in this
paper, and particularly when the trunk in question is also a category.

Given two arbitrary trunks S and T, a trunk map or functor F : S → T is a map
which assigns to every object A of S an object F (A) of T, and to every morphism
f : A → B of S a morphism F (f) : F (A) → F (B) of T such that preferred squares
are preserved:

F (C) F (D)
k∗

//

F (A)

F (C)

g∗

²²

F (A) F (B)
f∗ // F (B)

F (D)

h∗

²²
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For any category C there is a well-defined trunk Trunk(C) which has the same
objects and morphisms as C, and whose preferred squares are the commutative
diagrams in C. In particular, we will consider the case Trunk(Ab), which we will
denote Ab where there is no ambiguity. Trunks were first introduced and studied
by Fenn, Rourke and Sanderson [11].

In this paper, we study extensions of racks and quandles in more generality than
before, in the process describing a new, generalised notion of a module over a rack or
quandle, which is shown to coincide with the general definition of a module devised
by Beck [3]. Abelian groups Ext(X,A) and ExtQ(X,A) are defined and shown to
classify (respectively) Abelian rack and quandle extensions and to be generalisations
of all known existing Ext groups for racks and quandles.

This paper contains part of my doctoral thesis [12]. I am grateful to my supervisor
Colin Rourke, and to Alan Robinson, Ronald Brown, and Simona Paoli for many
interesting discussions and much helpful advice over the past few years. I also thank
the referees for their kind comments and helpful suggestions.

2. Modules

Given a rack X we define a trunk T(X) as follows: let T(X) have one object for
each element x ∈ X, and for each ordered pair (x, y) of elements of X, a morphism
αx,y : x → xy and a morphism βy,x : y → yx such that the squares

xz xyz = xzyz

αxz,yz
//

x

xz

αx,z

²²

x xy
αx,y // xy

xyz = xzyz

αxy,z

²²
yz xyz = xzyz

βyz,xz

//

y

yz

αy,z

²²

y xy
βy,x // xy

xyz = xzyz

αxy,z

²²

are preferred for all x, y, z ∈ X.
Thus a trunk map A : T(X) → Ab, as defined in the previous section, deter-

mines Abelian groups Ax, and Abelian group homomorphisms φx,y : Ax → Axy and
ψy,x : Ay → Axy , such that

φxy,zφx,y = φxz,yzφx,z

and φxy,zψy,x = ψyz,xzφy,z

for all x, y, z ∈ X. It will occasionally be convenient to denote such a trunk map by
a triple (A,φ, ψ).

2.1. Rack modules
Let X be an arbitrary rack. Then a rack module over X (or an X–module) is

a trunk map A = (A,φ, ψ) : T(X) → Ab such that each φx,y : Ax
∼= Axy is an

isomorphism, and

ψz,xy (a) = φxz,yzψz,x(a) + ψyz,xzψz,y(a) (1)

for all a ∈ Az and x, y, z ∈ X.
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If x, y lie in the same orbit of X then this implies that Ax
∼= Ay (although

the isomorphism is not necessarily unique). For racks with more than one orbit it
follows that if x 6∼ y then Ax need not be isomorphic to Ay. Rack modules where
the constituent groups are nevertheless all isomorphic are said to be homogeneous,
and those where this is not the case are said to be heterogeneous. It is clear that
modules over transitive racks must be homogeneous.

An X–module A of the form (A, Id, 0) (so that φx,y = Id: Ax → Axy and ψy,x is
the zero map Ay → Axy ) is said to be trivial.

Example 2.1 (Abelian groups). Any Abelian group A may be considered as a
homogeneous trivial X–module A, for any rack X, by setting Ax = A, φx,y = IdA,
and ψy,x = 0A for all x, y ∈ X.

Example 2.2 (As X–modules). Let X be a rack, and let A be an Abelian group
equipped with an action of As X. Then A may be considered as a homogeneous
X–module A = (A,φ, ψ) by setting Ax = A, and defining φx,y(a) = a · x and
ψy,x(a) = 0 for all a ∈ A and x, y ∈ X.

In particular, Etingof and Graña [9] study a cohomology theory for racks, with
As X–modules as coefficient objects.

Example 2.3. In [1], Andruskiewitsch and Graña define an X–module to be an
Abelian group A equipped with a family η = {ηx,y : x, y ∈ X} of automorphisms of
A and another family τ = {τx,y : x, y ∈ X} of endomorphisms of A such that (after
slight notational changes):

ηxy,zηx,y = ηxz,yzηx,z

ηxy,zτy,x = τyz,xzηy,z

τz,xy = ηxz,yzτz,x + τyz,xzτz,y

This may readily be seen to be a homogeneous X–module in the context of the
current discussion.

As a concrete example, let X be C3 = {0, 1, 2}, the cyclic rack with three ele-
ments. This has rack structure given by xy = x + 1 (mod 3) for all x, y ∈ X. Let
A = Z5 and define:

ηx,y : A → A; n 7→ 2n (mod 5)
τy,x : A → A; n 7→ 4n (mod 5)

Then this satisfies Andruskiewitsch and Graña’s definition of a C3–module, and (by
setting A0 = A1 = A2 = A = Z5) is also a homogeneous C3–module in the context
of the current discussion.

Example 2.4 (Alexander modules). Let h = {hi : i ∈ OrbX} be a family of
Laurent polynomials in one variable t, one for each orbit of the rack X, and let
n = {ni : i ∈ OrbX} be a set of positive integers, also one for each orbit. Then
we may construct a (possibly heterogeneous) X–module A = (A,φ, ψ) by setting
Ax = Zn[x] [t, t

−1]/h[x](t), φx,y : a 7→ ta, and ψy,x : b 7→ (1 − t)b for all x, y ∈ X,
a ∈ Ax and b ∈ Ay. The case where Ax = Z[t, t−1]/h[x](t) for all x in some orbit(s)
of X is also an X–module.
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Example 2.5 (Dihedral modules). Let n = {ni : i ∈ OrbX} be a set of positive
integers, one for each orbit of X. Then let D = (D, φ, ψ) denote the (possibly
heterogeneous) X–module where Dx = Zn[x] , φx,y(a) = −a, and ψy,x(b) = 2b for
all x, y ∈ X, a ∈ Ax and b ∈ Ay. This module is isomorphic to the Alexander
module where hi(t) = (1 + t) for all i ∈ OrbX. The case where Ax = Z for all x in
some orbit(s) of X, is also an X–module. The nth homogeneous dihedral X–module
(where all the ni are equal to n) is denoted Dn. The case where Dx = Z for all
x ∈ X is the infinite homogeneous dihedral X–module D∞.

Given two X–modules A = (A,φ, ψ) and B = (B, χ, ω), a homomorphism of
X–modules, or an X–map, is a natural transformation f : A → B of trunk maps,
that is, a collection f = {fx : Ax → Bx : x ∈ X} of Abelian group homomorphisms
such that

φx,yfx = fxyφx,y

and ψy,xfy = fxyψy,x

for all x, y ∈ X.
We may thus form the category RModX whose objects are X–modules, and whose

morphisms are X–maps.
In his doctoral thesis [3], Beck gives a general definition of a ‘module’ in an

arbitrary category. Given a category C, and an object X of C, a Beck module over
X is an Abelian group object in the slice category C/X. For any group G, the
category Ab(Group/G), for example, is equivalent to the category of G–modules.
Similar results hold for Lie algebras, associative algebras and commutative rings.
The primary aim of this section is to demonstrate a categorical equivalence between
the rack modules just defined, and the Beck modules in the category Rack.

For an arbitrary rack X and an X–module A = (A,φ, ψ), we define the semidirect
product of A and X to be the set

AoX = {(a, x) : x ∈ X, a ∈ Ax}
with rack operation given by

(a, x)(b,y) := (φx,y(a) + ψy,x(b), xy) .

Proposition 2.1. For any rack X and X–module A = (A,φ, ψ), the semidirect
product AoX is a rack.

Proof. For any three elements (a, x), (b, y), (c, z) ∈ AoX,

(a, x)(b,y)(c,z) = (φx,y(a) + ψy,x(b), xy)(c,z)

= (φxy,zφx,y(a) + φxy,zψy,x(b) + ψz,xy (c), xyz)

= (φxz,yzφx,z(a) + ψyz,xzφy,z(b) + φxz,yzψz,x(c) + ψyz,xzψz,y(c), xzyz

)

= (φx,z(a) + ψz,x(c), xz)(φy,z(b)+ψz,y(c),yz)

= (a, x)(c,z)(b,y)(c,z)
.

Furthermore, for any two elements (a, x), (b, y) ∈ AoX, there is a unique element

(c, z) = (a, x)(b,y) = (φ−1
z,y(a− ψy,z(b)), xy) ∈ AoX
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such that (c, z)(b,y) = (a, x).
Hence AoX satisfies the rack axioms.

Theorem 2.2. For any rack X, the category RModX of X–modules is equivalent
to the category Ab(Rack/X) of Abelian group objects over X.

Proof. Given an X-moduleA = (A,φ, ψ), let TA be the object p : AoX ³ X in the
slice category Rack/X, where p is defined as projection onto the second coordinate.
Given an X–map f : A → B, we obtain a slice morphism Tf : A o X → B o X
defined by T (f)(a, x) = (fx(a), x) for all a ∈ Ax and x ∈ X. This is functorial since,
for any X–module homomorphism g : B → C,

T (fg)(a, x) = ((fg)x(a), x)
= (fxgx(a), x)
= T (f)(gx(a), x)
= T (f)T (g)(a, x)

for all a ∈ Ax and x ∈ X. We thus have a functor T : RModX → Rack/X. Our aim
is to show firstly that the image of T is the subcategory Ab(Rack/X), and secondly
that T has a well-defined inverse.

To show the first, that TA has a canonical structure as an Abelian group object,
we must construct an appropriate section, and suitable multiplication and inverse
morphisms.

Let:

r : AoX → AoX; (a, x) 7→ (−a, x)
m : (AoX)×X (AoX) → AoX; ((a1, x), (a2, x)) 7→ (a1 + a2, x)
s : X → AoX; x 7→ (0, x)

The maps r and m both compose appropriately with the projection map p:

p(a, x) = x = p(−a, x) = p(r(a, x))
p(a1, x) = p(a2, x) = x = p(a1 + a2, x) = p(m((a1, x), (a2, x))

Furthermore, ps = IdX . Also

m(m((a1, x), (a2, x)), (a3, x)) = m((a1 + a2, x), (a3, x))
= (a1 + a2 + a3, x)
= m((a1, x), (a2 + a3, x))
= m((a1, x),m((a2, x), (a3, x))),

m(s(x), (a, x)) = m((0, x), (a, x))
= (a, x)
= m((a, x), (0, x))
= m((a, x), s(x)),

m((a1, x), (a2, x)) = (a1 + a2, x)
= (a2 + a1, x)
= m((a2, x), (a1, x)),
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and m(r(a, x), (a, x)) = m((−a, x), (a, x))
= (0, x)
= m((a, x), (−a, x))
= m((a, x), r(a, x)),

so TA is an Abelian group object in Rack/X.
Now, given an Abelian group object p : R → X in Rack/X, with multiplication

map µ, inverse map ν, and section σ, let Rx be the preimage p−1(x) for each x ∈ X.
Each of the Rx has a canonical Abelian group structure defined in terms of the maps
µ, ν, and σ: σ(x) is the identity in Rx, and for any u, v ∈ Rx let u+v := µ(u, v) and
−u := ν(u). That the preimage Rx is closed under addition and inversion follows
immediately from the fact that µ and ν are rack homomorphisms over X.

Next, we define maps

ρx,y : Rx → Rxy , given by u 7→ uσ(y),

for all x, y ∈ X and u ∈ Rx. These are Abelian group homomorphisms, since
ρx,yσ(x) = σ(x)σ(y) = σ(xy) (which is the identity in Rxy ) and, for any u1, u2 ∈ Rx,

ρx,y(u1 + u2) = µ(u1, u2)σ(y)

= µ(u1, u2)µ(σ(y),σ(y))

= µ(uσ(y)
1 , u

σ(y)
2 )

= ρx,y(u1) + ρx,y(u2).

It is also an isomorphism, since exponentiation by a fixed element of a rack is a
bijection. Furthermore, for any x, y, z ∈ X and any u ∈ Rx

ρxy,zρx,y(u) = uσ(y)σ(z)

= uσ(z)σ(y)σ(z)

= uσ(z)σ(yz)

= ρxz,yzρx,z(u).

Now we define maps

λy,x : Ry → Rxy , given by v 7→ σ(x)v,

for all x, y ∈ X and v ∈ Ry. These are also Abelian group homomorphisms since

λy,xσ(y) = σ(x)σ(y) = σ(xy)

(which is the identity in Rxy ) and, for any v1, v2 ∈ Ry,

λy,x(v1 + v2) = σ(x)µ(v1,v2)

= µ(σ(x), σ(x))µ(v1,v2)

= µ(σ(x)v1 , σ(x)v2)
= λy,x(v1) + λy,x(v2).
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Also, for any x, y, z ∈ X, v ∈ Ry and w ∈ Rz

ρxy,zλy,x(v) = σ(x)vσ(z)

= σ(x)σ(z)vσ(z)

= σ(xz)vσ(z)

= λyz,xzρy,z(v)
and λz,xy (w) = σ(xy)w

= σ(x)σ(y)w

= σ(x)wσ(y)w

= µ(σ(x), σ(x))µ(σ(z),w)µ(σ(y),σ(y))µ(w,σ(z))

= µ
(
σ(x)σ(z)σ(y)w

, σ(x)wσ(y)σ(z)
)

= σ(x)σ(z)σ(y)w

+ σ(x)wσ(y)σ(z)

= σ(xz)σ(y)w

+ σ(x)wσ(yz)

= λyz,xzλz,y(w) + ρxz,yzλz,x(w).

Thus an Abelian group object R → X in Rack/X determines a unique rack module
R = (R, ρ, λ) over X.

For any two such Abelian group objects p1 : R1 → X and p2 : R2 → X, together
with a rack homomorphism f1 : R1 → R2 over X, we may construct two X–modules
R1 and R2 as described above, and an X–map g1 : R1 →R2 by setting (g1)x(u) =
f1(u) for all u ∈ (R1)x and x ∈ X. It may be seen that (g1)x : (R1)x → (R2)x

since f1 is a rack homomorphism over X. It may also be seen that g1 is a natural
transformation of trunk maps T(X) → Ab since

(g1)xy ((ρ1)x,y(u)) = f1((ρ1)x,y(u))

= f1(uσ1(y))

= f1(u)f1σ1(y)

= f1(u)σ2(y)

= (ρ2)x,y(g1)x(u)
and (g1)xy (λ1)y,x(v) = f1((λ1)y,x(v))

= f1(σ1(x)v)

= f1σ1(x)f1(v)

= σ2(x)f1(v)

= (λ2)y,x(g1)x(v)

for all u ∈ Rx, v ∈ Ry, and x, y ∈ X.
Given a third Abelian group object p3 : R3 → X together with another slice

morphism f2 : R2 → R3, we may construct another X–module R3 and X–map
g2 : R2 → R3. ¿From the composition f2f1 we may similarly construct a unique



Homology, Homotopy and Applications, vol. 7(1), 2005 159

X–map g : R1 → R3. Then

gx(u) = (f2f1)(u) = (g2)x(f1(u)) = (g2)x(g1)x(u).

Hence this construction determines a functor S : Ab(Rack/X) → RModX , which is
the inverse of the functor T : RModX → Ab(Rack/X) described earlier.

Theorem 2.3. The category RModX is Abelian.

Proof. The category RModX is additive, as for any X–modules A and B, the set
HomRModX

(A,B) has an Abelian group structure given by (f+g)x(a) = fx(a)+gx(a)
for all f, g : A → B, all x ∈ X and all a ∈ Ax. Furthermore, composition of X–maps
distributes over this addition operation. The X–module with trivial orbit groups and
structure homomorphisms is the zero object in RModX , and for any two X–modules
A = (A,α, ε) and B = (B, β, ζ), the Cartesian product A×B = (A×B, α×β, ε×ζ)
is also an X–module.

Given an X–map f : B = (B, β, ζ) → C = (C, γ, η) let A = (A,α, ε) such that
Ax = {a ∈ Bx : fx(a) = 0}, with αx,y = βx,y|Ax

and εy,x = ζy,x|Ay
. Then A is a

submodule of B and the inclusion ι : A ↪→ B is the (categorical) kernel of f .
Now define D = (D, δ, ξ) where Dx = Cx/ im fx, and δx,y = γx,y + im fx and

ξy,x = ηy,x + im fy. Then D is a quotient of C and the canonical projection map
π : C → D is the (categorical) cokernel of f .

Let µ : H → K be an X–monomorphism. Then the inclusion ι : im µ → K is
a kernel of the quotient map π : K → K/ im µ. Since µ is injective, µ′ : H ∼= im µ
where µ′x(a) = µx(a) for all x ∈ X and a ∈ Hx. But since kernels are unique up to
composition with an isomorphism, and since µ = ιµ′, it follows that µ is the kernel
of its cokernel, the canonical quotient map π.

Let ν : H → K be an X–epimorphism. Then the inclusion map ι : ker ν ↪→ H is
a kernel of ν. Given another X–map κ : H → L such that κι = 0, then ker ν ⊆ kerκ
so that ν(a) = ν(b) implies that κ(a) = κ(b). But since ν is surjective we can define
an X–map θ : K → L by θxνx(a) = κx(a) for all a ∈ Hx and x ∈ X. Then θν = κ
and so ν is a cokernel of ι.

So, every X–map has a kernel and a cokernel, every monic X–map is the kernel of
its cokernel, and every epic X–map is the cokernel of its kernel, and hence RModX

is an Abelian category.

These results justify the use of the term ‘rack module’ to describe the objects
under consideration, and show that RModX is an appropriate category in which to
develop homology theories for racks. Papers currently in preparation will investigate
new homology theories for racks, based on the derived functor approach of Cartan
and Eilenberg [5] and the cotriple construction of Barr and Beck [2].

We now introduce a notational convenience which may serve to simplify matters
in future. Let X be a rack, A = (A, φ, ψ) an X–module, and w = y1y2 . . . yn a word
in As X. Then we may denote the composition

φxy1...yn−1 ,yn
φxy1...yn−2 ,yn−1 . . . φx,y1

by φx,w = φx,y1...yn . This shorthand is well-defined as the following lemma shows:
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Lemma 2.4. If y1 . . . yn and z1 . . . zm are two different representative words for the
same element w ∈ As X, then the compositions

φxy1...yn−1 ,yn
φxy1...yn−2 ,yn−1 . . . φx,y1

and φxz1...zm−1 ,zm
φxz1...zm−2 ,zm−1 . . . φx,z1

are equal, for all x ∈ X. Furthermore, φx,1 = IdAx
, where 1 denotes the identity in

As X.

Proof. Let T : RModX → Ab(Rack/X) be the functor constructed in the proof of
Theorem 2.2, and recall that Rx = T (A)x has an Abelian group structure. For any
x, y ∈ X, the homomorphism T (φx,y) : Rx → Rxy maps u 7→ uσ(y), where σ is the
section of TA. Then for any u ∈ Rx

T (φxy1...yn−1 ,yn
φxy1...yn−2 ,yn−1 . . .φx,y1)(u)

= uσ(y1)...σ(yn)

= uσ(y1...yn)

= uσ(z1...zm)

= uσ(z1)...σ(zm)

= T (φxz1...zm−1 ,zm
φxz1...zm−2 ,zm−1 . . . φx,z1)(u)

where the equality in the second and third lines follows from the functoriality of the
associated group.

The final statement follows from the observation

T (φx,1)(u) = u1 = u = T (IdAx)(u).

Hence this notation is well-defined.

2.2. Quandle modules
We now study the specialisation of rack modules to the subcategory Quandle.

A quandle module is a rack module A = (A,φ, ψ) which satisfies the additional
criterion

ψx,x(a) + φx,x(a) = a (2)

for all a ∈ Ax and x ∈ X. Where the context is clear, we may refer to such objects
as X–modules. There is an obvious notion of a homomorphism (or, in the absence
of ambiguity, an X–map) of quandle modules, and thus we may form the category
QModX of quandle modules over X.

Similarly to example 2.3, Andruskiewitsch and Graña’s definition of quandle
modules coincides with the definition of a homogeneous quandle module in the
sense of the current discussion.

Examples 2.1, 2.4, and 2.5 of the previous subsection, are also quandle modules.
Example 2.2 is not, but the variant obtained by setting ψy,x = IdA−φx,y, for all
x, y ∈ X, is.

Example 2.6. For an arbitrary quandle X, Andruskiewitsch and Graña [1] further
define a quandle X–module to be a rack module (as in example 2.3) which satisfies
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the additional condition

ηx,x + τx,x = IdA

for all x ∈ X. This may be seen to be a homogeneous quandle X–module in the
context of the current discussion.

Given a quandle X and a quandle X–module A, the semidirect product AoX
has the same definition as before.

Proposition 2.5. If X is a quandle and A = (A,φ, ψ) a quandle module over X,
the semidirect product AoX is a quandle.

Proof. By proposition 2.1, A o X is a rack, so we need only verify the quandle
axiom. For any element (a, x) ∈ AoX,

(a, x)(a,x) = (φx,x(a) + ψx,x(a), xx) = (a, x)

and so AoX is a quandle.

These objects coincide with the Beck modules in the category Quandle.

Theorem 2.6. For any quandle X, there is an equivalence of categories

QModX
∼= Ab(Quandle/X)

Proof. As in the proof of Theorem 2.2, we identify the quandle moduleA = (A, φ, ψ)
with AoX → X in the slice category Quandle/X. Proposition 2.5 ensures that this
object is indeed a quandle over X, and hence we obtain a well-defined functor
T : QModX → Ab(Quandle/X).

Conversely, suppose that R → X is an Abelian group object in Quandle/X, with
multiplication map µ, inverse map ν, and section σ. As before, we may construct a
rack module R = (R, ρ, λ) over X. It remains only to show that this module satisfies
the additional criterion (2) for it to be a quandle module over X. But

λx,x(a) + ρx,x(a) = µ(σ(x)a, aσ(x))

= µ(σ(x), a)µ(a,σ(x))

= µ(σ(x), a)µ(σ(x),a)

= µ(σ(x)σ(x), aa) = a

and so R is indeed a quandle X–module.

Theorem 2.7. The category QModX is Abelian.

Proof. This proof is exactly the same as the proof of Theorem 2.3.

Analogously to the previous subsection, we may conclude that our use of the
term ‘quandle module’ is justified, and that the category QModX is a suitable
environment in which to study the homology and cohomology of quandles.
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3. Abelian extensions

Having characterised suitable module categories, we may now study extensions
of racks and quandles by these objects. Rack extensions have been studied before, in
particular by Ryder [14] under the name ‘expansions’; the constructs which she dubs
‘extensions’ are in some sense racks formed by disjoint unions, whereby the original
rack becomes a subrack of the ‘extended’ rack. Ryder’s notion of rack expansions is
somewhat more general than the extensions studied here, as she investigates arbi-
trary congruences (equivalently, rack epimorphisms onto a quotient rack) whereas
we will only examine certain classes of such objects.

3.1. Abelian extensions of racks
An extension of a rack X by an X–module A = (A, φ, ψ) consists of a rack

E together with an epimorphism f : E ³ X inducing a partition E =
⋃

x∈X Ex

(where Ex is the preimage f−1(x)), and for each x ∈ X a left Ax–action on Ex

satisfying the following three conditions:

(X1) The Ax–action on Ex is simply transitive, which is to say that for any u, v ∈ Ex

there is a unique a ∈ Ax such that a · u = v.
(X2) For any u ∈ Ex, a ∈ Ax, and v ∈ Ey, (a · u)v = φx,y(a) · (uv).
(X3) For any u ∈ Ey, b ∈ Ay, and v ∈ Ey, u(b·v) = ψy,x(b) · (uv).

Two extensions f1 : E1 ³ X and f2 : E2 ³ X by the same X–module A are
equivalent if there exists a rack isomorphism (an equivalence) θ : E1 → E2 which
respects the projection maps and the group actions:

(E1) f2θ(u) = f1(u) for all u ∈ E1

(E2) θ(a · u) = θ(a) · u for all u ∈ Ex, a ∈ Ax and x ∈ X.

Let f : E ³ X be an extension of X by A. Then a section of E is a function
(not necessarily a rack homomorphism) s : X → E such that fs = IdX . Since the
Ax act simply transitively on the Ex, there is a unique x ∈ X and a unique a ∈ Ax

such that a given element u ∈ Ex can be written as u = a · s(x). Since f is a
homomorphism, it follows that s(x)s(y) ∈ Exy and so there is a unique σx,y ∈ Axy

such that s(x)s(y) = σx,y · s(xy). The set σ = {σx,y : x, y ∈ X} is the factor set of
the extension E relative to the section s, and may be regarded as an obstruction to
s being a rack homomorphism.

It follows that, for all x, y ∈ X, a ∈ Ax, and b ∈ Ay

(a · s(x))(b·s(y)) = φx,y(a) · s(x)(b·s(y))

= (ψy,x(b) + φx,y(a)) · s(x)s(y)

= (ψy,x(b) + φx,y(a) + σx,y) · s(xy)

Thus the rack structure on E is determined completely by the factor set σ. The
next result gives necessary and sufficient conditions on factor sets of arbitrary rack
extensions.

Proposition 3.1. Let X be a rack, and A = (A,φ, ψ) be an X–module. Let σ =
{σx,y ∈ Axy : x, y ∈ X} be a collection of group elements. Let E[A, σ] be the set



Homology, Homotopy and Applications, vol. 7(1), 2005 163

{(a, x) : a ∈ Ax, x ∈ X} with rack operation

(a, x)(b,y) = (φx,y(a) + σx,y + ψy,x(b), xy)

for all a ∈ Ax, b ∈ Ay, and x, y ∈ X.
Then E[A, σ] is an extension of X by A with factor set σ if

σxy,z + φxy,z(σx,y) = φxz,yz (σx,z) + σxz,yz + ψyz,xz (σy,z) (3)

for all x, y, z ∈ X. Conversely, if E is an extension of X by A with factor set σ
then (3) holds, and E is equivalent to E[A, σ].

Proof. To prove the first part, we require that E[A, σ] satisfy the rack axioms. Given
(a, x), (b, y) ∈ E[A, σ], there is a unique (c, z) ∈ E[A, σ] such that (c, z)(b,y) = (a, x),
given by

(c, z) = (φ−1
x,y(a− σx,y − ψy,x(b)), xy)

Also, for any (a, x), (b, y), (c, z) ∈ E[A, σ],

(a, x)(b,y)(c,z) = (φx,y(a) + σx,y + ψy,x(b), xy)(c,z)

= (φxy,zφx,y(a) + φxy,z(σx,y) + φxy,zψy,x(b) + σxy,z + ψz,xy (c), xyz)

and

(a, x)(c,z)(b,y)(c,z)
= (φx,z(a) + σx,z + ψz,x(c), xz)(φy,z(b)+σy,z+ψz,y(c),yz)

= (φxz,yzφx,z(a) + φxz,yz (σx,z) + φxz,yzψz,x(c) + σxz,yz

+ ψyz,xzφy,z(b) + ψyz,xz (σy,z) + ψyz,xzψz,y(c), xzyz

)

are equal if (3) holds, and so E[A, σ] is a rack.
Now define f : E[A, σ] ³ X to be projection onto the second coordinate, and let

Ax act on E[A, σ]x = f−1(x) by a1 · (a2, x) := (a1 + a2, x) for each a1, a2 ∈ Ax and
all x ∈ X. These actions are simply transitive and satisfy the requirements

(a1 · (a2, x))(b,y) = (a1 + a2, x)(b,y) = (φx,y(a1 + a2) + σx,y + ψy,x(b), xy)
= (φx,y(a1) + φx,y(a2) + σx,y + ψy,x(b), xy)
= φx,y(a1) · (φx,y(a2) + σx,y + ψy,x(b), xy)

= φx,y(a1) · (a2, x)(b,y)

and (a, x)b1·(b2,y) = (a, x)(b1+b2,y)

= (φx,y(a) + σx,y + ψy,x(b1 + b2), xy)
= (φx,y(a) + σx,y + ψy,x(b1) + ψy,x(b2), xy)
= ψy,x(b1) · (φx,y(a) + σx,y + ψy,x(b2), xy)

= ψy,x(b1) · (a, x)(b2,y)

so E[A, σ] is an extension of X by A. Now define s : X ³ E[A, σ] by s(x) = (0, x)
for all x ∈ X. This is clearly a section of this extension. Also,

s(x)s(y) = (0, x)(0,y) = (σx,y, xy) = σx,y · s(xy)

so σ is the factor set of this extension relative to the section s.
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Conversely, let f : E ³ X be an extension of X by a given X–module A, with
factor set σ relative to some extension s : X → E. By the simple transitivity of
the Ax–action on the Ex = f−1(x), the map θ : (a, x) 7→ a · s(x) is an isomorphism
E[A, σ] ∼= E. Since E is a rack, the earlier part of the proof shows that (3) holds, and
so E[A, σ] is another extension of X by A. Furthermore, θ respects the projection
maps onto X, and

θ(a1 · (a2, x)) = θ(a1 + a2, x) = (a1 + a2) · s(x) = a1 · (a2 · s(x)) = a1 · θ(a2, x)

so θ is an equivalence of extensions.

Andruskiewitsch and Graña [1] introduce the notion of an extension by a dynam-
ical cocycle. Given an arbitrary rack X and a non-empty set S, we select a function
α : X ×X → HomSet(S × S, S) (which determines, for each ordered pair x, y ∈ X,
a function αx,y : S × S → S) satisfying the criteria

(i) αx,y(s,−) is a bijection on S

(ii) αxy,z(s, αx,y(t, u)) = αxz,yz (αx,z(s, t), αx,y(s, u))

for all x, y, z ∈ X and s, t, u ∈ S. Then we may define a rack structure on the set
X × S by defining (x, s)(y,t) = (xy, αx,y(s, t)). This rack, denoted X ×α S, is the
extension of X by α. In the case where S is an Abelian group, and αx,y(s, t) =
φx,y(s) + σx,y + ψy,s(t) for some suitably-chosen Abelian group homomorphisms
φx,y, ψy,x : S → S, and family σ = {σx,y ∈ S : x, y ∈ X} of elements of S, then
this is equivalent to the construction E[A, σ] just discussed, for a homogeneous
X–module A = (A,φ, ψ).

Proposition 3.2. Let σ and τ be factor sets corresponding to extensions of a rack
X by an X–module A. Then the following are equivalent:

(i) E[A, σ] and E[A, τ ] are equivalent extensions of X by A
(ii) there exists a family υ = {υx ∈ Ax : x ∈ X} such that

τx,y = σx,y + φx,y(υx) + ψy,x(υy)− υxy (4)

for x, y ∈ X.

(iii) σ and τ are factor sets of the same extension of X by A, relative to different
sections.

Proof. Let θ : E[A, τ ] ∼= E[A, σ] be the hypothesised equivalence. Then it follows
that θ(0, x) = (υx, x) for some υx ∈ Ax and, furthermore,

θ(a, x) = θ(a · (0, x)) = a · θ(0, x) = a · (υx, x) = (a + υx, x)

for all a ∈ Ax, since θ preserves the Ax–actions. Then

θ
(
(a, x)(b,y)

)
= (φx,y(a) + ψy,x(b) + τx,y + υxy , xy)

and θ(a, x)θ(b,y) = (a + υx, x)(b+υy,y) = (φx,y(a + υx) + ψy,x(b + υy) + σx,y, xy)

which are equal since θ is a rack homomorphism, and so (4) holds. This argument
is reversible, showing the equivalence of the first two statements.
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Now, given such an equivalence θ, define a section s : X → E[A, τ ] by x 7→ (υx, x).
Then the above argument also shows that

s(x)b·s(y) = (υx, x)(υy+b,y) = (σx,y + ψy,x(b)) · s(xy)

and (a · s(x))s(y) = (υx + a, x)(υy,y) = (σx,y + φx,y(a)) · s(xy)

so σ is the factor set of E[A, τ ] relative to the section s. This property holds for
any extension equivalent to E[A, τ ]. Conversely, if σ and τ are factor sets of some
extension E of X by A relative to different sections s, t : X → E then s(x) = υx ·t(x)
for some υx ∈ Ax, and so the first and third conditions are equivalent.

The following corollary justifies the earlier assertion that the factor set is in some
sense the obstruction to a section being a rack homomorphism.

Corollary 3.3. For an extension f : E ³ X by an X–module A = (A, φ, ψ), the
following statements are equivalent:

(i) There exists a rack homomorphism s : X → E such that fs = IdX

(ii) Relative to some section, the factor set of E ³ X is trivial

(iii) Relative to any section there exists, for the factor set σ of E ³ X, a family
υ = {υx ∈ Ax : x ∈ X} such that for all x, y ∈ X

σx,y = φx,y(υx)− υxy + ψy,x(υy) (5)

Extensions of this type are said to be split. We are now able to classify rack
extensions:

Theorem 3.4. Let X be a rack and A = (A, φ, ψ) an X–module. Then there is
an Abelian group Ext(X,A) whose elements are in bijective correspondence with
extensions of X by A.

Proof. Let the set Z(X,A) consist of extensions of X by A. As shown above, these
are determined by factor sets σ satisfying (3). Defining an addition operation by
(σ + τ)x,y := σx,y + τx,y gives this an Abelian group structure with the trivial
factor set as identity. A routine calculation confirms that the set B(X,A) of split
extensions (equivalently, factor sets satisfying (5)) forms an Abelian subgroup of
Z(X,A), and so we may define Ext(X,A) := Z(X,A)/B(X,A).

In the case where A is a trivial homogeneous X–module (equivalently, an Abelian
group A) the group Ext(X,A) coincides with H2(BX; A), the second cohomology
group of the rack space of X as defined by Fenn, Rourke and Sanderson [11].

3.2. Abelian extensions of quandles
We now turn our attention to the case where X is a quandle. Extensions of X

by a quandle X–module A and their corresponding factor sets are defined in an
analogous manner.

Proposition 3.5. Let X be a quandle and A = (A, φ, ψ) be a quandle module
over X. Then extensions f : E ³ X such that E is also a quandle are in bijective
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correspondence with factor sets σ satisfying hypothesis (3) of proposition 3.1 together
with the additional criterion

σx,x = 0 (6)

for all x ∈ X.

Proof. Following the reasoning of proposition 3.1, for E to be a quandle is equivalent
to the requirement that

(a, x)(a,x) = (φx,x(a) + σx,x + ψx,x(a), xx) = (a, x)

for all x ∈ X and a ∈ Ax. Since A is a quandle module, this is equivalent to the
requirement that (6) holds.

We may now classify quandle extensions of X by A:

Theorem 3.6. For any quandle X and quandle X–module A, there is an Abelian
group ExtQ(X,A) whose elements are in bijective correspondence with quandle ex-
tensions of X by A.

Proof. We proceed similarly to the proof of Theorem 3.4. Let ZQ(X,A) be the
subgroup of Z(X,A) consisting of factor sets satisfying the criterion (6), and let
BQ(X,A) = B(X,A). Then we define ExtQ(X,A) = ZQ(X,A)/BQ(X,A).

In the case where A is trivial homogeneous (and hence equivalent to an Abelian
group A), extensions of X by A correspond to Abelian quandle extensions, in the
sense of Carter, Saito and Kamada [7] and so ExtQ(X,A) = H2

Q(X; A).
If the module A is a homogeneous Alexander module as defined in example 2.4,

then extensions of X by A are exactly the twisted quandle extensions described by
Carter, Saito and Elhamdadi [6], and so ExtQ(X,A) = H2

TQ(X; A).
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