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REPRESENTATION TYPES AND 2-PRIMARY HOMOTOPY
GROUPS OF CERTAIN COMPACT LIE GROUPS

DONALD M. DAVIS

(communicated by Gunnar Carlsson)

Abstract
Bousfield has shown how the 2-primary v1-periodic homo-

topy groups of certain compact Lie groups can be obtained
from their representation ring with its decomposition into types
and its exterior power operations. He has formulated a Tech-
nical Condition which must be satisfied in order that he can
prove that his description is valid.

We prove that a simply-connected compact simple Lie group
satisfies his Technical Condition if and only if it is not E6 or
Spin(4k+2) with k not a 2-power. We then use his description
to give an explicit determination of the 2-primary v1-periodic
homotopy groups of E7 and E8. This completes a program,
suggested to the author by Mimura in 1989, of computing the
v1-periodic homotopy groups of all compact simple Lie groups
at all primes.

1. Introduction

The p-primary v1-periodic homotopy groups of a topological space X, denoted
v−1
1 π∗(X; p), are a localization of the portion of the actual homotopy groups de-

tected by K-theory. Each v1-periodic homotopy group of X is a direct summand of
some actual homotopy group of X.

In 1989, Mimura suggested to the author that the computation of v−1
1 π∗(X; p)

for all compact simple Lie groups X and all primes p would be an interesting
project. In a series of papers over the subsequent 13-year period, the author, often
in collaboration with Bendersky, had performed this computation in all cases except
E7 and E8 at the prime 2.([13],[1],[7],[6], [5],[15],[12],[3],[14],[4]) In this paper,
we use recent work of Bousfield to compute v−1

1 π∗(E7; 2) and v−1
1 π∗(E8; 2), thus

completing the project suggested by Mimura.
The one impreciseness in these results is some extension questions involving Z2’s.

We write Z2 interchangeably with Z/2. We denote by A#B an abelian group G
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such that there is a short exact sequence of abelian groups

0 → A → G → B → 0.

Here and throughout the remainder of the paper v−1
1 π∗(X) means v−1

1 π∗(X; 2).
Also, ν(−) denotes the exponent of 2 in an integer.

Theorem 1.1. For all integers k, there are isomorphisms

v−1
1 π8k+d(E7) ≈





Z2 d = 3
Z2#Z2 d = 4
Z2 ⊕ Z/24 ⊕ Z/2g(4k+3)−2 d = 5
Z/4⊕ Z/2g(4k+3) ⊕ Z2 ⊕ Z2 d = 6
(Z2 ⊕ Z2)#(Z2 ⊕ Z2 ⊕ Z2) d = 7
(Z2 ⊕ Z2 ⊕ Z2)#Z2 d = 8
Z2 ⊕ Z/24 ⊕ Z/2g(4k+5)−2 d = 9
Z/4⊕ Z/2g(4k+5) d = 10,

where

g(m) =





min(17, ν(m− 11− 26) + 9) m ≡ 3 mod 4
min(18, ν(m− 13− 27) + 9) m ≡ 5 mod 8
min(23, ν(m− 17− 7 · 211) + 9) m ≡ 1 mod 8.

Theorem 1.2. For all integers k, there are isomorphisms

v−1
1 π8k+d(E8) ≈





Z/2e(4k−1)−1 ⊕ Z2 d = −3
Z/2e(4k−1) ⊕ Z2 ⊕ Z2 d = −2
(Z2 ⊕ Z2 ⊕ Z2)#(Z2 ⊕ Z2) d = −1
(Z2#Z2)⊕ Z2 ⊕ Z2 d = 0
Z/2e(4k+1)−1 ⊕ Z2 ⊕ Z2 d = 1
Z/2e(4k+1) d = 2
0 d = 3, 4,

where

e(m) =





min(25, ν(m− 17− 28 − 211 − 212) + 12) m ≡ 1 mod 8
min(28, ν(m− 19− 211 − 214 − 215) + 12) m ≡ 3 mod 8
min(39, ν(m− 29− 220 − 222 − 223 − 225) + 12) m ≡ 5 mod 8
min(31, ν(m− 23− 217) + 12) m ≡ 7 mod 8.

Note that the numbers m0 = 17, 19, 29, and 23 which occur in ν(m−m0 − 2L)
in the formula for e(m) are the largest exponents of E8, and similarly for E7 with
m0 = 11, 13, and 17. The exponents of a compact Lie group G are those integers
mi such that H∗(G;Q) is an exterior algebra on classes of grading 2mi + 1.([10,
pp.15-16].)

In 2.2, we state a slight reformulation of a conjecture of Bousfield that would
yield, for all simply-connected compact Lie groups G, the groups v−1

1 π∗(G; 2) in
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terms of the representation ring R(G) together with its decomposition into real,
complex, and quaternionic types, and its second and third exterior power operations.
Bousfield has proved (see Theorem 2.5) that his conjecture is valid for those G for
which R(G) satisfies a Technical Condition, which we state in 2.4. Our second main
result determines which of the simply-connected compact simple Lie groups satisfy
this Technical Condition.

Theorem 1.3. A simply-connected compact simple Lie group satisfies the Technical
Condition 2.4 if and only if it is not E6 or Spin(4k + 2) with k not a 2-power.

In particular, Conjecture 2.2 is valid for E7 and E8. It is by computing the groups
and homomorphisms of 2.2 that Theorems 1.1 and 1.2 are proved.

The author has computed, for all compact simple Lie groups G, the result for
v−1
1 π∗(G; 2) which would be implied by Bousfield’s conjecture 2.2 and obtained

remarkable agreement with the results he has obtained previously by other methods.
This may be viewed both as lending credence to Conjecture 2.2 and as a check on
the earlier work of the author and coworkers.

2. Bousfield’s Conjecture and Theorem

In this section, we state a slight reformulation of Bousfield’s conjecture regarding
2-primary v1-periodic homotopy groups, and his Technical Condition, under which
he can prove his conjecture valid.

The first step of Bousfield’s program is a real analogue of [8, 8.1,8.5]. In a Novem-
ber 2002 e-mail, Bousfield wrote that the following result can be proved by utilizing
[9, 7.8,9.4,9.5] to adapt the argument of [8].

Theorem 2.1. (Bousfield) Let G be a simply-connected compact Lie group. There
is a K/2∗-local spectrum ΦG such that there is an exact sequence

→ v−1
1 πi+2(G)# → KOi(ΦG;Z∧2 )

ψ3−9−→ KOi(ΦG;Z∧2 ) → v−1
1 πi+3(G)# →,

where (−)# denotes Pontrjagin duality.

Bousfield’s conjecture expresses KO∗(ΦG;Z∧2 ) in terms of the representation the-
ory of G. For the simply-connected compact Lie group G, let R(G) be its (complex)
representation ring, I ⊂ R(G) the augmentation ideal, and Q = Q(G) = I/I2 the
group of indecomposables in I. Let RR(G) (resp. RH(G)) denote the real (resp.
quaternionic) representation rings. We identify these with their image in R(G) un-
der the extension homomorphisms, which are injective. Let QR ⊂ Q (resp. QH ⊂ Q)
denote the image in Q of the augmentation ideal of RR(G) (resp. RH(G)). Let λk

denote the exterior power operations on R(G).
The following conjecture uses all the above notation. We omit writing Z∧2 as

coefficient of KO∗(ΦG), and a Z∧2⊗ which should accompany all the Q-groups.
Although essential to the underlying theory, these 2-adic coefficients do not affect
the subsequent calculations.
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Conjecture 2.2. (Bousfield) If G is a simply-connected compact Lie group, there
is an exact sequence of abelian groups

0 → KO0(ΦG) → Q/(QR + QH) λ2

−→ Q/QR → KO1(ΦG) → 0
→ QH/(QR ∩QH) → KO2(ΦG) → QR ∩QH

λ2

−→ QH → KO3(ΦG) → 0
→ KO4(ΦG) → Q/(QR ∩QH) λ2

−→ Q/QH → KO5(ΦG)
→ (QR + QH)/(QR ∩QH) λ2

−→ QR/(QR ∩QH) → KO6(ΦG)
→ QR + QH

λ2

−→ QR → KO7(ΦG) → 0.

For any integer i, the Adams operation ψ3 in KO2i(ΦG) and KO2i+1(ΦG) corre-
sponds to 3−iλ3 in Q under the morphisms of the exact sequence, which is expanded
to all integers by Bott periodicity KOj(−) ≈ KOj+8(−).

Note that applying period-8 Bott periodicity to the exact sequence of 2.2 does
not change the λ2 in Q which is being used to yield the KO∗(−)-groups. We will
show in Sections 4 and 5 how to compute the exact sequences of Theorem 2.1 and
Conjecture 2.2 to obtain v−1

1 π∗(E8) and v−1
1 π∗(E7).

Bousfield has proved this conjecture for those G which satisfy a Technical Condi-
tion, which we now state. We begin by recalling some standard material regarding
representation types, and establishing notation. All of the material in this result, as
well as additional background for 2.4, may be found in [11, II.6,VI.4].

Theorem 2.3. Let G be a simply-connected compact Lie group, and let t denote
conjugation on R(G). Each irreducible representation is of one of three types—
real, quaternionic, or complex. Those of real or quaternionic type are self-conjugate,
while those of complex type are not. There is a set B(G) of irreducible represen-
tations called basic such that R(G) is a polynomial algebra on B(G). If ρ is any
representation, let

ρ̃ = ρ− dim(ρ) ∈ I(G).

Let Q, QR, and QH be as in 2.2 and its preamble. Then Q is a free abelian group with
basis {ρ̃ : ρ ∈ B(G)}. The set B(G) can be partitioned into subsets BR(G), BH(G),
and BC(G) of representations of real, quaternionic, and complex type, respectively.
The set BC(G) is composed of pairs of conjugate representations. Let B′

C(G) contain
one element from each pair of conjugate elements of BC(G). Then QR is a free
abelian group with basis

{ρ̃ : ρ ∈ BR(G)} ∪ {2ρ̃ : ρ ∈ BH(G)} ∪ {ρ̃ + t(ρ̃) : ρ ∈ B′
C(G)},

and similarly for QH with R and H interchanged.

Now we state Bousfield’s Technical Condition.

Definition 2.4. Let G be a simply-connected compact Lie group, and let

H(G) = ker(1− t)/ im(1 + t).

Then H(G) is an augmented Z/2-graded polynomial algebra over Z/2 on

BR(G) ∪BH(G) ∪ {ρ t(ρ) : ρ ∈ B′
C(G)},
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where gr(BR(G)) = 0, gr(BH(G)) = 1, and gr(ρ t(ρ)) = 0, while the augmentation ε
satisfies ε(ρ) = dim(ρ) mod 2. Let HR(G) denote the subgroup of H(G) of grading
0. There is an augmentation-preserving algebra homomorphism φ : R(G) → H(G)
defined by φ(ρ) = ρ t(ρ). The image of φ is contained in HR(G). This φ induces a
morphism of indecomposables

φ : I(R(G))/I2(R(G)) → I(H(G))/I2(H(G)),

whose image lies in the summand

I(HR(G))/I2(H(G)) := IndR(H(G))

of grading 0. The morphism φ preserves Adams operations, and its image is au-
tomatically a ψ3-submodule of IndR(H(G)). We say that G satisfies the Technical
Condition if im(φ) is a direct summand of IndR(H(G)) as a ψ3-module; i.e., if it
has a complementary ψ3-submodule.

In e-mails dated January 30, 2003, and February, 8, 2003, Bousfield wrote that
he has a proof of the following result, which he is in the process of writing. In
fact, he will prove more; the author has just extracted from various letters from
Bousfield the portion of these consequences necessary for the specific applications
to v1-periodic homotopy groups.

Theorem 2.5. (Bousfield) If G satisfies the Technical Condition, then Conjecture
2.2 is true for G.

In those same e-mails, Bousfield wrote that he has an idea of how he might be
able to prove Conjecture 2.2 without assuming the Technical Condition, but that
this is more speculative.

3. Compact simple Lie groups and the Technical Condition

In this section, we prove Theorem 1.3, which states exactly which of the simply-
connected compact simple Lie groups satisfy the Technical Condition 2.4.

We begin by tabulating for the compact simple Lie groups a set of basic repre-
sentations and their division into types. For the classical groups, this information
is proved in [11, VI], while for the exceptional groups it is extracted from [17].
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Table 3.1. Types of basic representations
G BR(G) BH(G) B′

C(G) t(B′
C(G))

SU(2n + 1) λ1, . . . , λn t(λi) = λ2n+1−i

SU(2n), n even λn λ1, . . . , λn−1 t(λi) = λ2n−i

SU(2n), n odd λn λ1, . . . , λn−1 t(λi) = λ2n−i

Sp(n) λi, i even, λi, i odd,
2 6 i 6 n 1 6 i 6 n

Spin(2n + 1), λ1, . . . , λn−1,

n ≡ 0, 3 mod 4 ∆

Spin(2n + 1), λ1, . . . , λn−1 ∆
n ≡ 1, 2 mod 4

Spin(2n), n odd λ1, . . . , λn−2 ∆+ t(∆+) = ∆−
Spin(2n), λ1, . . . , λn−2,

n ≡ 0 mod 4 ∆+,∆−
Spin(2n), λ1, . . . , λn−2 ∆+, ∆−
n ≡ 2 mod 4

G2, F4, E8 ρ1, . . . , ρt

E6 ρ2, ρ4 ρ1, ρ3 t(ρ1) = ρ6,
t(ρ3) = ρ5

E7 ρ1, ρ3, ρ4, ρ6 ρ2, ρ5, ρ7

We will say more about the specifics of the basic representations ρi of E6 and
E7 when we make specific applications later.

We begin with an elementary proposition and two corollaries.

Proposition 3.2. In the notation of Definition 2.4, IndR(H(G)) is a vector space
over Z/2 with basis B̃R(G)∪B(φ), where B̃R(G) = {ρ̃ : ρ ∈ BR(G)}, and B(φ) =
{ρ̃ · t(ρ̃) : ρ ∈ B′

C(G)} is a basis for im(φ).

Proof. This follows immediately from the definitions.

Corollary 3.3. If either BR(G) or B′
C(G) is empty, then G satisfies the Technical

Condition.

Proof. If BR(G) is empty, then im(φ) = IndR(H(G)), while if B′
C(G) is empty,

then im(φ) = 0, both of which are clearly ψ3-direct summands of IndR(H(G)).

Corollary 3.4. A simply-connected compact simple Lie group which does not equal
SU(4m), Spin(4k + 2), or E6 satisfies the Technical Condition.

Proof. By Table 3.1, all other simply-connected compact simple Lie groups satisfy
the hypothesis of Corollary 3.3.

We handle the three (families of) Lie groups not covered by Corollary 3.4 in
separate theorems, 3.5, 3.7, and 3.32.
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Theorem 3.5. For each m > 1, SU(4m) satisfies the Technical Condition.

Proof. Referring to Table 3.1, we see that

im(φ) = 〈λ̃iλ̃4m−i : 1 6 i < 2m〉.
We will prove

the coefficient of λ̃iλ̃4m−i in ψ3(λ̃2m) is even, (3.6)

which, with 3.2, will imply the theorem, since 〈λ̃2m〉 is then a ψ3-submodule of
IndR(H(SU(4m))) complementary to im(φ).

Let T denote the maximal torus of SU(4m). Then

R(T ) = Z[x1, . . . , x4m]/(x1 · · ·x4m − 1),

and R(SU(4m)) → R(T ) is a ring homomorphism sending λk to σk, and sending
ψ3(λ2m) to

∑
x3

i1
· · ·x3

i2m
, which we call p. Here the sum is over all i1 < · · · < i2m,

and σk is the kth elementary symmetric polynomial in x1, · · · , x4m.
This p can be written as an integer polynomial f(σ1, . . . , σ4m) in which each

term has grading 6m, where gr(σi) = i. Then ψ3(λ2m) is the same polynomial
f(λ1, · · · , λ4m). To write ψ3(λ̃2m) in terms of λ̃1, . . . , λ̃4m−1, we replace each λi by
λ̃i +

(
4m
i

)
. Note λ̃4m = 0.

Let i < 2m, and let τ := λj1
1 · · ·λj4m

4m have odd coefficient in f(λ1, . . . , λ4m). Then

τ =
(
λ̃1 +

(
4m
1

))j1 · · · (λ̃4m +
(
4m
4m

))j4m

contains a term βλ̃iλ̃4m−i with β ∈ Z if and only if ji > 0 and j4m−i > 0.
If we write τ = λiλ4m−i

∏
λk`

, then the coefficient β of λ̃iλ̃4m−i in τ is equal
to jij4m−i

∏ (
4m
k`

)
. Note that k` may be repeated, and may equal i or 4m − i, but∑

k` = 6m − 4m = 2m. Now we note that if
∏ (

4m
k`

)
is odd, then each

(
4m
k`

)
is

odd, hence each k` is at least as 2-divisible as 4m, and so 2m =
∑

k` is at least
as 2-divisible as 4m, which is impossible. Thus the coefficient of λ̃iλ̃4m−i is even,
proving (3.6).

The proof of the next result involves more combinatorics.

Theorem 3.7. Spin(4k + 2) satisfies the Technical Condition if and only if k is a
2-power.

Proof. It is well-known (see, e.g., [18, p.151]) that j∗ : R(SU(2n)) → R(Spin(2n))
satisfies

j∗(λi) = j∗(λ2n−i). (3.8)

Let µi = j∗(λi). Then (see, e.g., [11, VI.6.2]) R(Spin(2n)) has basic representations
µ1, . . . , µn−2, ∆+, ∆− with

∆+∆− = µn−1 + µn−3 + µn−5 + · · · (3.9)
∆2

+ + ∆2
− = µn + 2(µn−2 + µn−4 + · · · ). (3.10)

By 3.1, B̃R(Spin(2n)) = {µ̃1, . . . , µ̃n−2}, and B(φ) = {P}, where P := ∆̃+∆̃−. The
theorem follows from the following result, in which n = 2k + 1.
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Lemma 3.11. Let ε = (ε1, . . . , ε2k−1) with εi ∈ Z/2. Let W (ε) denote the subspace
of the Z/2-vector space IndR(H(Spin(4k + 2))) spanned by {µ̃1 + ε1P, . . . , µ̃2k−1 +
ε2k−1P}. Every Z/2-subspace complementary to im(φ) = 〈P 〉 is of this form.

1. If k is a 2-power, then W (0) is a ψ3-submodule of IndR(H(Spin(4k + 2))),
while

2. if k is not a 2-power, W (ε) can never be a ψ3-submodule of IndR(H(Spin(4k+
2))).

In order to prove Lemma 3.11, we need an explicit formula for ψ3 on the basis
{λ̃1, . . . , λ̃2n−1} of the free abelian group

Q(SU(4k + 2)) := I(R(SU(4k + 2)))/I2(R(SU(4k + 2))).

This will then be transported to IndR(H(Spin(4k + 2))) using j∗, (3.8), and (3.9).

Theorem 3.12. Define integers ck
n,` by

(1 + x + · · ·+ xk−1)n =
∑

ck
n,`x

`. (3.13)

In Q(SU(n)),

ψk(λ̃i) = k
∑

`>0

(−1)ki+i+`ck
n,`λ̃ki−`. (3.14)

Proof. Let β : I(R(G))/I2(R(G)) → PK−1(G) be Hodgkin’s isomorphism ([16]),
where P denotes the primitives. As in [2, pp. 42-43], let Bi ∈ PK1(SU(n)) corre-
spond to β(λ̃i) under Bott periodicity. We will prove that

ψk(Bi) =
∑

`>0

(−1)ki+i+`ck
n,`Bki−`. (3.15)

Then (3.14) follows from the fact that ψk in K1(G) corresponds to ψk/k in K−1(G).
In [2, 3.2], it is shown that Bj =

∑
(−1)`+1

(
n

j−`

)
ξ`, where ξ` = ξ` − 1 satisfies

ψk(ξ`) = ξk`. Thus it suffices to prove
∑

`

(−1)`+1
(

n
i−`

)
ξk` =

∑

`

(−1)ki+i+`ck
n,`

∑
t

(−1)t+1
(

n
ki−`−t

)
ξt,

where the sums are taken over all values which give meaningful terms. Note that
there are relations among the ξi’s when i > n, but they are the same on both sides of
the equation, and hence need not be considered. The ξi’s are just formal variables,
and so can be replaced by x−i. Thus we wish to prove

∑

`

(−1)`
(

n
i−`

)
x−k` =

∑

`

(−1)ki+i+`ck
n,`x

`
∑

t

(−1)t
(

n
ki−`−t

)
x−`−t.

Multiplying both sides by (−1)ixki, it is equivalent to show
∑

`

(−1)i−`
(

n
i−`

)
(xk)i−` =

∑

`

ck
n,`x

`
∑

t

(−1)ki−`−t
(

n
ki−`−t

)
xki−`−t.

The left hand side equals (1− xk)n, while the right hand side equals (1 + x + · · ·+
xk−1)n(1− x)n, and these are equal, establishing (3.15).



Homology, Homotopy and Applications, vol. 5(1), 2003 305

Remark 3.16. Another approach to Theorem 3.12 is illustrated by

ψ2(λ̃1) = −2λ̃2 + 2nλ̃1 + λ̃2
1

in R(SU(n)), which is readily verified to be consistent with one case of 3.12.

Proof. Using R(SU(n)) → R(T ) as in the proof of 3.5, λ̃1 corresponds to x1 +
· · ·+ xn−n, while λ̃2 corresponds to

∑
i<j xixj −

(
n
2

)
. Then ψ2(λ̃1) corresponds to

x2
1 + · · ·+ x2

n − n = (x1 + · · ·+ xn)2 − n− 2
∑

i<j

xixj ,

which corresponds to (λ̃1 + n)2 − n− 2(λ̃2 +
(
n
2

)
) = λ̃2

1 + 2nλ̃1 − 2λ̃2.
Proof of Lemma 3.11. We work in the Z/2-vector space V := IndR(H(Spin(4k+

2))). Since dim(∆±) is even, (3.9) becomes

P = µ̃2k + µ̃2k−2 + · · · . (3.17)

Since ∆2
+ + ∆2

− = (1 + t)(∆2
+), (3.10) implies µ̃2k+1 = 0 in V . ¿From (3.14) and

(3.8), we obtain

ψ3(µ̃j) =
∑

c3
4k+2,3j−`µ̃` =

2k∑

`=1

(c3
4k+2,3j−` + c3

4k+2,3j−(4k+2−`))µ̃`. (3.18)

We will use (3.17) to express µ̃2k as P − µ̃2k−2 − µ̃2k−4 − · · · .
By (3.13), since we work mod 2,

c3
4k+2,i =

{
c3
2k+1,i′ if i = 2i′

0 if i odd.

Thus (3.18) implies that there is a splitting as ψ3-modules,

V = Vod ⊕ Vev,

where Vod = 〈µ̃2i−1 : 1 6 i 6 k〉 and Vev = 〈P, µ̃2i : 1 6 i 6 k − 1〉. Thus im(φ) =
〈P 〉 has a complementary ψ3-submodule in V if and only if it has a complementary
ψ3-submodule in Vev, and so we focus our attention on the latter.

Let vi := µ̃2i ∈ Vev and ci := c3
2k+1,i. Then (3.18) becomes

ψ3(vj) =
k−1∑
t=1

(c3j−t+c3j−2k−1+t)vt+(c3j−k+c3j−k−1)(P+vk−1+vk−2+· · · ). (3.19)

One can use these sorts of formulas to prove ψ3(P ) = P , but this also follows from
the fact that im(φ) is a ψ3-submodule by naturality.

Now we can easily prove 3.11(1). If k = 2e, then ci = 1 implies i = 0, 1, or 2, or
i > 2e+1. By (3.19), we must prove that if 1 6 j 6 k− 1, then c3j−k + c3j−k−1 = 0.
Note that for such j, we have 3j − k 6 2k − 3 < 2e+1. Thus the only way to have
c3j−k + c3j−k−1 = 1 is if 3j−k = 0 or 3. But this is impossible, since k 6≡ 0 mod 3.

To prove part (2), let

B =
(

A 0
r 1

)
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denote the matrix of ψ3 with respect to the ordered basis {v1, . . . , vk−1, P}. Thus
A = (ai,j) is a (k−1)-by-(k−1) matrix. The last column of B is due to ψ3(P ) = P ,
observed earlier. We will prove

a. If k is not a 2-power, then r 6= 0.
b. A + I is singular.
Lemma 3.11(2) then follows. Indeed, suppose k is not a 2-power and W (ε) is a

ψ3-submodule. Then, for 1 6 j 6 k − 1,

ψ3(vj + εjP ) =
k−1∑

i=1

ai,jvi + rjP + εjP

=
k−1∑

i=1

ai,j(vi + εiP ) +
(k−1∑

i=1

ai,jεi + rj + εj

)
P.

The coefficient of P must be 0 for each j. Thus, with (−)T denoting the transpose,

(A + I)εT = rT ,

and since r 6= 0 by (a), A + I must be nonsingular, contradicting (b).
It remains to prove (a) and (b). Part (a) follows from (3.19) and Lemma 3.20,

while (b) follows from Lemma 3.24.

Lemma 3.20. Let (1 + x + x2)2k+1 =
∑

cix
i. If k is not a 2-power, there exists j

satisfying 1 6 j 6 k − 1 and c3j−k + c3j−k−1 ≡ 1 mod 2.

Proof. We write k = 2eu with u > 1 odd, and divide into cases depending on
the mod 6 value of u.

Case 1. If u = 3a, then j = 2ea works, since c0 + c−1 = 1.
Case 2. If u = 6a+1, then j = 2e(2a+1) works. (Note that if a = 0, then j = k,

explaining the failure of the lemma when k is a 2-power.) To see this, note that

(1 + x + x2)2k+1 ≡ 1 + x + x2 + x2e+1
mod (x2e+1+1),

and hence c2e+1 + c2e+1−1 = 1.
Case 3. If u = 3 · 2fα − 1 with f > 1 and α odd, then j = 2e(2fα + 2f − 1)

works. To see this, let c(p, i) denote the coefficient of xi in the polynomial or power
series p = p(x). Then c3j−k + c3j−k−1 equals

c((1+x+x2)2k+1, 3 · 2e+f − 2e+1)+ c((1+x+x2)2k+1, 3 · 2e+f − 2e+1− 1). (3.21)

Mod x2e+f+2
, we have

(1 + x + x2)2k+1 ≡ (1 + x + x2)(1 + x2e+f+1
)(1 + x + x2)−2e+1

.

Thus (3.21) equals

c(g, 3 · 2e+f − 2e+1) + c(g, 3 · 2e+f − 2e+1 − 1)
+ c(g, 2e+f − 2e+1) + c(g, 2e+f − 2e+1 − 1), (3.22)

where

g = (1+x+x2)(1+x2e+1
+x2e+2

)−1 = (1+x+x2)
∑

i>0

(x3i2e+1
+x2e+1(3i+1)). (3.23)
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Here we have used (mod 2, as always)

(1 + z + z2)−1 =
1 + z

1 + z3
=

∑

i>0

(z3i + z3i+1).

If e = 0, then g =
∑

j>0(x
3j +x3j+1), and so c(g, 3 · 2f − 2) = c(g, 3 · 2f − 3) = 1,

while c(g, 2f − 2) + c(g, 2f − 3) = 1 since 2f − 2 6≡ 1 mod 3. Thus (3.22) equals 1
in this case. If e > 0, c(g, j) = 1 if and only if j ≡ 0, 1, 2, 2e+1, 2e+1 + 1, or 2e+1 + 2
mod 3 ·2e+1. The mod 3 ·2e+1 values of the four exponents of x in (3.22) are −2e+1,
−2e+1 − 1, 0 or 2e+1, and −1 or 2e+1 − 1. Hence the third coefficient is 1 while the
others are 0.

Like the above lemma, Lemmas 3.24, 3.30, and 3.31 below all deal with mod 2
polynomials.

Lemma 3.24. Let (1+x+x2)2k+1 =
∑

cix
i. Let A = (ai,j) be the (k−1)-by-(k−1)

matrix with

ai,j = c3j−i + c3j−2k−1+i + c3j−k + c3j−k−1.

Then A + I is singular.

Proof. Let γj = 1 if, for e > 0,




k = 2e(4m− 1) and 1 6 (j mod 2e+2) 6 2e+1

k = 2e(4m + 1), m > 0, and 3 · 2e 6 (k − j mod 2e+3) 6 5 · 2e − 1,
k = 2e+1 and 1 6 j 6 2e

and γj = 0 otherwise. We will show that, for 1 6 i 6 k − 1,
(k−1∑

j=1

γjai,j

)
+ γi = 0,

which establishes the linear dependence of some of the columns of A+ I. Observing
that γk = 0, it is equivalent to show that, for 1 6 i 6 k,

k−1∑

j=1

γj(c3j−i + c3j−2k−1+i) = γi. (3.25)

We will, in fact, prove that (3.25) is true for all i > 1.
We begin with the case k = 2e(4m− 1). Since k ≡ −2e mod 2e+2, we have

k−1∑

j=1

γjc3j−i =
∑

`>0

2e+1−1∑

d=0

c3(k−2e−d−`2e+2)−i

= c(gk(x), 3(k − 2e)− i),

where

gk(x) = (1 + x + x2)2k+1 1 + x3 + · · ·+ x3(2e+1−1)

1 + x3·2e+2



Homology, Homotopy and Applications, vol. 5(1), 2003 308

and c(−,−) is as in the previous proof. Similarly,

k−1∑

j=1

γjc3j−2k−1+i = c(gk(x), k − 3 · 2e − 1 + i).

Thus we must show

c(gk(x), 3(2e+2m− 2e+1)− i) + c(gk(x), 2e+2m− 2e+2 + i− 1)

=

{
1 if 1 6 (i mod 2e+2) 6 2e+1

0 otherwise.
(3.26)

We have

gk(x) = (1 + x + x2)2k+1 1 + x3·2e+1

(1 + x3)(1 + x3·2e+2)

= (1 + x + x2)2k+2e+1 (1 + x)2
e+1−1

1 + x3·2e+2

= (1 + x2e+3
+ x2e+4

)m (1 + x)2
e+1−1

1 + x3·2e+2 .

If 2e+1 + 1 6 (i mod 2e+2) 6 2e+2, then both exponents of x in (3.26) are in the
mod 2e+2 range from 2e+1 up to 2e+2 − 1. Such terms have coefficient 0 in gk(x),
since it is of the form f(x2e+2

)
∑2e+1−1

`=0 x`. Thus the “otherwise” part of (3.26) is
verified.

Now let i = 2e+2t + ε with 1 6 ε 6 2e+1. The left hand side of (3.26) equals

c(p1(x), 3 · 2e+2m− 2 · 2e+2 − 2e+2t) + c(p1(x), 2e+2m− 2e+2 + 2e+2t), (3.27)

where

p1(x) =
(1 + x2e+3

+ x2e+4
)m

1 + x3·2e+2

because the (1+x)2
e+1−1 in gk(x) corresponds to the range of values of i. Replacing

x2e+2
by x, that (3.27) has the desired value of 1 follows from Lemma 3.30. (Note i

in 3.30 corresponds to 3m− 2− t above.)
The proof when k = 2e(4m + 1) and m > 0 is similar. We now have

k−1∑

j=1

γjc3j−i =
∑

`>0

2e+1−1∑

d=0

c3(k−3·2e−d−`2e+3)−i

= c(hk(x), 3(k − 3 · 2e)− i),

where

hk(x) = (1 + x + x2)2k+1 1 + x3 + · · ·+ x3(2e+1−1)

1 + x3·2e+3

= (1 + x2e+3
+ x2e+4

)m(1 + x2e+2
+ x2e+3

)
(1 + x)2

e+1−1

1 + x3·2e+3 ,
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and similarly
k−1∑

j=1

γjc3j−2k−1+i = c(hk(x), k − 9 · 2e − 1 + i).

Thus we must show

c(hk(x), 3(2e+2m− 2e+1)− i) + c(hk(x), 2e+2m− 2e+3 − 1 + i)

=

{
1 if i = 2e+2t + ε, 1 6 ε 6 2e+1, m + t odd
0 otherwise.

(3.28)

If 2e+1 + 1 6 (i mod 2e+2) 6 2e+2, then both exponents in (3.28) are in a range
(2e+1 to 2e+2 − 1 mod 2e+2) where all coefficients of hk(x) are 0. If, on the other
hand, i = 2e+2t + ε with 1 6 ε 6 2e+1, then the left hand side of (3.28) equals

c(p2(x), 3 · 2e+2m− 2e+2t− 2e+3) + c(p2(x), 2e+2m− 2e+3 + 2e+2t) (3.29)

with

p2(x) =
(1 + x2e+3

+ x2e+4
)m(1 + x2e+2

+ x2e+3
)

1 + x3·2e+3 .

Replacing x2e+2
by x, and letting ` = m + t, (3.29) equals

c(qm(x), 4m− `− 2) + c(qm(x), `− 2)

where qm(x) is as in 3.31, and so (3.28) follows from 3.31, which is proved similarly
to Lemma 3.30.

The proof when k = 2e+1 is similar and easier. It is also less important, since we
don’t need the result in this case, and hence is omitted.

Lemma 3.30. Let

fm(x) =
(1 + x2 + x4)m

1 + x3
=

∑
αm,ix

i.

Then αm,i + αm,4m−3−i = 1 for all integers i.

Proof. The proof is by induction on m. It is true for m = 1 since f1(x) =
1+

∑
i>2 xi. Assume true for m−1. Note that fm(x) = (1+x2 +x4)fm−1(x). Thus

αm,i + αm,4m−3−i

= αm−1,i + αm−1,i−2 + αm−1,i−4 + αm−1,4m−3−i + αm−1,4m−5−i + αm−1,4m−7−i

= 1 + 1 + 1 = 1.

Lemma 3.31. Let

qm(x) =
(1 + x2 + x4)m(1 + x + x2)

1 + x6
=

∑
βm,ix

i

with m > 1. Then βm,4m−`−2 + βm,`−2 = δ`, where δ` =

{
1 ` odd
0 ` even.
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The following result completes the proof of Theorem 1.3.

Theorem 3.32. The exceptional Lie group E6 does not satisfy the Technical Hy-
pothesis.

Proof. We use the order of the generators in the computer package LiE ([19]).
Information about the types of the representations can be found in [17], although
a different ordering of the generators is used there. Then R(E6) has basic repre-
sentations ρ1, . . . , ρ6 of dimension 27, 78, 351, 2925, 351, and 27, respectively, such
that ρ2 and ρ4 are real, while t(ρ1) = ρ6 and t(ρ3) = ρ5. Thus V := IndR(H(E6))
is a Z/2-vector space with basis {ρ̃2, ρ̃4, ρ̃1ρ̃6, ρ̃3ρ̃5}. We will show that no subspace
complementary to 〈ρ̃1ρ̃6, ρ̃3ρ̃5〉 is a ψ3-submodule.

By Lemma 3.33(ii), a complementary subspace which is a ψ3-submodule must
have basis

{v2 = ρ̃2 + aρ̃1ρ̃6 + bρ̃3ρ̃5, v4 = ρ̃4 + cρ̃1ρ̃6 + dρ̃3ρ̃5}
satisfying ψ3(v2) = v4 and ψ3(v4) = v2. From Lemma 3.33(i), we have, in V ,
ψ3(ρ̃1ρ̃6) = ρ̃3ρ̃5 and ψ3(ρ̃3ρ̃5) = ρ̃1ρ̃6. Thus, using 3.33 again,

ψ3(v2)− v4 = (a− d + 1)ρ̃3ρ̃5 + (b− c + 1)ρ̃1ρ̃6

ψ3(v4)− v2 = (c− b)ρ̃3ρ̃5 + (d− a)ρ̃1ρ̃6.

It is clearly impossible to choose the scalars so that both of these are 0.

Lemma 3.33. i. Mod (2, I2),

ψ3(ρ̃1) = ρ̃3 + ρ̃4

ψ3(ρ̃3) = ρ̃3 + ρ̃4 + ρ̃5 + ρ̃6

ψ3(ρ̃5) = ρ̃1 + ρ̃3 + ρ̃4 + ρ̃5

ψ3(ρ̃6) = ρ̃4 + ρ̃5.

ii. In V ,

ψ3(ρ̃2) = ρ̃4 + ρ̃1ρ̃6 + ρ̃3ρ̃5

ψ3(ρ̃4) = ρ̃2.

Proof. Part (i) can be proved by the LiE methods used in the proof of (ii). It
can also be obtained from [12, 3.9] by conjugating the matrix of ψ3 given there by
the change-of-basis matrix given there. The Bi in [12, 3.9] correspond to ρ̃i. Indeed
the matrix of ψ3 on the basis {ρ̃1, . . . , ρ̃6} of I/I2 is




378 −2079 −143856 6062445 −75843 0
0 2430 46656 −3109185 46656 0
−27 351 18225 −873261 11961 0
1 −77 −2405 146586 −2405 1
0 351 11961 −873261 18225 −27
0 −2079 −75843 6062445 −143856 378




The proof of part (ii) requires LiE, and an algorithm somewhat similar to that
used in [12]. Irreducible representations are represented in LiE by their highest
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weight, which, for E6, is a 6-tuple of integers. We adopt a notation that ρi1,...,ir

with 1 6 i1 6 · · · 6 ir 6 6 has highest weight (e1, . . . , e6) where ej equals the
number of k for which ik = j. For example, ρ1,6 has highest weight (1, 0, 0, 0, 0, 1)
and ρ4,4 has highest weight (0, 0, 0, 2, 0, 0). The following information is obtained
from LiE.

ρ1ρ6 = ρ1,6 + ρ2 + 1
ρ1ρ2 = ρ1,2 + ρ1 + ρ5

ρ1ρ3 = ρ1,3 + ρ1,6 + ρ2 + ρ4

ρ2
2 = ρ2,2 + ρ1,6 + ρ2 + ρ4 + 1

ρ5ρ6 = ρ5,6 + ρ1,6 + ρ2 + ρ4

ρ1,2ρ6 = ρ1,2,6 + ρ1,3 + ρ1,6 + ρ2,2 + ρ2 + ρ4

ρ3ρ5 = ρ3,5 + ρ1,2,6 + ρ1,3 + ρ2,2 + 2ρ1,6 + ρ2 + ρ4 + ρ5,6 + 1
ρ2ρ4 = ρ2,4 + ρ1,2,6 + ρ1,3 + ρ1,6 + ρ2,2 + ρ2 + ρ3,5 + ρ4 + ρ5,6

ρ2ρ2,2 = ρ2,2,2 + ρ1,2,6 + ρ2,2 + ρ2,4 + ρ2 + ρ4

ψ3(ρ2) = 1 + ρ5,6 + ρ4 + ρ3,5 + ρ2 + ρ2,4 + ρ2,2,2 + ρ1,6 + ρ1,3

We use these successively to express multisubscripted ρ’s as products of ρi’s. For
example, the first one yields

ρ1,6 = ρ1ρ6 − ρ2 − 1,

and the third then yields

ρ1,3 = ρ1ρ3 − ρ2 − ρ4 − (ρ1ρ6 − ρ2 − 1).

Ultimately we obtain, mod 2,

ψ3(ρ2) ≡ 1 + ρ1ρ6 + ρ1ρ2ρ6 + ρ3ρ5 + ρ2ρ4 + ρ4 + ρ3
2. (3.34)

We have, mod 2, ρ̃2 ≡ ρ2, while if i 6= 2, then ρ̃i ≡ ρi + 1. Substituting these into
(3.34) yields the first equation of part (ii).

The second equation of part (ii) is proved by the same algorithm, but there are
so many terms that it is only feasible to have a computer program manage all the
details. We list the LiE program for completeness. The program just computes the
coefficients of 1, ρ̃1, ρ̃3, ρ̃5, ρ̃6, ρ̃1ρ̃6, and ρ̃3ρ̃5 in ψ3(ρi). The first five coefficients
are needed in the determination of the last two. They also serve as a check on the
validity of our program. We obtain that, mod 2,

ψ3(ρ4) = 1 + ρ̃1 + ρ̃3 + ρ̃5 + ρ̃6 + 0ρ̃1ρ̃6 + 0ρ̃3ρ̃5 (3.35)

plus other terms. The last two coefficients of (3.35) yield the quadratic part of part
(ii). (The linear part is contained in the matrix above.)

Note that coefficients 2 to 5 of (3.35) agree with those of the matrix above.
(The first coefficient equals dim(ρ4) mod 2. Note also that (3.35) is not concerned
with the coefficient of ρ̃2.) An additional check of our program was provided by
modifying it to compute the same seven coefficients in ψ3(ρ2). The values obtained,
0 + 0ρ̃1 + ρ̃3 + ρ̃5 + ρ̃6 + ρ̃1ρ̃6 + ρ̃3ρ̃5, agreed with results obtained independently
above.



Homology, Homotopy and Applications, vol. 5(1), 2003 312

The LiE program is listed below. The reader may profit by comparing with the
related program in [12, §7]. Row numbers here are not part of the program; they
are here for purpose of reference.

01 setdefault E6
02 on + height
03 terms=Adams(3,[0,0,0,1,0,0])
04 p2=0X null(6); x=1
05 while x==1 do x=0;
06 for i=1 to length(terms) do u=expon(terms,i);
07 if u[1]+u[2]+u[3]+u[4]+u[5]+u[6]>1 then j=1;
08 while u[j]==0 do j=j+1 od;
09 v=null(6); v[j]=1; w=u-v;
10 p1=tensor(v,w); n=length(p1); utop=expon(p1,n);
11 if terms | v==0 then x=1; p2=p2+1X v fi;
12 if terms | w==0 then x=1; p2=p2+1X w fi;
13 if utop!=u then print([u,v,utop]) fi;
14 for k=1 to n-1 do aa=expon(p1,k); if terms | aa==0 then
15 x=1; p2=p2+1X aa fi od fi od;
16 terms=terms+p2 od;
17 el=length(terms); a=null(el,7);
18 for i=1 to el do u=expon(terms,i);
19 if u==null(6) then a[i,1]=1 fi;
20 if u[1]+u[2]+u[3]+u[4]+u[5]+u[6]>0 then j=1;
21 while u[j]==0 do j=j+1 od;
22 v=null(6); v[j]=1; w=u-v;
23 p1=tensor(v,w); n=length(p1);
24 if j!=2 then k=1;
25 while w!=expon(terms,k) do k=k+1 od;
26 a[i]=a[k];
27 if j==1 then a[i,2]=a[i,2]+a[k,1]; a[i,6]=a[i,6]+a[k,5] fi;
28 if j==3 then a[i,3]=a[i,3]+a[k,1]; a[i,7]=a[i,7]+a[k,4] fi;
29 if j==5 then a[i,4]=a[i,4]+a[k,1]; a[i,7]=a[i,7]+a[k,3] fi;
30 if j==6 then a[i,5]=a[i,5]+a[k,1]; a[i,6]=a[i,6]+a[k,2] fi

fi;
31 for jj=1 to n-1 do if coef(p1,jj) % 2==1 then
32 ww=expon(p1,jj); k=1; while ww!=expon(terms,k) do k=k+1 od;
33 a[i]=a[i]+a[k] fi od fi od;
34 psit=Adams(3,[0,0,0,1,0,0]);
35 veec=null(7);
36 for i=1 to length(psit) do
37 if coef(psit,i) % 2==1 then uu=expon(psit,i);
38 k=1; while uu!=expon(terms,k) do k=k+1 od;
39 veec=veec+a[k] fi od;
40 print(veec)
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For each ρj1,...,jr
that appears in ψ3(ρi), we decompose it as ρj1 ⊗ ρj2,...,jr

minus
lower terms. The first loop adds to a list of terms all those lower terms not already
present in the list (which starts with the terms of ψ3(ρi)). This process is iterated
until it stabilizes (no more terms being added to the list).

The terms in the list are ordered by height. The first term in the list will be
ρ∅ = 1, which has coefficients a1 = 1 and aj = 0 for j > 1 (line 19). For each
ρJ = ρj1,...,jr in the list, the loop from lines 18 to 33 computes the coefficients ai

such that

ρJ = a1 + a2ρ̃1 + a3ρ̃3 + a4ρ̃5 + a5ρ̃6 + a6ρ̃1ρ̃6 + a7ρ̃3ρ̃5

plus other terms. For a term ρJ in the list, let J ′ = (j2, . . . , jr). Write

ρj1 ⊗ ρJ ′ = ρJ +
∑

K<J

αKρK , αK ∈ Z.

The vector of coefficients of ρJ will include the sum of the vectors of those ρK for
which αK is odd (lines 31 to 33).

Noting that ρj1 = ρ̃j1 + 1 if j1 6= 2, while ρ2 = ρ̃2, the ρj1 ⊗ ρJ′ itself contributes
nothing if j1 = 2. Otherwise, it finds ρJ′ earlier in the list (line 25) and contributes
the vector of coefficients of ρJ′ (due to the 1 in ρj1) (line 26) plus, if j1 = 1, 3, 5, or 6,
appropriate terms. For example, if j1 = 1, the ρ̃1-term is increased by the coefficient
of the constant term of ρJ′ , and the ρ̃1ρ̃6-term is increased by the coefficient of ρ̃6

in ρJ′ (line 27). Finally, in lines 36 to 39, we add the coefficient sequences of those
ρJ which appear with odd coefficient in ψ3(ρi).

4. v1-periodic homotopy groups of E8

In this section, we prove Theorem 1.2, the determination of the groups v−1
1 π∗(E8; 2).

The situation for E8 is, at least conceptually, simpler than that for E7 because all of
its representations are real. The following proposition is an immediate consequence
of Theorem 2.5, since the hypothesis implies QH = 2Q.

Proposition 4.1. Let G be a simply-connected compact Lie group, such as G2, F4,
E8, and Spin(n) with n ≡ −1, 0, 1 mod 8, which satisfies
• the Technical Condition 2.4,
• all representations are real, and
• λ2 acts monomorphically on Q, where Q is as in 2.2.

Let K = ker(λ2 : Q/2 → Q/2) and C = coker(λ2 : Q/2 → Q/2). Then

KOi(Φ(G);Z∧2 ) ≈





0 i = 0, 1, 2
2Q/λ2(2Q) i = 3
K i = 4
C#K i = 5
C i = 6
Q/λ2(Q) i = 7.
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The # notation used here is as defined prior to Theorem 1.1.

The next result will be applied, with specific calculations, to give 1.2.

Proposition 4.2. Suppose G is as in 4.1. Let θm = λ3 − 3m and θ = λ3 − 1. Let

Cm = cok(θm|Q/ im(λ2))
Km = ker(θm|Q/ im(λ2))
CK = cok(θ| ker(λ2|Q/2))
KK = ker(θ| ker(λ2|Q/2))
KC = ker(θ| cok(λ2|Q/2))
CC = cok(θ| cok(λ2|Q/2)).

Then

v−1
1 π8k+d(G)# ≈





K4k−1 d = −3
C4k−1 ⊕KK d = −2
(CK ⊕KC)#KK d = −1
(CC#KC)⊕ CK d = 0
K4k+1 ⊕ CC d = 1
C4k+1 d = 2
0 d = 3, 4.

Proof. For the most part, this result follows directly from 2.1 and 4.1. We must
explain θm and the splittings.

The ψ3 − 9 in KO4j−1(ΦG;Z∧2 ) which appears in 2.1 corresponds to ψ3 − 9 in
K4j−1(ΦG;Z∧2 ) under the realification and complexification homomorphisms, one
of which is an isomorphism. Under Bott periodicity, this corresponds to 31−2jψ3−9
in K1(ΦG;Z∧2 ), which is, by the proof of 2.5, isomorphic to PK1(G;Z∧2 )/ im(ψ2),
and this is isomorphic to Q/ im(λ2) with ψ3 in PK1(G) corresponding to λ3 in Q.
Thus, ψ3 − 9 in KO4j−1(ΦG) corresponds to 31−2j(λ3 − 32j+1) in Q, as claimed in
4.2, since this ψ3 − 9 fits between v−1

1 π4j+1(G)# and v−1
1 π4j+2(G)#.

The exact sequences of 2.1 and 2.2 lead to extension questions. That some of
these are split can probably be derived from a more careful analysis of the work
in [9] that led Bousfield to 2.2. We prefer to establish these split extensions by
comparison with the Bendersky-Thompson spectral sequence (BTSS) method used
in [3] and [4]. This comparison is quite illuminating for both approaches.

We employ the notation of 4.2 in a BTSS chart which generalizes [3, 4.9] for G2

and F4 and [4, 1.5] for Spin(8a± 1).



Homology, Homotopy and Applications, vol. 5(1), 2003 315

Diagram 4.3. The BTSS when all representations are real
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For G2, F4, and Spin(8a ± 1), the d3-differentials were determined in [3] and
[4] by naturality arguments. Such arguments seem to be inadequate to determine
all d3’s in E8. But 2.2, 4.1, and 4.2 imply that the differentials must behave as
displayed above in all these spaces. The most subtle part is the differentials and
extensions from K4k+1 and C4k+1. One way to see this is that the class(es) KK in
position (8k, 5) do not survive by 4.2, and so must be hit by d3 from K4k+1. But
the K4k+1-summand in v−1

1 π8k+1(G) is isomorphic to the summand in E2,8k+3
2 (G),

and so the extension into CK must be present to compensate for the class in K4k+1

which supported the d3. A similar argument implies the differential and extension
from C4k+1.

This chart then implies the ⊕’s in 4.2. The one when d = −2 is due to the relation
2η = 0 in π∗(−). The ⊕ when d = −1 is due to the fact that CK and KC appear
in the same filtration, and the direct sum splitting there was established in [3, 3.1].
The splittings when d = 0 and d = 1 follow for similar reasons.

The reader should be aware that this BTSS comparison is only used to establish
these splitting results, which should be regarded as fine tuning. Moreover, most
of these splittings can probably be deduced from a deeper study of Bousfield’s
approach without the BTSS. A reader who is well-versed in such spectral sequences
may draw additional insight from this comparison, but one who is not may omit
this portion of the paper. That is the reason that we have not explained the spectral
sequence in more detail.

Next we compute the groups of 4.2 explicitly for E8. For Lie groups such as E7, in
which the division into type is nontrivial, it is important that we use the basis of ρ̃i

for our Adams operations. But in E8 all representations are real, and so we may use
any basis we like. Recall that (Q, λ2, λ3) of 4.2 is isomorphic to (PK1(G),−ψ2, ψ3),
which was computed in [12]. The main advantage of the K-theory perspective is
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that determination of ψ2 is enough to obtain all ψk because of the rational splitting
of these Lie groups as products of spheres and the nice form of the Adams operations
in spheres.

In [12, (3.2)], a basis of eigenvectors of ψ2 (and hence of all ψk) on PK1(E8;Q)
is given. These are expressed there in terms of Bi = β(ρ̃i). These eigenvectors do
not span integrally, and so in [12, pp.11-19], we describe an algorithm of replacing
vectors v by integral vectors (v−w)/p to reduce the exponent of p in det(M), where
M is the matrix having the vectors as columns. All Adams operations on all these
vectors are explicitly known, since they are explicit combinations of eigenvectors.
In [12], this procedure was implemented three times for E8, once (3.5) to eliminate
all powers of 5 from det(M), yielding ψk on a basis of PK1(E8)(5), once (6.1) to
eliminate all powers of 3, and once (3.11) to eliminate all powers of all primes,
yielding ψk on a basis of PK1(E8) (integral). Although we could use the latter
here, the numbers are so large as to be unwieldy.

We perform the same algorithm to eliminate just the exponents of 2. We start
with the eight eigenvectors of [12, (3.2)]. At each stage, we find a combination
of them which is even, and replace the first vector in that combination by the
combination divided by 2. Not only do we keep track of these vectors of integers,
but also of the coefficients in the combinations. After 61 such steps, we have a set
of eight vectors of integers such that det(M) is odd, and we have a matrix N whose
columns express the new vectors in terms of the original vectors. For example, if
{vi} are the original vectors and {wi} the final ones, then

w5 = 1
512v5 − 3

512v6 + 7
512v7 − 451

512v8,

the coefficients of which appear in the second half of the fifth column of N . The
matrix of ψk with respect to this basis of PK1(E8)(2) equals NDkN−1, where Dk

is the diagonal matrix with entries

(k, k7, k11, k13, k17, k19, k23, k29).

We obtain the following matrices, which we write in transposed form, to fit them
on one line.

(ψ2)T =




2 −4095 359169 516129 442353 76155 3045795 −65866251
0 128 −20400 22242 2241 −436758 −1122003 −154822161
0 0 2048 −17664 −33408 321744 −2942091 −50472798
0 0 0 8192 −92160 −69120 −2018880 130940625
0 0 0 0 217 −294912 626688 −472681728
0 0 0 0 0 219 −7372800 57741312
0 0 0 0 0 0 223 −66060288
0 0 0 0 0 0 0 229,




while (ψ3)T equals
0
BBBBBBBBB@

3 −70980 34109991 −9760074 −2500923 −54666120 30971318970 −8501480380389
0 2187 −1858950 10626633 −3418281 −1003550877 −8902699632 −19780047779454
0 0 311 −4074381 −23206257 754291926 −35698131999 −6402009498057
0 0 0 313 −95659380 −71744535 −22121231625 16777754459505
0 0 0 0 317 −774840978 9556372062 −60452318262582
0 0 0 0 0 319 −87169610025 7495424200683
0 0 0 0 0 0 323 −8567029273257
0 0 0 0 0 0 0 329

1
CCCCCCCCCA

Considering these matrices mod 2, we see that K of 4.1 is 〈w5, w6, w7, w8〉 with
θ of 4.2 sending w5 7→ 0, w6 7→ w7 + w8, w7 7→ w8, and w8 7→ 0. Thus in 4.2,
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dim(KK) = dim(CK) = 2. Similarly C of 4.1 is 〈w1, w2, w3, w4, w6 : w2 + w3 +
w4 + w6〉 with w1 7→ w3, w2 7→ w4 + w6, w3 7→ w4, w4 7→ w6, and w6 7→ 0. Hence
dim(KC) = dim(CC) = 1.

We find the groups C4k±1 of 4.2 by using the algorithm which was applied to
(E8, 3) in [12, pp.35-37], to (F4, 2) in [3, 4.3], and to (E6, 2) in [14, 2.4]. For Cm, we

use Maple to pivot
(

(ψ2)T

(ψ3 − 3m)T

)
on odd entries and remove the corresponding row

and column. This can be done seven times, leaving a 9×1 matrix, corresponding to
the first column of the original matrix. Thus the group presented is cyclic of order
2e, with e the smallest 2-exponent of the nine relations.

If m ≡ 1 mod 8, we eventually find it convenient to let R = 3m − 3211+273; that
is, we consider (ψ3 − R − 3211+273)T . Then ν(R) = ν(m − 211 − 273) + 2 > 5. We
can reduce 3211+273 mod a suitable power of 2, such as 228, to keep the numbers
manageable. The nine relations are expressed as polynomials in R. Two of them,
corresponding to the 15th and 14th1 rows of the original matrix, have lower 2-powers
than the others. Up to odd multiples, these are

225 + 214R + 210R2 + 28R3 + 24R4 + 25R5

224 + 210R + 26R2 + 24R3 + R4 + 2R5.

The minimal 2-exponent is thus min(25, ν(R−214)+10), which yields the first case
of e(m) in 1.2.

The same two rows provide the minimal 2-exponents e in the other congruences
of m. They are
• If m ≡ 3 mod 8, let R = 3m−3214+211+19. Then e = min(28, ν(R−217)+10),

due to relations

228 + 214R + 210R2 + 28R3 + 24R4 + 25R5

227 + 210R + 26R2 + 24R3 + R4 + 2R5.

• If m ≡ 5 mod 8, let R = 3m − 3225+223+222+220+29. Then e = min(39, ν(R) +
10) due to relations

239 + 214R + 210R2 + 28R3 + 24R4 + 25R5

240 + 210R + 26R2 + 24R3 + R4 + 2R5.

• If m ≡ 7 mod 8, let R = 3m − 3217+23. Then e = min(31, ν(R) + 10) due to
relations

231 + 214R + 210R2 + 28R3 + 24R4 + 25R5

233 + 210R + 26R2 + 24R3 + R4 + 2R5.

This shows that the groups Cm are as claimed in 1.2. For the groups Km, we use

Proposition 4.4 to see that Km is isomorphic to the group presented by
(

ψ2

ψ3 − 3m

)
;

i.e., the two component matrices are no longer in transposed form. When pivoting is
performed on this matrix, after six steps of pivoting on an odd element, all remaining

1The 12th row gives the same exponents as the 14th row.
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elements are even. One of them has ν(−) = 1. Since Km has the same order as Cm,
we obtain Km ≈ Z/2e(m)−1 ⊕ Z2. This completes the proof of Theorem 1.2.

The following proposition, which was used above, is a slight generalization of a
portion of [4, 11.3].

Proposition 4.4. Let G be a finitely generated free abelian group, and θ and ψ
commuting injective endomorphisms of G with finite cokernels. Let

K = ker(G/ im(ψ) θ−→ G/ im(ψ)).

Then K# is presented by
(

(ψ)
(θ)

)
, where (ψ) and (θ) denote matrices of ψ and θ

with respect to any fixed basis.

Proof. Since Pontrjagin duality is exact, the sequence

(G/ im(ψ))# θ∗−→ (G/ im(ψ))# → K# → 0

is exact. If F is a finite abelian group, there is a natural isomorphism F# →
Ext(F,Z) induced from the short exact sequence 0 → Z → Q → Q/Z → 0. Also,
there is an isomorphism

Ext(G/ im(ψ),Z) ≈ Hom(G,Z)/ im(ψ∗).

Thus

K# ≈ Hom(G,Z)/ im(ψ∗, θ∗). (4.5)

On the basis of Hom(G,Z) dual to that of G, the matrices of ψ∗ and θ∗ are (ψ)T

and (θ)T , but when we take the presentation matrix as in (4.5), we transpose back
again.

5. v1-periodic homotopy groups of E7

Although its numbers are not quite as large, the computation of v−1
1 π∗(E7) is

slightly more complicated than that of v−1
1 π∗(E8) because not all representations

are real. We must work with the basis ρ̃1, . . . , ρ̃7 of I/I2 or its corresponding basis
B1, . . . , B7 of PK1(E7). Here Bi = β(ρ̃i).

The ordering of the basic representations in LiE has ρ1, . . . , ρ7 of dimensions 133,
912, 8645, 365750, 27664, 1539, and 56, respectively, with ρ2, ρ5, and ρ7 quater-
nionic, and the rest real.

Proposition 5.1. With respect to the basis {B1, . . . , B7} of PK1(E7), the matrices
of ψ2 and ψ3 are as follows.

ψ2 =




132 −264 −399664 186729664 −1545576 0 0
0 856 27664 −28553504 276696 0 0
−1 2 7372 −3803952 33306 0 0
0 −1 −133 110845 −1273 1 0
0 0 968 −1275832 21184 −56 0
0 1 −11857 18311345 −350951 1541 −1
0 −912 42560 −127779712 3514352 −27776 56
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ψ3 =




9043 −1345048 −239884976 182665852920 −2039397624 1545576 0
0 261306 32232816 −27497867040 319559499 −276696 0

−133 27664 4775915 −3712222926 41922720 −33306 0
1 −856 −128402 108783702 −1294848 1329 0
0 8511 1404576 −1295487792 16666478 −24264 1
0 −113736 −19888326 19028389419 −253946608 435708 −56
0 564108 133440192 −142676642736 2109092684 −5069808 1597




Proof. The first matrix is obtained using the method of [12]. In [12, pp.8-9]
is described the algorithm for finding λ2 on ρ̃1, . . . , ρ̃7. This involves running the
LiE program in [12, §7] which gives λ2 on ρ1, . . . , ρ7, and then subtracting dim(ρi)
from diagonal elements. This matrix is then negated to give ψ2 on {B1, . . . , B7} in
PK1(E7).

We find eigenvectors of this matrix (ψ2), and then, as described in Section 4,
repeatedly replace vectors v by integral vectors (v−w)/2 until we have a spanning
set of vectors which are explicit combinations of eigenvectors, and hence on which
we know all ψk. The change of basis matrix is

M =




−95186445 2454179 −27954 9434 −12456 1800 1672
−3705699 87516 3654 1221 −1119 −75 −252
−156975 3856 −90 −131 195 −30 −34
−474 11 0 −1 0 0 1
−22225 534 18 0 −3 15 −12
−297427 5403 693 501 −123 −330 177

517780118 −12819489 −53820 −16146 5820 4920 −1344




Thus the columns of M are combinations of Bi’s with respect to which all ψk

have a known triangular form, similar to [12, 3.10]. One can check that det(M) =
316577411213217, reflecting that it spans localized at 2, but not at the other primes
relevant to E7. We find that ψ3 with respect to the basis given by the columns of
M is given by the following matrix P3.




3 0 0 0 0 0 0
−9600 243 0 0 0 0 0
2316 −4617 2187 0 0 0 0
28272 18711 −34992 19683 0 0 0
66963 78246 −188082 −157464 177147 0 0
−520551 279207 1264086 98415 −1771470 1594323 0
52172712 −55209114 −14020857 −92313270 −20371905 −15943230 317




The matrix of ψ3 in the statement of this theorem is obtained as MP3M
−1.

Now we embark on the application of 2.1 and 2.2, which holds for E7 by 2.5 and
3.4, to E7. By 3.1 and 2.3,

QR = 〈ρ̃1, ρ̃3, ρ̃4, ρ̃6, 2ρ̃2, 2ρ̃5, 2ρ̃7〉
QH = 〈2ρ̃1, 2ρ̃3, 2ρ̃4, 2ρ̃6, ρ̃2, ρ̃5, ρ̃7〉.

Using 2.2 and the ψ2 matrix of 5.1, we obtain

Proposition 5.2. Let B = PK1(E7), BR = 〈B1, B3, B4, B6〉, and BH = 〈B2, B5, B7〉.
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Let D = 〈B2 −B3, B3 −B4, B4 −B5, B5 −B6〉. There are isomorphisms

KOi(ΦE7) ≈





0 i = 0
〈B2, B5, B7〉/2 i = 1, 2
〈2BR,BH〉/ψ2(2B) i = 3
D/2 i = 4
〈B1〉/2#D/2 i = 5
〈B1〉/2 i = 6
〈BR, 2BH〉/ψ2(B) i = 7.

We substitute this proposition into 2.1, using the matrix (ψ3) of 5.1 and obtain
the following result.

Proposition 5.3. Let θm = ψ3 − 3m. The groups v−1
1 π8k+d(E7)# are isomorphic

to



Z2(B2 + B5) d = 3
Z2(B7)#Z2(B2 + B5) d = 4
Z2(B7)#ker(θ4k+3|〈2BR,BH〉/ψ2(2B)) d = 5
〈2BR,BH〉/(ψ2(2B), θ4k+3〈2BR,BH〉)#(Z2(B4 −B6)⊕ Z2(B2 −B5)) d = 6
(Z2(B2 −B3)⊕ Z2(B3 −B4))#(Z2(B1)#(Z2(B4 −B6)⊕ Z2(B2 −B5))) d = 7
(Z2(B1)#(Z2(B2 −B3)⊕ Z2(B3 −B4)))#Z2(B1) d = 8
Z2(B1)#ker(θ4k+5|〈BR, 2BH〉/ψ2(B)) d = 9
〈BR, 2BH〉/(ψ2(B), θ4k+5〈BR, 2BH〉) d = 10

As we did with E8, we can resolve some of the extension questions by comparing
with the BTSS. The study of the extension questions is facilitated by first comparing
the large summands of 5.3 with the E2-term of the BTSS. As with E8, the BTSS
is only needed for resolving the extension questions and providing possible insight.

We first consider the group 〈2BR,BH〉/(ψ2(2B), θ4k+3〈2BR,BH〉) which occurs
in 5.3 when d = 6. The corresponding group E1,8k+7

2 (E7)# has the same form, with
the three 2’s omitted. We compute this latter group first.

The desired group E1,8k+7
2 (E7)# is presented by the matrix

M =
(

(ψ2)T

(ψ3 − 34k+3)T

)
,

where (ψ2) and (ψ3) are as in 5.1. Five times we pivot on odd elements, removing
rows and columns, to leave a 9× 2 matrix. The smallest ν(−) of remaining terms is
ν = 2, and so we split off a Z/4 and pivot on that element. We let R = 34k+3− 375,
and so ν(R) = ν(k−18)+4. Of the eight relations remaining, those with the smallest
2-exponents are, with odd multiples omitted,

216 + 27R + 26R2 + 2R3

217 + 27R + 24R2 + 2R3.
(5.4)
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We obtain

E1,8k+7
2 (E7) ≈ Z/4⊕ Z/2min(16,ν(k−18)+11). (5.5)

Note that when we express a finite group G# as a sum of cyclic summands, we may
write it as G, since the two are abstractly isomorphic.

The effect of the three 2’s that occur in the first part of v−1
1 π8k+6(E7)# in 5.3

is to multiply by 2 rows 1-8, 10, 11, and 13 of the matrix M of the preceding
paragraph, and then divide by 2 columns 1, 3, 4, and 6. The five odd entries on
which we pivoted in the previous paragraph are in positions2 which were unaffected
by the multiplying and dividing by 2 that took place here, and we pivot on them as
before. The Z/4 is in position (8,1) and also remains unchanged by the multiplying
and dividing by 2 and is still a Z/4 after the five steps of pivoting. After pivoting on
the Z/4, and with R as before, the first relation of (5.4) is now twice as large, while
the second is not changed.3 Thus we obtain that the first part of v−1

1 π8k+6(E7)# in
5.3 is Z/4⊕ Z/2min(17,ν(k−18)+11).

A similar analysis applies to the group in 5.3 with d = 10. We first look at
the corresponding BTSS group E1,8k+11

2 (E7)#, which has the same form without
the two 2’s. The pivoting up to and including splitting off the Z/4 is the same as
in the case d = 6 just considered. If k is even, we let R = 34k+5 − 3141, and so
ν(R) = ν(k − 34) + 4. The relations with smallest 2-exponents are

220 + 28R + 24R2 + 2R3

219 + 28R + 24R2 + 2R3.
(5.6)

If k is odd, we let R = 34k+5 − 37·211+17, and so ν(R) = ν(k − 7 · 29 − 3) + 4. The
relations with smallest 2-exponent are

224 + 28R + 24R2 + 2R3

224 + 210R + 26R2 + 23R3.
(5.7)

Thus we obtain

E1,8k+11
2 (E7) ≈ Z/4⊕

{
Z/2min(19,ν(k−34)+12) k even
Z/2min(24,ν(k−7·29−3)+12) k odd.

(5.8)

To obtain v−1
1 π8k+10(E7)#, we multiply rows 9, 12, and 14 by 2, and then divide

columns 2, 5, and 7 by 2. The pivoting through the Z/4 goes as before, as the
pivoted-upon elements were unchanged. Both the relevant relations ((5.6) or (5.7))
are divided by 2, as they are in original row 3 or 4 and column 7. Thus v−1

1 π8k+10(E7)
is obtained from (5.8) by decreasing the exponent of the large summand by 1.

In order to determine the ker part of v−1
1 π8k+9(E7)# in 5.3 explicitly, we need

the following slight modification of Proposition 4.4, which is proved by the same
method.

2(1,3),(2,4),(7,6),(14,5), and (12,2)
3The first relation occurs three times (with different odd coefficients) and is due to original rows
3, 4, and 6, while the second relation comes from original row 9. The generator for these relations
is that of column 7.
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Proposition 5.9. Suppose G, ψ, and θ are as in 4.4. Suppose the basis of G is
partitioned as B1

∐
B2. Let G′ be the subgroup of G spanned by B1 and 2B2, and

assume ψ(G) ⊂ G′. Then θ induces θ′ : G′/ψ(G) → G′/ψ(G). Let K ′ = ker(θ′).
Then (K ′)# is presented by 



A1 A2
1
2A3

1
2A4

C1 2C2
1
2C3 C4




where
(

A1 A2

A3 A4

)
and

(
C1 C2

C3 C4

)
are the matrices of ψ and θ with respect to

B1

∐
B2.

When this is computed using ψ = ψ2 and θ = ψ3 − 34k+5 of 5.1 using the
pivoting methods described above, we obtain that the ker part of v−1

1 π8k+9(E7)# is
Z/24 ⊕ Z/2e−2, where e is the 2-exponent of the large summand of v−1

1 π8k+10(E7)
described above. Note that the two groups must have the same order since they are
the kernel and cokernel of an endomorphism of a finite abelian group.

A result similar to 5.9 applies to the large summand of v−1
1 π8k+5(E7), and when

it is computed we obtain similarly that the ker part of v−1
1 π8k+5(E7)# is Z/24 ⊕

Z/2e−2, where e = min(17, ν(k − 18) + 11), the large summand in v−1
1 π8k+6(E7)

obtained earlier. We emphasize that in performing the pivoting to obtain this group,
we need find only that it has two summands and that the smaller has order 24.

As we shall use the BTSS to settle some extension questions, it is useful to know
the following.

Proposition 5.10. The BTSS 2-line groups are given by

E2,8k+d+2
2 (E7) ≈ Z2 ⊕

{
Z/24 ⊕ Z/2t1−2 d = 5
Z/25 ⊕ Z/2t2−3 d = 9,

where t1 is the large exponent in (5.5) and t2 the large exponent in (5.8).

Proof. As in [3, 3.1b], there is a short exact sequence

0 → B/(2, ψ2, θ4k+(d+1)/2) → E2,8k+d+2
2 (E7)# → ker(θ4k+(d+1)/2|B/ im(ψ2)) → 0.

The first group is Z2 generated by B1 (d = 9) or B7 (d = 5), while the second
is obtained by the algorithm used to find Km for E8 near the end of Section 4 or
that used to find the groups v−1

1 π8k+d(E7) above, without the 2’s that complicated
the argument there. The matrix pivots down to two columns, and the smallest 2-
exponent is 4 (d = 5) or 5 (d = 9). The other exponent is then forced by the equality
of the orders of the kernel and cokernel of an endomorphism.

We can incorporate the above information into the BTSS chart for E7 below, and
then use this chart, as we did with E8, to draw inferences about some extensions in
5.3. The facts that we use to make these inferences are that 2η = 0 in π∗(−) and
that relationships between elements in the same bidegree is the same in π∗(−) as
it is in E2(−). Theorem 1.1 follows from 5.3, the specific calculations of portions of
v−1
1 π8k+d(E7) made above when d = 5, 6, 9, and 10, and the extension inferences
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obtained from the chart. The dotted differential and extension take place unless
ν(k − 18) > 6, in which case the exponent of the homotopy group is 1 larger than
the E2-exponent.

Diagram 5.11. The BTSS of E7
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[11] T. Bröcker and T. tom Dieck, Representations of compact Lie groups,
Springer-Verlag (1985).

[12] D. M. Davis, From representation theory to homotopy groups, Mem Amer
Math Soc 759 (2002).

[13] , v1-periodic homotopy groups of SU(n) at odd primes, Proc London
Math Soc 43 (1991) 529-541.

[14] , The K-completion of E6, Progress in Mathematics 215 (2003)
107-124, Birkhauser.

[15] , 3-primary v1-periodic homotopy groups of E7, New York Jour
Math 4 (1998) 185-221.

[16] L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967) 1-36.
[17] W. G. McKay and J. Patera, Tables of dimensions, indices, and branching

rules for representations of simple Lie algebras, Marcel Dekker (1981).
[18] C. M. Naylor, Cohomology operations in the K-theory of the classical groups,

Port Math 38 (1979) 145-153.
[19] M. vanLeeuven, LiE, a computer algebra package for Lie algebra computa-

tions, http://wwwmathlabo.univ-poitiers.fr/∼maavl/LiE/.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2003/n1a13/v5n1a13.(dvi,ps,pdf)

Donald M. Davis dmd1@lehigh.edu http://www.lehigh.edu/∼dmd1
Lehigh University
Bethlehem, PA 18015


