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Inclusion and neighborhoods of certain classes of

analytic functions of complex order 1

R. M. El-Ashwah

Abstract

By means of a certain extended derivative operator, the authors intro-

duce and investigate two new subclasses of analytic functions of complex

order.The various results obtained here for each of these function classes

include coefficient inequalities and the consequent inclusion relationships

involving the neighborhoods of the analytic functions.
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1 Introduction

Let T (m) denote the class of functions of the form:

(1) f(z) = z −
∞∑

k=m+1

akz
k (ak ≥ 0; k ≥ m + 1;m ∈ N = {1, 2, ...}),
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which are analytic and univalent in the unit disc U = {z : z ∈ C and |z| < 1}.
We say that a function f(z) ∈ T (m) is starlike of complex ordor b (b ∈

C∗ = C\{0}), that is, f ∈ S
∗
m(b), if it satisfies the following inequality:

(2) Re{1 +
1
b
(
zf

′
(z)

f(z)
− 1)} > 0 (z ∈ U ; b ∈ C∗).

Furthermore, a function f(z) ∈ T (m) is said to be convex of complex order

b (b ∈ C∗), that is, f ∈ Cm(b), if it also satisfies the following inequality:

(3) Re{1 +
1
b

zf
′′
(z)

f ′(z)
} > 0 (z ∈ U ; b ∈ C∗).

The classes S∗m(b) and Cm(b) stem essentially from the classes of starlike and

convex functions of complex order, which were considered earlier by Nasr and

Aouf ([11] and [12]) and Wiatrowski [18], respectively (see also [5] and [7]).

For the functions fj(z) (j = 1, 2) given by

(4) fj(z) = z +
∞∑

k=2

ak,jz
k (j = 1, 2),

let (f1 ∗ f2)(z) denote the Hadamard product (or convolution) of f1(z) and

f2(z), defined by

(5) (f1 ∗ f2)(z) = z +
∞∑

k=2

ak,1.ak,2z
k = (f2 ∗ f1)(z).

Let

D0
λf(z) = (1− λ)f(z) + λzf

′
(z) = Dλf(z), λ ≥ 0,

D1
λf(z) = (1− λ)zf

′
(z) + λz(zf

′
(z))

′
,

Dn
λf(z) =

z

n!
(zn−1Dλf(z))(n) (n ∈ N0 = N ∪ {0}).
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Note that if f(z) is given by (1), then we can write

(6) Dn
λf(z) = z −

∞∑

k=m+1

[1 + λ(k− 1)]C(n, k)akz
k (m ∈ N ;n ∈ N0; λ ≥ 0),

where

(7) C(n, k) =
(

k + n− 1
n

)
=

k−1∏
j=1

(j + n)

(k − 1)!
.

The operator Dn
λλ(z) was introduced by Al-Shaqsi and Darus [1].

In terms of this linear operator Dn
λ (n ∈ N0, λ ≥ 0) defined by (6) above,

let Sλ
m(n, b, β) denote the subclass of T (m) consisting of functions f(z) which

satisfy the following inequality:

(8)

∣∣∣∣∣
1
b
(
z(Dn

λf(z))
′

Dn
λf(z)

− 1)

∣∣∣∣∣ < β

(z ∈ U ; b ∈ C∗; n ∈ N0; λ ≥ 0; 0 < β ≤ 1).

Also let Rλ
m(n, b, β, µ) denote the subclass of T (m) consisting of functions f(z)

which satisfy the following inequality:

(9)
∣∣∣∣
1
b
{(1− µ)

Dn
λf(z)
z

+ µ(Dn
λf(z))

′ − 1}
∣∣∣∣ < β

(z ∈ U ; b ∈ C∗; n ∈ N0;λ ≥ 0; 0 < β ≤ 1; 0 ≤ µ ≤ 1).

We note that:

(i) S0
m(θ, b, β) = Sm(θ, b, β) (m ∈ N ; b ∈ C∗; θ > −1; 0 < β ≤ 1)

(Murugusundaramoorthy and Srivastava [10]);

(ii) Sλ
m(0, b, β) = Sm(b, λ, β) (Altintas et al. [4]);

(iii) R0
m(θ, b, β, µ) (m ∈ N ; b ∈ C∗; θ > −1; 0 < β ≤ 1; 0 ≤ µ ≤ 1)

(Murugusundaramoorthy and Srivastava [10]);

(iv) Rλ
m(0, b, β, 1) = Rm(b, λ, β) (Altintas et al. [4]).
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Now, following the earlier investigations by Goodman [9], Ruscheweyh

[14], and others including Altintas and Owa [3], Altintas et al.([4] and [6]),

Murugusundaramoorthy and Srivastava [10], Raina and Srivastava [13], Aouf

[8] and Srivastava and Orhan [16] (see also [2], [15] and [17]), we define the

(m, δ)-neighborhood of a function f(z) ∈ T (m) by (see, for example [6,p.1668])

(10)

Nm,δ(f) = {g : g ∈ T (m), g(z) = z −
∞∑

k=m+1

bkz
k and

∞∑

k=m+1

k |ak − bk| ≤ δ}.

In particular, if

(11) e(z) = z,

we immediately have

(12) Nm,δ(e) = {g : g ∈ T (m), g(z) = z −
∞∑

k=m+1

bkz
k and

∞∑

k=m+1

k |bk| ≤ δ}.

2 Neighborhoods for the classes Sλ
m(n, b, β) and

Rλ
m(n, b, β, µ)

In our investigation of the inclusion relations involving Nm,δ(e), we shall re-

quire Lemmas 1 and 2 below.

Lemma 1 Let the function f(z) ∈ T (m) be defiend by (1).Then f(z) is in the

class Sλ
m(n, b, β) if and only if

(13)
∞∑

k=m+1

[1 + λ(k − 1)](β |b|+ k − 1)C(n, k)ak ≤ β |b| ,

where C(n, k) is defined by (7).
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Proof. Let a function f(z) of the form (1) belong to the class Sλ
m(n, b, β).Then,

in view of (6) and (8), we obtain the following inequality

(14) Re(
z(Dn

λf(z))
′

Dn
λf(z)

− 1) > −β |b| (z ∈ U),

or, equivalently,

(15) Re{
−

∞∑
k=m+1

[1 + λ(k − 1)](k − 1)C(n, k)akz
k−1

1−
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)akzk−1

} > −β |b| (z ∈ U).

Setting z = r (0 ≤ r < 1) in (15), we observe that the expression in the

denominator of the left-hand side of (15) is positive for r = 0 and also for all

r (0 < r < 1).Thus, by letting r → 1− through real values, (15) leads us to the

desire assertion (13) of Lemma 1.

Conversely, by applying the hypothesis (13) and letting |z| = 1, we find

from (8) that

∣∣∣∣∣
z(Dn

λf(z))
′

Dn
λf(z)

− 1

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣

∞∑
k=m+1

[1 + λ(k − 1)](k − 1)C(n, k)akz
k−1

1−
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)akzk−1

∣∣∣∣∣∣∣∣

≤

∞∑
k=m+1

[1 + λ(k − 1)](k − 1)C(n, k)ak

1−
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)ak

≤
β |b| (1−

∞∑
k=m+1

[1 + λ(k − 1)]C(n, k)ak)

1−
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)ak

= β |b| .(16)

Hence, by the maximum modulus theorem, we have f(z) ∈ Sλ
m(n, b, β), which

evidently complete the proof of Lemma 1.
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Similarly, we can prove the following lemma.

Lemma 2 Let the function f(z) ∈ T (m) be defined by (1).Then f(z) ∈
Rλ

m(n, b, β, µ) if and only if

(17)
∞∑

k=m+1

[1 + λ(k − 1)][1 + µ(k − 1)]C(n, k)ak ≤ β |b| .

Our first inclusion relation involving Nm,δ(e) is given in the following the-

orem.

Theorem 1 Let

(18) δ =
β |b| (m + 1)

(1 + λm)(β |b|+ m)C(n,m + 1)
, (|b| < 1),

Then

(19) Sλ
m(n, b, β) ⊂ Nm,δ(e).

Proof. Let f(z) ∈ Sλ
m(n, b, β).Then, in view of the assertion (13) of Lemma

1, we have

(1 + λm)(β |b|+ m)C(n,m + 1)
∞∑

k=m+1

ak

≤
∞∑

k=m+1

[1 + λ(k − 1)](β |b|+ k − 1)C(n, k)ak ≤ β |b| ,(20)

which readily yields

(21)
∞∑

k=m+1

ak ≤ β |b|
(1 + λm)(β |b|+ m)C(n,m + 1)

.

Making use of (13) again, in conjunction with (21), we get

(1 + λm)C(n,m + 1)
∞∑

k=m+1

kak

≤ β |b|+ (1− β |b|)(1 + λm)C(n,m + 1)
∞∑

k=m+1

ak

≤ β |b|+ β |b| (1− β |b|)
(β |b|+ m)

=
β |b| (1 + m)
(β |b|+ m)

.
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Hence

(22)
∞∑

k=m+1

kak ≤ β |b| (1 + m)
(1 + λm)(β |b|+ m)C(n,m + 1)

= δ (|b| < 1),

which, by means of the definition (12), establishes the inclusion (19) asserted

by Theorem 1.

Remark 1 .(i) Putting λ = 0 and taking n = θ > −1 in Theorem 1, we

obtain the result of Murugusundaramoorthy and Srivastava [10, Theorem 1];

(ii) Putting n = 0 in Theorem 1, we obtain the result obtained by Altintas

et al.[4,Theorem 1];

(iii) Putting λ = n = 0, β = 1 and b = 1−α, 0 ≤ α < 1 in Theorem 1, we

obtain the result of Altintas and Owa [3, Theorem 2.1].

In a similar manner, by applying the assertion (17) of Lemma 2 instead of

the assertion (13) of Lemma 1 to functions in the class Rλ
m(n, b, β, µ), we can

prove the following inclusion relationship.

Theorem 2 If

(23) δ =
β |b| (1 + m)

(1 + λm)(1 + µm)C(n,m + 1)
,

then

(24) Rλ
m(n, b, β, µ) ⊂ Nm,δ(e).

Remark 2 . (i) Putting n = 0 and µ = 1 in Theorem 2, we obtain the result

obtained by Altintas et al. [4,Theorem 2];

(ii) Putting λ = n = 0, µ = β = 1 and b = 1− α, 0 ≤ α < 1, in Theorem

2, we obtain the result obtained by Altintas and Owa [3, Theorem 3.1].
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3 Neighborhoods for the classes S
λ,(α)
m (n, b, β) and

R
λ,(α)
m (n, b, β, µ)

In this section, we determine the neighborhood for each of the classes

S
λ,(α)
m (n, b, β) and R

λ,(α)
m (n, b, β, µ), which we define as follows. A function

f(z) ∈ T (m) is said to be in the class S
λ,(α)
m (n, b, β) if there exists a function

g(z) ∈ Sλ
m(n, b, β) such that

(25)
∣∣∣∣
f(z)
g(z)

− 1
∣∣∣∣ < 1− α (z ∈ U ; 0 ≤ α < 1).

Analogously, a function f(z) ∈ T (m) is said to be in the class R
λ,(α)
m (n, b, β, µ)

if there exists a function g(z) ∈ Rλ
m(n, b, β, µ) such that the inequality (25)

holds true.

Theorem 3 If g(z) ∈ Sλ
m(n, b, β) and

(26) α = 1− δ(1 + λm)(β |b|+ m)C(n,m + 1)
(m + 1)[(1 + λm)(β |b|+ m)C(n,m + 1)− β |b|] ,

then

(27) Nm,δ(g) ⊂ Sλ,(α)
m (n, b, β),

where

(28) δ ≤ (m + 1){1− β |b| [(1 + λm)(β |b|+ m)C(n,m + 1)]−1}.

Proof. Suppose that f(z) ∈ Nm,δ(g). We find from (10) that

(29)
∞∑

k=m+1

k |ak − bk| ≤ δ,

which readily implies that

(30)
∞∑

k=m+1

|ak − bk| ≤ δ

m + 1
(m ∈ N).
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Next, since g(z) ∈ Sλ
m(n, b, β), we have [cf. equation (21)]

(31)
∞∑

k=m+1

bk ≤ β |b|
(1 + λm)(β |b|+ m)C(n,m + 1)

,

so that

∣∣∣∣
f(z)
g(z)

− 1
∣∣∣∣ ≤

∞∑
k=m+1

|ak − bk|

1−
∞∑

k=m+1

bk

(32)

≤ δ

m + 1
.

(1 + λm)(β |b|+ m)C(n,m + 1)
(1 + λm)(β |b|+ m)C(n,m + 1)− β |b|

= 1− α,

provided that α is given by (26). Thus, by the above definition, f(z) ∈
S

λ,(α)
m (n, b, β) for α given by (26). This evidently proves Theorem 3.

Remark 3 (i) Taking λ = 0 and n = θ > −1 in Theorem 3, we obtain the

result obtained by Murugusundaramoorthy and Srivastava [10, Theorem 3];

(ii) Taking n = 0 in Theorem 3, we obtain the result obtained by Altintas

et al .[4, Theorem 3].

The proof of Theorem 4 below is similar to that the proof of Theorem 3 above.

Theorem 4 If g(z) ∈ Rλ
m(n, b, β, µ) and

(33) α = 1− δ(1 + λm)(1 + µm)C(n,m + 1)
(m + 1)[(1 + λm)(1 + µm)C(n,m + 1)− β |b|] ,

then

(34) Nm,δ(g) ⊂ Rλ,(α)
m (n, b, β, µ),

where

(35) δ ≤ (m + 1){1− β |b| [(1 + λm)(1 + µm)C(n,m + 1)]−1}.
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Remark 4 . (i) Putting λ = 0 in Theorem 4, we obtain the result obtained

by Murugusundaramoorthy and Srivastava [10, Theorem 4];

(ii) Putting n = 0 and µ = 1 in Theorem 4, we obtain the result obtained

by Altintas et al. [4, Theorem 4].
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