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Weyl’s type theorems for algebraically Class
A operators1

M. H. Rashid, M. S. M. Noorani, A. S. Saari

Abstract

Let T be a bounded linear operator acting on a Hilbert space H.

The semi-B-Fredholm spectrum is the set σSBF−

+

(T ) of all λ ∈ C such

that T−λ = T−λI is not a semi-B-Fredholm. Let Ea(T ) be the set of

all isolated eigenvalues in σa(T ). The aim of this paper is to show if T

is algebraically class A, then T satisfies generalized a-Weyl’s theorem

σSBF−

+

(T ) = σa(T ) − Ea(T ), and the semi-Fredholm spectrum of T

satisfies the spectral mapping theorem. We also consider commuting

finite rank perturbations of operators satisfying generalized a-Weyl’s

theorem.
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1 Introduction

Throughout this note let B(H), F(H), K(H), denote, respectively, the al-

gebra of bounded linear operators, the ideal of finite rank operators and
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the ideal of compact operators acting on an infinite dimensional separa-

ble Hilbert space H. If T ∈ B(H) we shall write N (T ) and R(T ) for

the null space and range of T , respectively. Also, let α(T ) := dimN (T ),

β(T ) := dimR(T ), and let σ(T ), σa(T ), σp(T ) denote the spectrum, approx-

imate point spectrum and point spectrum of T , respectively. An operator

T ∈ B(H) is called Fredholm if it has closed range, finite dimensional null

space, and its range has finite codimension. The index of a Fredholm oper-

ator is given by

i(T ) := α(T ) − β(T ).

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm

”of finite ascent and descent”. The essential spectrum σF (T ), the Weyl

spectrum σW (T ) and the Browder spectrum σb(T ) of T are defined by

σF (T ) = {λ ∈ C : T − λ is not Fredholm}

σW (T ) = {λ ∈ C : T − λ is not Weyl}

and

σb(T ) = {λ ∈ C : T − λ is not Browder}

respectively. Evidently

σF (T ) ⊆ σW (T ) ⊆ σb(T ) ⊆ σF (T ) ∪ accσ(T )

where we write accK for the accumulation points of K ⊆ C. If we write

E(K) = K − accK then we let

(1) E0(T ) := {λ ∈ E(T ) : 0 < α(T − λ) < ∞}

for the isolated eigenvalues of finite multiplicity and

(2) Π0(T ) := σ(T ) − σb(T )

for the set of poles of finite rank.

Following [3], We say that Weyl’s theorem holds for T if

σ(T ) − σW (T ) = E0(T ),
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and Browder’s theorem holds for T if

σ(T ) − σW (T ) = Π0(T ).

We consider the sets

SF+(H) = {T ∈ B(H) : R(T )is closed and α(T ) < ∞},

SF−(H) = {T ∈ B(H) : R(T )is closed and β(T ) < ∞}

and

SF−

+ (H) = {T ∈ B(H) : T ∈ SF+(H)and i(T ) ≤ 0},

For any T ∈ B(H) let

σSF−

+
(T ) = {λ ∈ C : T − λI /∈ SF−

+ (H)}.

Let Ea
0 be the set of all eigenvalues of T of finite multiplicity which are

isolated in the approximate point spectrum. According to [17], we say that

T satisfies a-Weyl’s theorem if σSF−

+
(T ) = σa(T ) − Ea

0 (T ). It follows from

[24, corollary 2.5] that an operator satisfying a-Weyl’s theorem satisfies

Weyl’s theorem.

In [9] Berkani define the class of B-Fredholm operators as follows. For each

integer n, define Tn to be the restriction of T to R(T n) viewed as a map

from R(T n) into R(T n) (in particular T0 = T ). If for some n the range

R(T n) is closed and Tn is Fredholm (resp. Semi-B-Fredholm ) operator,

then T is called a B-Fredholm (resp. Semi-B-Fredholm ) operator. In this

case and from [8] Tm is a Fredholm operator and i(Tm) = i(Tn) for each

m ≥ n.

According to Berkani [9] the index of a B-Fredholm operator T is defined

as the index of the Fredholm operator Tn, where n is any integer such that

the range R(T n) is closed and Tn is Fredholm operator.

Let BF (H) be the class of all B-Fredholm operators. In [8] Berkani has

studied this class of operators and has proved that an operator T ∈ B(H)

is a B-Fredholm if and only if T = T0 ⊕ T1, where T0 is a Fredholm and T1
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is a nilpotent operator.

Let SBF+(H) be the class of all upper semi-B-Fredholm operators, and

SBF−

+ (H) the class of all T ∈ SBF+(H) such that i(T ) ≤ 0, and

σSBF−

+
(T ) = {λ ∈ C : T − λ /∈ SBF−

+ (H)}

2 Preliminaries

Definition 2.1. ( [9]) Let T ∈ B(H). Then T is called a B-Weyl’s operator

if it is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T )

is given by

σBW (T ) = {λ ∈ C : T − λ is not B-Weyl}.

Berkani [9, Theorem 4.3] proved that if T ∈ B(H) such that T is a

normal, then

σBW (T ) = σ(T ) − E(T ),

where E(T ) is the set of isolated eigenvalues of T , which gives a generaliza-

tion of a classical Weyl Theorem.

Definition 2.2. ( [10])For any T ∈ B(H) we define the sequence (cn(T ))

and (bn(T )) as follows:

1. cn(T ) = dim(R(T n)/R(T n+1)).

2. bn(T )) = dim(N (T n+1)/N (T n+1)).

The descent d(T ) and ascent a(T ) are defined by

d(T ) = inf{n : cn(T ) = 0} = inf{n : R(T n) = R(T n+1)},

a(T ) = inf{n : bn(T ) = 0} = inf{n : N (T n) = N (T n+1)}.

Let Hol(σ(T )) be the space of all functions that analytic in an open

neighborhoods of σ(T ). Following [16] We say that T ∈ B(H) has the
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single-valued extension property (SVEP) if for every open set U ⊆ C the

only analytic function f : U −→ H which satisfies the equation (T −

λ)f(λ) = 0 is the constant function f ≡ 0. It is well-known that T ∈ B(H)

has SVEP at every point of the resolvent ρ(T ) := C−σ(T ). Moreover, from

the identity Theorem for analytic function it easily follows that T ∈ B(H)

has SVEP at every point of the boundary ∂σ(T ) of the spectrum. In par-

ticular, T has SVEP at every isolated point of σ(T ). In [20, proposition

1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Recall that an operator T ∈ B(H) is Drazin invertible if it has a finite

ascent and descent. The Drazin spectrum is given by

σD(T ) := {λ ∈ C : T − λI is not Drazin invertible}.

We observe that σD(T ) = σ(T ) − Π(T ), where Π(T ) is the set of all poles,

while Π0(T ) will denote the set of all poles of T of finite rank.

Definition 2.3. ( [4, definition 2.4]) An operator T ∈ B(H)is called left

Drazin invertible if a(T ) < ∞ and R(T a(T )+1) is closed. The left Drazin

spectrum is given by

σLD(T ) := {λ ∈ C : T − λI is not left Drazin invertible}.

Definition 2.4. ( [4, definition 2.5]) We say that λ ∈ σa(T ) is a left pole

of T if T − λI is left Drazin invertible and λ ∈ σa(T ) is a left pole of finite

rank if λ is a left pole of T and α(T − λ) < ∞.

We will denote Πa(T ) the set of all left pole of T , and by Πa
0(T ) the set

of all left pole of T of finite rank. We have σLD(T ) = σa(T ) − Πa(T ).

It is shown in [7] that Drazin invertibility is a good tool for the investigation

of the class of B-Fredholm and of the induced B-Weyl spectrum.

Following [18] We say that T ∈ B(H) is Drazin invertible (with finite index)

if there exists B,U ∈ B(H) such that U is nilpotent and

TB = BT,BTB = B, TBT = T + U.
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It is well known that T is a Drazin invertible if and only if it has a finite

ascent and descent, which is also equivalent to the fact that T = T0 ⊕ T1,

where T0 is nilpotent and T1 is invertible (see [18, Proposition A]).

Definition 2.5. ( [10])Let T ∈ B(H) and let s ∈ N. Then T has a uniform

descent for n ≥ s if R(T ) + N (T n) = R(T ) + N (T s) for all n ≥ s. If

in addition R(T ) + N (T s) is closed, then T is said to have a topological

uniform descent for n ≥ s.

Note that if λ ∈ Πa(T ), then it is easily seen that T − λ is an operator

of topological uniform descent. Therefore it follows from ( [10, Theorem

2.5]) that λ is isolated in σa(T ). Following [4] if T ∈ B(H) and λ ∈ C

is an isolated in σa(T ), then λ ∈ Πa(T ) if and only if λ /∈ σSBF−

+
(T ) and

λ ∈ Πa
0(T ) if and only if λ /∈ σSF−

+
(T ).

Definition 2.6. ( [10])Let T ∈ B(H). We will say that

1. T satisfies generalized Browder’s theorem if σW (T ) = σ(T ) − Π(T ).

2. T satisfies a-Browder’s theorem if σSF−

+
(T ) = σa(T ) − Πa

0(T ).

3. T satisfies generalized a-Browder’s theorem if σSBF−

+
(T ) = σa(T ) −

Πa(T )

4. T satisfies generalized a-Weyl’s theorem if σSBF−

+
(T ) = σa(T )−Ea(T ).

Definition 2.7. ( [4])An operator T ∈ B(H) is called polaroid (resp. a-

polaroid)if all isolated points of the spectrum (resp. of the approximate point

spectrum) of T are poles (resp. left poles) of the resolvent of T .

Definition 2.8. ( [15]) Let T ∈ B(H) and F be closed subset of C.

a)The glocal spectral is

χT (F ) : = {x ∈ H : ∃ analytic functionf : C − F −→ Hsuch that

(λ − T )f(λ) = x,∀x ∈ C − F}.



Weyl’s type theorems... 105

b) The quasinilpotent part H0(T − λ) is

H0(T − λ) := {x ∈ H : lim
n−→∞

‖(T − λ)nx‖
1

n = 0}.

c) The analytic core K(T − λ) of T − λ are

K(T − λ) = {x ∈ H : there exists a sequence {xn} ⊂ H and δ > 0

for which x = x0, (T − λ)xn+1 = xnand ‖xn‖ ≤ δn‖x‖

for all n = 1, 2, · · · }.

Note that H0(T − λ) and K(T − λ) are generally non-closed hyper-

invariant subspaces of T − λ such that (T − λ)−p(0) ⊆ H0(T − λ) for all

p = 0, 1, · · · and (T − λ)K(T − λ) = K(T − λ).

Recall that an operator T has a generalized Kato decomposition abbreviate

GKD, if there exists a pair of T -invariant closed subspace (M,N) such that

H = M ⊕N , the restriction T |M is quasinilpotent and T |N is semi-regular.

Note that, an operator T ∈ B(H) has a GKD at every λ ∈ E(T ), namely

H = H0(T − λ) ⊕ K(T − λ). We say that T is of Kato type at a point λ if

(T − λ)|M is nilpotent in the GKD for T − λ.

Definition 2.9. ( [11])

1. An operator X ∈ B(H) is said to be a quasiaffinity if it is an injective

and has dense range.

2. An operator S ∈ B(H) is said to be quasiaffine transform of T (ab-

breviate S ≺ T ) if there is a quasiaffinity X such that XS = TX.

3. Two operators T, S ∈ B(H) are said to be quasisimilar if there are a

quasiaffinities X,Y ∈ B(H) such that XS = TX and SY = Y T .
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3 Properties of algebraically Class A

An operator T ∈ B(H) is said to be class A if |A|2 ≤ |A2|. We say that T

is algebraically class A if there exists a non-constant complex polynomial P

such that P(T ) is class A.

In general,

hyponormal⇒ p-hyponormal ⇒ ω-hyponormal ⇒ class A ⇒ algebraically

class A.

Algebraically class A is preserved under translation by scalar and restriction

to invariant subspaces. Moreover, if T is class A and invertible then T−1 is

class A. Indeed,

T ∗T = |T |2 ≤ |T 2| = (T ∗2T 2)
1

2 = T ∗2(T 2T ∗2)
−1

2 T 2

if and only if

T ∗−1T−1 ≤ (T 2T ∗2)
−1

2 = (T−2∗T−2)
1

2

if and only if

|T−1|2 ≤ |T−2|.

We write r(T ) and W (T ) for the spectral radius and numerical range, re-

spectively. It is well-known that r(T ) ≤ ‖T‖ and that W (T ) is convex with

convex hull convσ(T ) ⊆ W (T ). T is called convexoid if convσ(T ) = W (T ),

and normaloid if r(T ) = ‖T‖.

Lemma 3.1. ( [2]) If T ∈ B(H) is an algebraically class A, then T is

polaroid (resp.a-polaroid).

Definition 3.2. ( [14]) An operator T ∈ B(H) is said to be totally hered-

itarily normaloid,T ∈ THN if every part of T ( i.e., its restriction to an

invariant subspace), and T−1
p for every invertible part Tp of T , is normaloid.

Lemma 3.3. Let T ∈ THN . Let λ ∈ C. Assume that σ(T ) = {λ}. Then

T = λI
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Proof. We consider two cases:

case I. (λ = 0): Since T is normaloid. Therefore T = 0.

case II. (λ 6= 0): Here T is invertible, and since T ∈ THN , we see that

T, T−1 are normaloid. On the other hand σ(T−1) = { 1
λ
}, so ‖T‖‖T−1‖ =

|λ|| 1
λ
| = 1. This implies that 1

λ
T is unitary with its spectrum σ( 1

λ
T ) = 1.

It follows that T is convexoid, so W (T ) = {λ}. Therefore T = λI.

In [11], Curto and Han proved that quasinilpotent algebraically para-

normal operators are nilpotent. We now establish a similar result for alge-

braically class A operators.

Lemma 3.4. Let T be a quasinilpotent algebraically class A operator. Then

T is nilpotent.

Proof. Suppose P(T ) is class A for some non-constant polynomial P. Since

σ(P(T )) = P(σ(T )), the operator P(T ) − P(0) is quasinilpotent. Since

P(T ) ∈ THN , it follows from lemma 3.3 that cTm(T −λ1)(T −λ2) · · · (T −

λn) ≡ P(T ) − P(0), where (m ≥ 1). Since T − λj is invertible for every

λj 6= 0, j = 1, · · ·n, we must have Tm = 0.

It is well-known that every class A operator is isoloid (see [22]). We

extend this result to algebraically class A operators.

Theorem 3.5. Let T ∈ B(H) be algebraically class A operator. Then T is

isoloid.

Proof. Let λ ∈ isoσ(T ) and let P := 1
2πi

∫
∂D

(λ−T )−1 dλ be the associated

Riesz idempotent, where D is a closed disc centered at λ which contains no

other points of σ(T ). We can represent T as the direct sum T = T1 ⊕ T2,

where σ(T1) = {λ} and σ(T2) = σ(T ) − {λ}. Since T is algebraically class

A, P(T ) is class A for some non-constant polynomial P. Since σ(T1) = {λ},

we must have σ(P(T1)) = P(σ(T1)) = P({λ}) = {P(λ)}. Since P(T1) is

class A, it follows from lemma 3.4 that P(T1) − P(λ) = 0. Put Q(z) :=

P(z)−P(λ). Then Q(T1) = 0, and hence T1 is algebraically class A operator.

Since T1 − λ is quasinilpotent and class A operator, it follows from lemma
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3.4 that T1 − λ is nilpotent, therefore λ ∈ σp(T1), and hence λ ∈ σp(T ).

This shows that T is an isoloid.

Lemma 3.6. Let T ∈ B(H) be a class A operator, then T is of finite ascent.

Proof.Let x ∈ N (T 2), then ‖Tx‖2 ≤ ‖T 2x‖ = 0, and so x ∈ N (T ). Since

the non-zero eigenvalues of a a class A operators are normal eigenvalues of

T , (see [23, lemma 8]), if 0 6= λ ∈ σp(T ) and (T −λ)2 = 0, then (T −λ)(T −

λ)x = 0 = (T − λ)∗(T − λ)x and ‖(T − λ)x‖ = 〈(T − λ)∗(T − λ)x, x〉 = 0.

Hence, if T is class A, then a(T − λ) = 1.

Lemma 3.7. Let T ∈ B(H) be algebraically class A operator. Let λ ∈ C be

an isolated point in σ(T ), then λ is a simple pole of the resolvent Rz(T ) =

(zI − T )−1.

Proof.If λ ∈ isoσ(T ), then T has a direct sum decomposition T = T1 ⊕ T2

on H = H1 ⊕ H2 such that σ(T1) = {λ} and σ(T2) = σ(T ) − {λ}. Let P

be a nonconstant polynomial such that P(T ) is class A operator. Then H1

is a P(T )-invariant subspace, and hence P(T1 is class A operator such that

σ(P(T1) = P(σ(T1) = {P(λ)}. But then P(λ) ∈ Π0(T1) and λ ∈ Π0(T1).

Hence, since λ /∈ σ(T2), λ ∈ Π0(T ).

The following result is a consequence of lemma3.7 and [12, theorem

1.52].

Corollary 3.8. Let T be a an algebraically class A operator and λ0 ∈

isoσ(T ). Let τ = σ(T ) − {λ0}. Then λ0 is an eigenvalue of T . The ascent

and descent of T − λ0 are both equal to 1. Also

R(P (λ0)) = N ((T − λ0)),

R(P (τ)) = R((T − λ0)).

Lemma 3.9. Let T ∈ B(H) be an algebraically class A. Then H = R(T )⊕

N (T ). Moreover T1, the restriction of T to R(T ) is one-one and onto.
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Proof. Suppose that y ∈ R(T ) ∩ N (T ) then y = Tx for some x ∈ H

and Ty = 0. It follows that T 2x = 0. However, d(T ) = 1 and so x ∈

N (T 2) = N (T ). Hence y = Tx = 0 and so R(T ) ∩ N (T ) = {0}. Also,

TR(T ) = R(T ).

If x ∈ H there is u ∈ R(T ) such that Tu = Tx. Now if z = x − u then

Tz = 0. Hence

H = R(T ) ⊕N (T ).

Since d(T ) = 1, T maps R(T ) onto itself. If y ∈ R(T ) and Ty = 0 then

y ∈ R(T ) ∩N (T ) = {0}. Hence T1 is one-one and onto.

Theorem 3.10. Let T ∈ B(H) be algebraically class A operator. Then T

is of Kato type at each λ ∈ E(T ).

Proof.Let T be algebraically class A and λ ∈ E(T ). Then H = H0(T −

λ) ⊕ K(T − λ), where T |H0(T−λ) = T1 satisfies σ(T1) = {λ} and T |K(T−λ)

is semi-regular. Since T is algebraically class A, then there exists a non-

constant polynomial P such that P(T1) is class A. Clearly, σ(P(T1) =

P(σ(T1)) = {P(λ)}. Applying lemma 3.3 it follows that H0(P(T )−P(λ)) =

(P(T1) − P(λ))−1(0).

0 = P(T1) − P(λ) = c(T1 − λ)m

n∏

j=1

(T1 − λj),

for some complex numbers c, λ1, · · · , λn, then for each j = 1, · · · , n, T − λj

is invertible, which implies T1−λ is nilpotent. Hence T −λ is of Kato type.

Lemma 3.11. If T is class A operator and S ≺ T . Then S has SVEP.

Proof. Since T is class A operator, then it has a SVEP, then the result

follows from [11, lemma 3.1].

4 Weyl’s Type Theorems

Theorem 4.1. If T ∈ B(H) is an algebraically class A operator. Then T

and T ∗ satisfy Weyl’s theorem.



110 M. H. Rashid, M. S. M. Noorani, A. S. Saari

Proof. Since T is algebraically class A, then T has SVEP. Then T satisfies

Browder’s theorem if and only if T ∗ satisfies Browder’s theorem if and only

if Π0(T ) = σ(T )−σW (T ) ⊆ E0(T ) and Π0(T
∗) = σ(T ∗)−σW (T ∗) ⊆ E0(T

∗).

If λ ∈ E0(T
∗), then both T and T ∗ has SVEP at λ and 0 < a((T − λ)∗) =

b(T − λ) < ∞. Thus the ascent and descent of T − λ are finite and hence

equal(see [12, prop.1.49]). Then T − λ is a Fredholm of index zero and

also (T − λ)∗ is a Fredholm of index zero, then E0(T ) ⊆ σ(T )− σW (T ) and

E0(T
∗) ⊆ σ(T ∗)− σW (T ∗). This implies that both T and T ∗ satisfy Weyl’s

theorem.

For T ∈ B(H), it is known that the inclusion σSF−

+
(f(T )) ⊆ f(σSF−

+
(T ))

holds for every f ∈ Hol(σ(T )), with no restriction on T .

The next theorem shows that for algebraically class A operators the spectral

mapping theorem holds for the semi-Fredholm spectrum.

Theorem 4.2. If T or T ∗ is an algebraically class A operator. Then

σSF−

+
(f(T )) = f(σSF−

+
(T )) for all f ∈ Hol(σ(T )).

Proof. Let f ∈ Hol(σ(T )). It suffices to show that f(σSF−

+
(T )) ⊆ σSF−

+
(f(T )).

Suppose that λ /∈ σSF−

+
(f(T )) then f(T )−λ ∈ SF−

+ (H) and i(f(T )−λ) ≤ 0

and

(3) f(T ) − λ = c(T − α1) · · · (T − αn)g(T )

where c, α1, · · · , αn ∈ C and g(T ) is invertible. If T is algebraically class A,

then 0 ≤
∑n

j=1 i(T − αj) ≤ 0, then i(T − αj) ≤ 0 for each j = 1, 2, · · · , n,

therefore λ /∈ f(σSF−

+
(T )).

Suppose now that T ∗ is algebraically class A, then T ∗ has SVEP, and so

i(T − αj) ≥ 0 for each j = 1, 2, · · · , n. since 0 ≤
∑n

j=1 i(T − αj) ≤ 0.

Then T − αj is Weyl for each j = 1, 2, · · · , n. Hence λ /∈ f(σSF−

+
(T )). This

completes the proof.

as a consequence of [11, theorem 3.4] we have

Corollary 4.3. Let T ∈ B(H) be a class A operator, then σBW (f(T )) =

f(σBW (T )) for each f ∈ Hol(σ(T )).
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Lemma 4.4. If T or T ∗ is a class A operator. Then f(σSBF−

+
(T )) =

σSBF−

+
(f(T )) for all f ∈ Hol(σ(T )).

Proof. This follows at once from [26, theorem 2.3].

Theorem 4.5. If T ∈ B(H) is an algebraically class A operator. Then

σ(f(T )) − E(f(T )) = f(σ(T ) − E(T )) for every f ∈ Hol(σ(T )).

Proof.It is suffices to show f(σ(T ) − E(T )) ⊆ σ(f(T )) − E(f(T )), since

the other inclusion holds with no restriction on T ( [5, lemma 2.7]). If λ /∈

σ(f(T ))−E(f(T ), then f(T )−λ =
∏n

j=1 (T −αj)
mj , where m1, · · · ,mn are

integers and α1, · · · , αn are complex numbers, g(T ) is invertible operator,

and αi 6= αj when i 6= j. Since f(T ) − λ is not invertible, there exists

α ∈ {α1, · · · , αn} such that α ∈ σ(T ). Since λ is isolated in σ(f(T )), α is

isolated in σ(T ). Hence λ = f(α) /∈ f(σ(T ) − E(T )). This completes the

proof.

Lemma 4.6. Let T ∈ B(H) be class A operator, then T satisfies the gen-

eralized Weyl’s theorem.

Proof. We shall show σ(T ) − σBW (T ) = E(T ). Let λ ∈ σ(T ) − σBW (T ),

then T − λ is B-Weyl’s. Then by [8, theoren 2.7] there exists two closed

subspaces N and M of H such that H = M ⊕N , T1 = (T − λ)|M is Weyl’s

operator, T2 = (T − λ)|N is nilpotent and T − λ = T1 ⊕ T2.

we have two possibilities: either λ ∈ σ(T |M) or λ /∈ σ(T |M).

case I: λ ∈ σ(T |M), since T |M is class A, then Weyl’s theorem holds for

T |M , and so if λ ∈ σ(T |M), then λ ∈ Π0(T |M) ⊂ isoσ(T |M). Since T − λ =

(T |M − λI|M) ⊕ T2 and T2 is nilpotent, σ(T1 − λ) − {0} = σ(T − λ) − {0}

and λ ∈ isoσ(T ). this implies that λ ∈ Π0(T ) ⊂ E(T ).

case II: λ /∈ σ(T |M), then λ is a pole of T which implies that λ ∈ E(T ).

Conversely, let λ ∈ E(T ). Let P be the spectral projection associated

with λ, then R(P ) = H0(T − λ), N (P ) = K(T − λ), H0(T − λ) 6= {0},

H = H0(T − λ)⊕K(T − λ), K(T − λ) is closed subspace(see [18, theorem

3], [21, lemma 1]). Since 0 6= N (T − λ) ⊂ H0(T − λ), λ is a pole of the



112 M. H. Rashid, M. S. M. Noorani, A. S. Saari

resolvent Rλ(T ) = (T −λ)−1, then by [18, theorem 3.4] there is some q > 0

such that the space (T −λ)−q(0) is non-zero and complemented by a closed

T -invariant subspace R((T − λ)q) ⊂ R(T − λ). Hence T − λ is B-Weyl’s,

i.e., λ /∈ σBW (T ).

The following result is a consequence of theorem 4.5 and theorem 4.6.

Corollary 4.7. Let T ∈ B(H) be class A operator. Then f(T ) satisfies

generalized Weyl’s theorem for every f ∈ Hol(σ(T )).

Theorem 4.8. Let T ∈ B(H) be class A operator, then generalized a-Weyl’s

theorem holds for T .

Proof. We will show σSBF−

+
(T ) = σa(T )−Ea(T ). In view of [10, theorem

3.1] it suffices to show Ea(T ) = Πa(T ) and σSBF−

+
(T ) = σLD(T ).

If λ ∈ σa(T ) − Ea(T ), then λ is an isolated in σa(T ), then it follows from

[10, lemma 2.12] that λ /∈ σSBF−

+
(T ). Hence T − λ ∈ SBF−

+ , then by [10,

theorem 2.8] λ is a left pole of T , and so λ ∈ Πa(T ). As we have always

true Πa(T ) ⊂ Ea(T ), then Ea(T ) = Πa(T ).

Now, assume λ /∈ σSBF−

+
(T ). Then T − λ ∈ SBF−

+ . Hence T − λ is a

left Drazin invertible and σLD(T ) ⊂ σSBF−

+
(T ). As it always true that

σSBF−

+
(T ) ⊂ σLD(T ), then σSBF−

+
(T ) = σLD(T ).

A bounded linear operator T is called a-isoloid if every isolated point

of σa(T ) is an eigenvalue of T . Note that every a-isoloid operator is isoloid

and the converse is not true in general(see [1]).

Theorem 4.9. Let T ∈ B(H) be class A operator. Then E(f(T )) =

Π(f(T )), for every f ∈ Hol(σ(T ))

Proof. Since T is isoloid operator, then from theorem 4.5, we have σ(f(T ))−

E(f(T )) = f(σ(T ) − E(T )). Since T satisfies generalized Weyl’s theorem

then σ(T ) = Π(T ),so σ(f(T )) − E(f(T )) = f(σD(T )). From [7, corollary

2.4] we have f(σD(T )) = σD(f(T )). Hence σ(f(T ))−E(f(T )) = σD(f(T )).
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Theorem 4.10. Let T ∈ B(H) be class A operator, then Ea(f(T )) =

Πa(f(T )), for every f ∈ Hol(σ(T )).

Proof. It is suffices to show f(σa(T )−Ea(T )) ⊂ σa(f(T ))−Ea(f(T )), since

the other inclusion holds for T with no restriction on T (see [4, theorem

3.5]). If λ ∈ f(σa(T ) − Ea(T )), then λ ∈ σa(f(T )) = f(σa(T )). Suppose

λ ∈ Ea(f(T )), then λ is isolated in σa(f(T )).

Let f(T )−λ =
∏n

j=1 (T−µj)
mjg(T ), where µ1, · · · , µn are complex numbers

and g(T ) is invertible. If µj ∈ σa(T ), then µj is an isolated in σa(T ). Since

T is a-isoloid, µj is an eigenvalue of T . Therefore we have µj ∈ Ea(T ). So

λ = f(µj) and this contradicts to the fact that λ ∈ f(σa(T ) − Ea(T )).

Theorem 4.11. Let T ∈ B(H) be class A operator and F ∈ F(H) such

that FT = TF , then T + F satisfy generalized a-Weyl’s theorem.

Proof. Since T satisfies generalized a-Weyl’s theorem, then σSBF−

+
(T ) =

σLD(T ). Since F is a finite rank operator, then it follows from [10, theorem

4.1] that σSBF−

+
(T ) = σSBF−

+
(T +F ). Since TF = FT , then by [10, theorem

4.2] we have σLD(T + F ) = σLD(T ). But Πa(T + F ) = Πa(T ) (see [19]).

Hence Πa(T ) = Ea(T ) = Ea(T + F ). Then by [10, corollary 3.2] T + F

satisfies generalized a-Weyl’s theorem.

As a consequence of theorem 4.11 and [4, theorem 3.8], we have

Corollary 4.12. Let T ∈ B(H) be class A operator and F ∈ F(H) such

that FT = TF , then T + F is polaroid.

Lemma 4.13. Let T ∈ B(H) be algebraically class A operator and S ≺ T .

Then g-Browder’s theorem holds for f(S), for every f ∈ Hol(σ(T )).

Proof. Since T is algebraically class A operator then T has SVEP, and

so is S, consequently f(S), because SVEP is stable under the functional

calculus. (i.e., if T has SVEP, then so does f(T ) for each f ∈ Hol(σ(T ))).

Observe that if λ ∈ Π(T ), then T − λ is Drazin invertible and hence B-

Weyl’s. Thus Π(T ) ⊆ σ(T ) − σBW (T ).
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Conversely, assume that λ ∈ σ(T )−σBW (T ). Then T−λ is B-Fredholm, and

hence of uniform topological descent (see [9]). We claim that λ ∈ isoσ(T ).

If λ /∈ isoσ(T ), there exists a sequence {µn} ⊂ σ(T ) such that µn −→ λ.

But then dim(T − µn)−1(0) = dim(T − λ)−1(0) > 0 and finite. So that

λ ∈ accσp(T ). Which is a contradiction to the fact that T has SVEP.

Therefore λ ∈ isoσ(T ) which implies that λ is a pole of the resolvent of T .

Thus λ ∈ Π(T ) and S satisfies g-Browder’s theorem.

Theorem 2.4 of [26] affirms that if T ∗ or T has the SVEP and if T

is a-isoloid and generalized a-Weyl’s holds for T then generalized a-Weyl’s

theorem holds for f(T ), for every f ∈ Hol(σ(T )). If T ∗ is algebraically class

A, then we have:

Theorem 4.14. Let T ∗ be an algebraically class A operator. Then gener-

alized a-Weyl’s holds for T .

Proof. Since T ∗ has SVEP then σ(T ) = σa(T ) and consequently E(T ) =

Ea(T ).

Let λ /∈ σSBF−

+
(T ) be given, then T−λ is semi-B-Fredholm and i(T−λ) ≤ 0.

Then [19, proposition 1.2] implies that i(T −λ) = 0 and consequently T −λ

is B-Weyl’s. Hence λ /∈ σBW (T ). Hence it follows from [26, theorem 3.1]

that λ ∈ E(T ) = Ea(T ).

For the converse, let λ ∈ Ea(T ). Then λ ∈ isoσa(T ). Since T ∗, we have

σ(T ) = σa(T ). Hence λ ∈ σ(T ∗). Now we represent T ∗ as the direct sum

T ∗ = T1 ⊕ T2 , where σ(T1) = {λ} and σ(T2) = σ(T ) − {λ}. Since T is

algebraically class A then so does T1, and so we have two cases:

Case I:(λ = 0): then T1 is quasinilpotent. Hence it follows from lemma 3.4

that T1 is nilpotent. Since T2 is invertible, Then T ∗ is a B-Weyl’s.

Case II: (λ 6= 0): Since σ(T1) = {λ}, then T1 − λ is nilpotent and T2 − λ is

invertible, it follows from [26, theorem 3.1] that T ∗ − λ is B-Weyl’s. Thus

in any case λ ∈ σa(T ) − σSBF−

+
(T )

Theorem 4.15. Let T ∈ B(H). If T ∗ is a class A operator. Then gener-

alized a-Browder’s theorem holds for f(T ) for every f ∈ Hol(σ(T )).
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Proof. Let λ ∈ Πa(T ) be given. then λ ∈ isoσa(T ) and it follows by

[19, theorem 1.5] that λ /∈ σSBF−

+
(T ) which shows that Πa(T ) ⊆ σa(T ) −

σSBF−

+
(T ).

Conversely if λ ∈ σa(T ) − σSBF−

+
(T ), then T − λ is semi-B-Fredholm and

i(T − λ) ≤ 0. Thus, since T ∗ has SVEP, then by [19, proposition 1.2] that

i(T − λ) = 0. Therefore, T − λ is Weyl’s and λ /∈ σW (T ) = σb(T ) which

shows that λ ∈ Π(T ). Consequently λ ∈ isoσa(T ) and hence λ ∈ Πa(T ).

Thus generalized a-Browder’s theorem holds for T .
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