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Abstract. The existence of positive solutions are established for the multi-point bound-
ary value problems
{

(−1)nu(2n)(x) = λp(x)f(u(x)), 0 < x < 1

u(2i)(0) =
∑m

j=1 aju
(2i)(ηj), u(2i+1)(1) =

∑m

j=1 bju
(2i+1)(ηj), i = 0, 1, . . . , n − 1

where aj , bj ∈ [0,∞), j = 1, 2, . . . , m, with 0 <
∑m

j=1 aj < 1, 0 <
∑m

j=1 bj < 1, and

ηj ∈ (0, 1) with 0 < η1 < η2 < . . . < ηm < 1, under certain conditions on f and p using
the Krasnosel’skii fixed point theorem for certain values of λ. We use the positivity of the
Green’s function and cone theory to prove our results.

1. Introduction

In this paper, we are concerned with determining eigenvalues, λ, for which there exist
positive solutions of the 2nth order boundary value problem,

(1) (−1)nu(2n) = λp(x)f(u(x)), 0 < x < 1

(2) u(2i)(0) =

m
∑

j=1

aju
(2i)(ηj), u(2i+1)(1) =

m
∑

j=1

bju
(2i+1)(ηj), i = 0, 1, . . . , n − 1,

where aj , bj ∈ [0,∞), j = 1, 2, . . . ,m, with 0 <
∑m

j=1 aj < 1, 0 <
∑m

j=1 bj < 1, and

ηj ∈ (0, 1) with 0 < η1 < η2 < . . . < ηm < 1, and

(A) the function f : [0,∞) → [0,∞) is continuous,
(B) p : [0, 1] → [0,∞) is continuous and is not zero on any compact subinterval of [0, 1],

(C) f0 = limx→0+
f(x)

x
, f∞ = limx→+∞

f(x)
x

exist in the extended reals.

Our methods will involve those utilized in dealing with elliptic problems in annular re-
gions. These methods have been effectively adapted for the cases when f is superlinear
(i.e., f0 = 0 and f∞ = ∞) and when f is sublinear (i.e., f0 = ∞ and f∞ = 0).

Key words and phrases. Positive Solutions, cone, boundary value problem, Existence Theorem.
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A large part of the literature on multiple solutions to boundary value problems seems to
be traced back to Kransnosel’skii’s work on nonlinear operator equations [9], especially the
part dealing with the theory of cones in Banach Spaces. In 1994, Erbe and Wang [6] applied
Krasnoselskii’s work to eigenvalue problems such as the one above to establish intervals of
the parameter λ for which there is at least one positive solution. Many authors have used
this approach or a variation thereof to obtain eigenvalue intervals. For a small sample of
such work, we refer the reader to works by Davis, Henderson, Prasad and Yin [2], Eloe and
Henderson [4], Eloe, Henderson and Wong [5], Erbe and Wang [6], and references therein.

The paper is organized as follow. In section 2, we are going to define the appropriate
Green’s function which is, later, used to define the operator of which the fixed points are
the solutions of our boundary value problem (1) and (2). The Krasnosel’skii fixed point
theorem stated in that section 2 will be applied in section 3 to yield positive solutions for
certain intervals of eigenvalues.

2. Preliminary Results

In this section, we construct the Green’s function and state it’s properties. We also state
the fixed point theorem. The following lemma helps us in constructing the Green’s function
for the problem (1) and (2).

Lemma 1. Let aj , bj ∈ [0,∞) with (1 −
∑m

j=1 aj)(1 −
∑m

j=1 bj) 6= 0. Then
{

−u′′(x) = f(x), 0 < x < 1
u(0) =

∑m
j=1 aju(ηj), u′(1) =

∑m
j=1 bju

′(ηj),

where f is a continuous function and 0 < η1 < η2, . . . < ηm < 1, has a unique solution
given by

u(x) =

∫ 1

0
G(x, s)f(s)ds, 0 ≤ x ≤ 1.

The function G(x, s) is defined by

G(x, s) = D(x, s) +

m
∑

j=1

AjD(ηj , s) + (

m
∑

j=1

Ajηj + x)(

m
∑

j=1

BjH(s − ηj))

where

D(x, s) = min (x, s), Aj =
aj

A
, Bj =

bj

B
, A = 1 −

m
∑

j=1

aj , B = 1 −

m
∑

j=1

bj,

and H(t) is the Heaviside function, i.e., H(t) = 1 for t ≥ 0 and H(t) = 0 for t < 0.

Proof. Let

u(x) :=

∫ 1

0
D(x, s)f(s)ds + Cx + D

where C and D are arbitrary constants and D(x, s) is defined above.

Then u′(x) =
∫ 1
x

f(s)ds + C =
∫ 1
0 H(s − x)f(s)ds + C, and u′′(x) = −f(x).

So, u(x) is the general solution of u′′(x) = −f(x).
EJQTDE, 2007 No. 26, p. 2



Using the condition u′(1) =
∑m

j=1 bju
′(ηj), we get

C =

m
∑

j=1

bj

{∫ 1

0
H(s − ηj)f(s)ds + C

}

=⇒ C =

∫ 1

0

m
∑

j=1

BjH(s − ηj)f(s)ds

and using the condition, u(0) =
∑m

j=1 aju(ηj), we get

D =

m
∑

j=1

aj

(∫ 1

0
D(ηj , s)f(s)ds + Cηj + D

)

=⇒ D =

∫ 1

0

m
∑

j=1

AjD(ηj , s)f(s)ds +

∫ 1

0





m
∑

j=1

Ajηj









m
∑

j=1

BjH(s − ηj)



 f(s)ds

i.e.,

D =

∫ 1

0







m
∑

j=1

AjD(ηj , s) +





m
∑

j=1

Ajηj









m
∑

j=1

BjH(s − ηj)











f(s)ds

and so,

u(x) =

∫ 1

0



D(x, s) +

m
∑

j=1

AjD(ηj , s) +





m
∑

j=1

Ajηj + x









m
∑

j=1

BjH(s − ηj)







 f(s)ds

i.e.,

u(x) =

∫ 1

0
G(x, s)f(s)ds.

�

Note that the Green’s function G(x, s) satisfies G(x, s) > 0 on (0, 1]×(0, 1], and ∂
∂x

G(x, s) ≥
0 a.e. on [0, 1] × [0, 1].

Now, if we let G1(x, s) := G(x, s) and for i = 2, 3, . . . , n,

Gi(x, s) =

∫ 1

0
G1(x, t)Gi−1(t, s)dt,

then it turns out that Gn(x, s) is the Green’s function for

(−1)nu(2n) = 0, 0 < x < 1

satisfying the boundary conditions

u(2i)(0) =
m

∑

j=1

aju
(2j)(ηj), u(2i+1)(1) =

m
∑

j=1

bju
(2i+1)(ηj), i = 0, 1, . . . , n − 1.

So, u ∈ C[0, 1] is a solution of (1) and (2) if and only if u(x) =
∫ 1
0 Gn(x, s)λp(s)f(u(s))ds.
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It is straight forward from the properties of G1(x, s) to see that Gn(x, s) > 0 on (0, 1] ×
(0, 1], and ∂

∂x
Gn(x, s) ≥ 0 a.e. on [0, 1] × [0, 1].

Lemma 2. Let δ := inf
{

G(0,s)
G(1,s) : 0 < s ≤ 1

}

. Then, δ > 0 and for all 0 ≤ x ≤ 1 and

0 < s ≤ 1, δnGn(1, s) ≤ Gn(0, s) ≤ Gn(x, s) ≤ Gn(1, s).

Proof. Note that G1(0, s) and G1(1, s) have the following bounds.

G1(0, s) =

m
∑

j=1

AjD(ηj , s) +





m
∑

j=1

Ajηj









m
∑

j=1

BjH(s − ηj)





≥ s

m
∑

j=1

Ajηj [Note: equality holds for s = 0]

and

G1(1, s) = s +

m
∑

j=1

AjD(ηj , s) +





m
∑

j=1

Ajηj + 1









m
∑

j=1

BjH(s − ηj)





≤ s







1 +
m

∑

j=1

Aj +





m
∑

j=1

Ajηj + 1









m
∑

j=1

Bj

ηj











(0 < ηj < 1)

So, for 0 < s ≤ 1, we have

G1(0, s)

G1(1, s)
≥

∑m
j=1 Ajηjs

s
{

1 +
∑m

j=1 Aj +
(

∑m
j=1 Ajηj + 1

) (

∑m
j=1

Bj

ηj

)}

=





m
∑

j=1

Ajηj











1 +

m
∑

j=1

Aj +





m
∑

j=1

Ajηj + 1









m
∑

j=1

Bj

ηj











−1

> 0

and so, δ = inf
{

G1(0,s)
G1(1,s) : 0 < s ≤ 1

}

> 0.

Note that, for 0 < s ≤ 1,

G1(0, s)

G1(1, s)
≥ δ

i.e., δG1(1, s) ≤ G1(0, s).

Also, G1(0, s) ≤ G1(x, s) ≤ G1(1, s) for 0 ≤ x ≤ 1 as G1(x, s) is increasing in x.

Therefore, δG1(1, s) ≤ G1(0, s) ≤ G1(x, s) ≤ G1(1, s).

Now, since G2(x, s) =
∫ 1
0 G1(x, t)G1(t, s)dt and δG1(1, s) ≤ G1(0, s) [δ < 1 as G1(0, s) ≤

G1(1, s), 0 < s ≤ 1], we have
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δ2G2(1, s) = δ

∫ 1

0
(δG1(1, t)) G1(t, s)dt ≤ δ

∫ 1

0
G1(0, t)G1(t, s)dt

≤

∫ 1

0
G1(0, t) (δG1(1, s)) dt ≤

∫ 1

0
G1(0, t)G1(0, s)dt

≤ G2(0, s) for 0 < δ ≤ 1.

If we continue this way, we would get that for 0 < s ≤ 1, δnGn(1, s) ≤ Gn(0, s) which
implies that

δnGn(1, s) ≤ Gn(0, s) ≤ Gn(x, s) ≤ Gn(1, s).

�

Now we are going to define the Banach Space and the cone where we will produce the
solution of our boundary value problems.

Consider the Banach space B = C[0, 1], with norm ‖u‖ = sup[0,1] |u(x)|

and the cone P = {u ∈ B | u(x) ≥ δn‖u‖ on [0, 1]}.

The following straightforward results will be used in proving our main theorems.

(D1) When f0 = 0, there exist an η > 0 and H1 > 0 such that f(x) ≤ ηx for 0 < x < H1,

and λη
∫ 1
0 Gn(1, s)p(s)ds ≤ 1 for any fixed λ ∈ (0,∞).

(D2) When f∞ = ∞, there exist a µ > 0 and Ĥ2 > 0, such that f(x) ≥ µx for x ≥ Ĥ2, and

λµδ2n
∫ 1
0 Gn(1, s)p(s)ds ≥ 1 for any fixed λ ∈ (0,∞).

(D3) When f0 = ∞, there exist η̄ > 0 and J1 > 0, such that f(x) ≥ η̄x for 0 < x < J1, and

λδ2nη̄
∫ 1
0 Gn(1, s)p(s)ds ≥ 1 for any fixed λ ∈ (0,∞).

(D4) When f∞ = 0, there exist a µ̄ > 0, and Ĵ2 > 0, such that f(x) ≤ µ̄x for x ≥ Ĵ2, and

λµ̄
∫ 1
0 Gn(1, s)p(s)ds ≤ 1 for any fixed λ ∈ (0,∞).

We seek a fixed point of the integral operator T : P → B defined by

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds, u ∈ P

which is a solution of the equation (1) satisfying the boundary conditions (2).
Note that the operator T preserves P; i.e., T : P → P and is completely continuous.

To see this, let 0 < λ < ∞ be given and u ∈ P. Then, u(x) ≥ δn‖u‖, on [0, 1].

Since, (Tu)(x) = λ
∫ 1
0 Gn(x, s)p(s)f(u(s))ds,

we have

(Tu)′(x) = λ

∫ 1

0

∂

∂x
Gn(x, s)p(s)f(u(s)ds

≥ 0,

which implies that (Tu) is increasing on [0, 1] and so, ‖Tu‖ = Tu(1).
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Also,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s)ds

≥ λ

∫ 1

0
δnG1(1, s)p(s)f(u(s))ds

= δnTu(1) = δn‖Tu‖.

Hence, Tu ∈ P, that is, T : P → P. Moreover, the standard argument shows that T is
completely continuous.

The fixed point theorem by Krasnosel’skii which can be found in [9] and used to obtain
our results in next section is as follows.

Krasnosel’skii Fixed Point Theorem Let X be a Banach space and let K be a cone
in X. Assume that Ω1 and Ω2 are two bounded open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2,
and let Φ : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator such that either

(i) ‖Φu‖ ≤ ‖u‖,∀u ∈ K ∩ δΩ1, and ‖Φu‖ ≥ ‖u‖,∀u ∈ K ∩ δΩ2; or
(ii) ‖Φu‖ ≥ ‖u‖,∀u ∈ K ∩ δΩ1, and ‖Φu‖ ≤ ‖u‖,∀u ∈ K ∩ δΩ2.

Then, Φ has a fixed point in K ∩ (Ω2 \ Ω1).

3. Main Results

Now we are going to prove the existence of at least one positive solution of the above
mentioned boundary value problems.

Theorem 3. Let 0 < λ < ∞, and the function f satisfies superlinearity conditions, that
is, f0 = 0, f∞ = ∞ and the conditions (A), (B), and (C) hold. Then the boundary value
problem (1) and (2) has at least one solution belonging to the cone P.

Proof. Let 0 < λ < ∞. Let u ∈ P with ‖u‖ = H1,
then for 0 ≤ x ≤ 1 (Note: f(u(s)) ≤ ηu(s))

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≤ λ

∫ 1

0
Gn(1, s)p(s)ηu(s)ds

≤ λη‖u‖

∫ 1

0
Gn(1, s)p(s)ds ≤ ‖u‖ by D1.

So, ‖Tu‖ ≤ ‖u‖.
Now, let Ω1 = {u ∈ B | ‖u‖ < H1}, then ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.
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Next, let H2 = max
{

2H1, δ
−nĤ2

}

, and Ω2 = {u ∈ B | ‖u‖ < H2}.

Then, for u ∈ P, ‖u‖ = H2, we have u(s) ≥ δn‖u‖ = δnH2 ≥ Ĥ2, 0 ≤ s ≤ 1, and

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≥ λ

∫ 1

0
δnGn(1, s)p(s)µu(s)ds

≥ λµ

∫ 1

0
δnGn(1, s)p(s)δn‖u‖ds

= ‖u‖λµδ2n

∫ 1

0
Gn(1, s)p(s)ds

≥ ‖u‖ by D2 for µ large.

This implies ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

So, by part (i) of Krasnoselskii’s Fixed Point Theorem, there is a fixed point of the
operator T , that belongs to P ∩ (Ω2 − Ω1). The fixed point u(x) is the desired solution of
(1) and (2) for the given λ.

�

The next result proves the existence of at least one positive solution when f satisfies
sublinearity conditions.

Theorem 4. Let 0 < λ < ∞, and the function f satisfies sublinearity conditions, that is,
f0 = ∞, f∞ = 0 and the conditions (A), (B), and (C) hold. Then the boundary value
problem (1) and (2) has at least one solution belonging to the cone P.

Proof. Let u ∈ P with ‖u‖ = J1. Then,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≥ λδn

∫ 1

0
Gn(1, s)p(s)η̄u(s)ds

≥ λδnη̄

∫ 1

0
Gn(1, s)p(s)δn‖u‖ds

≥ ‖u‖λδ2nη̄

∫ 1

0
Gn(1, s)p(s)ds ≥ ‖u‖

for η̄ large, J1 small by D3. i.e., ‖Tu‖ ≥ ‖u‖.
Let Ω1 = {u ∈ B | ‖u‖ < J1}, then ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1. since f0 = ∞, the

conditoin (D4) holds.

Case(a) f is bounded. Let f(x) ≤ M , M > 0.

Let J2 = max
{

2J1,Mλ
∫ 1
0 Gn(1, s)p(s)ds

}

.
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Then, for u ∈ P with ‖u‖ = J2, and 0 ≤ x ≤ 1, we have

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≤ λ

∫ 1

0
Gn(1, s)p(s)f(u(s))ds

≤ λM

∫ 1

0
Gn(1, s)p(s)ds ≤ J2 = ‖u‖.

Thus, ‖Tu‖ ≤ ‖u‖.
So, if Ω2 = {u ∈ B | ‖u‖, J2}, then ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.

Case(b) f is unbounded. Then there exists

J2 > max
{

2J1, Ĵ2

}

such that f(x) ≤ f(J2) for 0 < x ≤ J2. Let u ∈ P with ‖u‖ = J2.

Then,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≤ λ

∫ 1

0
Gn(1, s)p(s)f(J2)ds

≤ λ

∫ 1

0
Gn(1, s)p(s)µJ2ds

≤ ‖u‖λµ

∫ 1

0
Gn(1, s)p(s)ds ≤ ‖u‖ by (D4).

Thus, ‖Tu‖ ≤ ‖u‖. For this case, if Ω2 = {u ∈ B | ‖u‖ < J2}, then ‖Tu‖ ≤ ‖u‖ for
u ∈ P ∩ ∂Ω2.

Therefore, by part (ii) of Krasnoselskii’s Fixed Point Theorem, there is a fixed point of T

belonging to P ∩ (Ω2 \ Ω1) and is a solution of the problem (1) and (2) for given λ. �

The following two results give us existence of at least one positive solution when f0, f∞
exist as positive real numbers and λ satisfies certain inequality.

Theorem 5. Let f0, f∞ exist as positive real numbers. Assume (A), (B) hold. Then, for
each λ satisfying,

1

δ2nf∞
∫ 1
0 Gn(1, s)p(s)ds

< λ <
1

f0

∫ 1
0 Gn(1, s)p(s)ds

,

there is at least one solution of (1) and (2) belonging to P.

Proof. Let ε > 0 be given such that

0 <
1

δ2n(f∞ − ε)
∫ 1
0 Gn(1, s)p(s)ds

≤ λ ≤
1

(f0 + ε)
∫ 1
0 Gn(1, s)p(s)ds

.
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Since f0 = limx→0
f(x)

x
is a finite positive real number, there exists an H1 > 0 s.t.

f(x) ≤ (f0 + ε)x for 0 < x ≤ H1.
Let u ∈ P with ‖u‖ = H1, then for 0 ≤ x ≤ 1,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≤ λ

∫ 1

0
Gn(x, s)p(s)(f0 + ε)u(s)ds

≤ ‖u‖λ(f0 + ε)

∫ 1

0
Gn(1, s)p(s)ds ≤ ‖u‖.

Let Ω1 = {u ∈ B | ‖u‖ < H1}, then ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

Since f∞ = limx⇒∞

f(x)
x

is a finite positive real number, there exists an Ĥ2 > 0 such that

f(x) ≥ (f∞ − ε)x for x ≥ Ĥ2.

Let H2 = max
{

2H1, δ
−nĤ2

}

and Ω2 = {u ∈ B | ‖u‖ < H2}.

Let u ∈ P with ‖u‖ = H2. Then, we have u(x) ≥ δn‖u‖ = δnH2 ≥ Ĥ2. Thus,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≥ λδn

∫ 1

0
Gn(1, s)p(s)f(u(s))ds

≥ λδn

∫ 1

0
Gn(1, s)p(s)(f∞ − ε)u(s)ds

≥ λδn(f∞ − ε)

∫ 1

0
Gn(1, s)p(s)δn‖u‖ds

= ‖u‖λδ2n(f∞ − ε)

∫ 1

0
Gn(1, s)p(s)ds

≥ ‖u‖.

i.e., ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

So, by part (i) of Krasnoselskii’s Fixed Point Theorem, there is a fixed point of the
operator T , that belongs to P ∩ (Ω2 − Ω1). The fixed point u(x) is the desired solution of
(1) and (2) for the given λ.

�

Theorem 6. Let f0, f∞ exist as positive real numbers. Assume (A), (B) hold. Then, for
each λ satisfying,

1

δ2nf0

∫ 1
0 Gn(1, s)p(s)ds

< λ <
1

f∞
∫ 1
0 Gn(1, s)p(s)ds

,
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there is at least one solution of (1) and (2) belonging to P.

Proof. Let ε > 0 be given such that

0 <
1

δ2n(f0 − ε)
∫ 1
0 Gn(1, s)p(s)ds

≤ λ ≤
1

(f∞ + ε)
∫ 1
0 Gn(1, s)p(s)ds

.

Since f0 = limx→0
f(x)

x
is a finite positive real number, there exists a J1 > 0 such that

f(x) ≥ (f0 − ε)x for 0 < x ≤ J1. Choose u ∈ P with ‖u‖ = J1, then for 0 ≤ x ≤ 1,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≥ λ

∫ 1

0
Gn(x, s)p(s)(f0 − ε)u(s)ds

≥ λ(f0 − ε)

∫ 1

0
δnGn(1, s)p(s)u(s)ds

≥ λ(f0 − ε)δn

∫ 1

0
Gn(1, s)p(s)δn‖u‖ds

≥ ‖u‖λ(f0 − ε)δ2n

∫ 1

0
Gn(1, s)p(s)ds ≥ ‖u‖.

So, if Ω1 = {u ∈ B | ‖u‖ < J1}, then ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1.

Since f∞ = limx→∞

f(x)
x

is finite positive real number, there exists an Ĵ2 > 0 such that

f(x) ≤ (f∞ + ε)x for x ≥ Ĵ2.

Case(a) The function f is bounded.

Let N > 0 such that f(x) ≤ N for all x ≥ 0 and J2 = max
{

2J1, Nλ
∫ 1
0 Gn(1, s)p(s)ds

}

.

Then, for u ∈ P with ‖u‖ = J2,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≤ λ

∫ 1

0
Gn(1, s)p(s)f(u(s))ds

≤ λ

∫ 1

0
Gn(1, s)p(s)Nds

= Nλ

∫ 1

0
Gn(1, s)p(s)ds ≤ J2 = ‖u‖.

So, if Ω2 = {u ∈ B | ‖u‖ < J2}, then ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.

Case(b) The function f is unbounded.

Let J2 > max
{

2J1, Ĵ2

}

be such that f(x) ≤ f(J2) for 0 < x ≤ J2. Let u ∈ P with
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‖u‖ = J2. Then,

Tu(x) = λ

∫ 1

0
Gn(x, s)p(s)f(u(s))ds

≤ λ

∫ 1

0
Gn(1, s)p(s)f(J2)ds

≤ λ

∫ 1

0
Gn(1, s)p(s)(f∞ + ε)J2ds

= ‖u‖λ(f∞ + ε)

∫ 1

0
Gn(1, s)p(s)ds ≤ ‖u‖.

Thus, ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2 where Ω2 = {u ∈ B | ‖u‖ < J2}.

So, by part (ii) of Krasnoselskii’s Fixed Point Theorem, there is a fixed point of the
operator T , that belongs to P ∩ (Ω2 −Ω1), say u(x) which is the desired solution of (1) and
(2) for the given λ. �
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