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Abstract. This paper examines a class of fractional p-Kirchhoff systems driven by a
nonlocal integro-differential operator with singular nonlinearity. By making use of
Nehari manifold techniques, the existence of two nontrivial solutions is established.
Our results extend those in Xiang et al. [Nonlinearity 29(2016), 3186–3205] for the corre-
sponding subcritical case.
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1 Introduction

We look for nontrivial solutions of the following fractional p-Kirchhoff system
(

k
∑

i=1
[ui]

p
s,p

)θ−1

(−∆)s
puj(x) = λj|uj|q−2uj + ∑

i ̸=j
βij|ui|1−m|uj|−m in Ω,

uj = 0 in RN \ Ω,

(1.1)

where

[uj]s,p =

(∫∫
RN×RN

|uj(x)− uj(y)|p

|x − y|N+ps dxdy
) 1

p

, j = 1, 2, . . . , k, k ≥ 2,

θ ≥ 1, N > ps with s ∈ (0, 1), 0 < m < 1, 0 < 2 − 2m < θp < q < p∗s = Np
N−sp , Ω ⊂ RN is a

bounded domain with Lipschitz boundary, λj > 0 is a parameter, βij > 0 for all 1 ≤ i < j ≤ k,
βij = β ji for i ̸= j, j = 1, 2, . . . , k, and (−∆)s

p is the fractional p-Laplace operator which may be
defined along any v ∈ C∞

0 (RN) as

(−∆)s
pv = 2 lim

δ→0+

∫
RN\Bδ(x)

|v(x)− v(y)|p−2(v(x)− v(y))
|x − y|N+ps dy for x ∈ RN ,

where Bδ(x) denotes the ball in RN of radius δ centered at x. For more details on the fractional
p-Laplacian, we can see [8] and the references therein.
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In [9], a steady-state Kirchhoff variational model in bounded regular domains of RN was
proposed by Fiscella and Valdinoci. In fact, problem (1.1) is a fractional version of Kirchhoff
model. Specifically, Kirchhoff proposed the following model

ρ
∂2u
∂t2 −

(
p0

h
+

E
2L

∥∇u∥2
L2([0,L])

)
∂2u
∂x2 = f (x, u), (1.2)

where ρ, p0, h, E, L are constants. As we all know, this model extends the classical D’Alambert
wave equation. Set M(y) = p0/h + (E(2L))y with y ≥ 0. If M(0) = 0, we call problem (1.2)
degenerate, otherwise, it is called non-degenerate if M(0) > 0. For M(0) = 0, it has a very
important physical significance, that is, the base tension of the string is equal to zero. Clearly,
in this paper, we are concerned about the situation of degradation in the fractional p-Laplacian
setting. We refer the interested reader to [2, 6, 12, 13] for some related results.

In recent years, with the application of nonlocal operators in real life or engineering fields
becoming more and more obvious, such as bridge survey, population model, image process-
ing, etc., the fractional Laplacian operator has received extensive attention. Most recently,
Sousa in [14] studied a class of fractional p-Laplacian differential operators with variable ex-
ponents. The author obtained the existence of a positive solution for the investigated fractional
system of the Kirchhoff type by using the method of sub- and super- solutions, via technical
assumptions on the nonlinearity. In [19] Zuo et al. considered a variational approach based
on the scaling function method to solve optimization problems. Precisely, in [18] Zhao et
al. studied a p-fractional Schrödinger–Kirchhoff equation with electromagnetic fields and the
Hardy–Littlewood–Sobolev nonlinearity. They used the concentration-compactness principles
and improved techniques to obtain Palais–Smile condition at level c. By variational methods,
they obtained the existence and multiplicity of solutions. For more literature about the results
for nonlocal fractional Laplacian operators and related nonlocal integro-differential equations,
we can also refer to [1, 7, 17] and the references therein.

On the other hand, there are a lot of literature on the equation or system with singular
nonlinearity. Consider the following semilinear problem{

(−∆)su = λk(x)u−γ + Muq in Ω,

u|∂Ω = 0, u > 0 in Ω,

where n > 2s, M ≥ 0, 0 < s < 1, γ > 0, λ > 0, 1 < q < 2∗s − 1. The weights k : Ω → R

are assumed to be nonnegative and (essentially) bounded. In [3], the authors studied the
existence of distributional solutions for small λ using the uniform estimates of {un} which
are solutions of the regularized problems with singular term u−γ replaced by (u + 1

m )−γ.
This was extended for the p-fractional Laplace operator by Canino et al. in [5]. Assuming
0 < γ < 1, Ghanmi and Saoudi [10] studied the existence of at least two solutions for singular
equations with a positively homogeneous function by making use of variational methods. For
fractional Laplacian system involving singular nonlinearity, the work [11] dealt with

(−∆)su = λa(x)|u|q−2u + 1−α
2−α−β c(x)|u|−α|v|1−β x ∈ Ω,

(−∆)sv = µb(x)|v|q−2u + 1−α
2−α−β c(x)|u|1−α|v|−β x ∈ Ω,

u = v = 0 x ∈ RN \ Ω,

where λ, µ ∈ (0, ∞), 0 < α, β < 1, N > 2s, 1 < q < 2 < 2∗s = 2N
N−2s , s ∈ (0, 1), and

a, b, c ∈ C(Ω) are nonnegative functions. With the help of Nehari manifold, the authors
obtained two nontrivial solutions to this system.



Fractional p-Kirchhoff system 3

Inspired by above papers, the main purpose of this paper is to extend the following work
[16] 

(
k
∑

i=1
[ui]

p
s,p

)θ−1

(−∆)s
puj(x) = λj|uj|q−2uj + ∑

i ̸=j
βij|ui|m|uj|m−2uj in Ω,

uj = 0 in RN \ Ω.

(1.3)

In [16], when 1 < q < θp < 2m < p∗s , the authors obtained two distinct solutions to
system (1.3). We try to study whether it is possible to get similar result when replacing
∑i ̸=j βij|ui|1−m|uj|−m in the place of ∑i ̸=j βij|ui|m|uj|m−2uj. The main difficulties in dealing
with this problem come from the singular nonlinearity, i.e. 0 < m < 1. To our best knowl-
edge, our result for the fractional p-Kirchhoff system with singular nonlinearity is new.

Before describing main result, we recall some necessary definitions. For convenience, we
denote by |u|r := ∥u∥Lr(RN) the norm of Lebesgue space Lr(Ω) with r ≥ 1. Define Ws,p(Ω) as
a linear space of Lebesgue measurable functions from RN to R such that the restriction to Ω
of any function u in Ws,p(Ω) belongs to Lp(Ω) and

∫∫
RN×RN

|u(x)− u(y)|p
|x − y|N+ps dxdy < ∞.

Equip Ws,p(Ω) with the norm

∥u∥Ws,p(Ω) = |u|p +
(∫∫

RN×RN

|u(x)− u(y)|p
|x − y|N+ps dxdy

) 1
p

.

Obviously, Ws,p(Ω) is a Banach space. We shall consider the following closed linear subspace

Ws,p
0 (Ω) =

{
u ∈ Ws,p(Ω) : u(x) = 0 a.e. in RN \ Ω

}
.

Moreover, we have that

∥uj∥Wj =

(∫∫
RN×RN

|uj(x)− uj(y)|p

|x − y|N+ps dxdy
) 1

p

is an equivalent norm of Wj = Ws,p
0 (Ω). It follows from the fractional Sobolev inequality that

S = inf
uj∈Wj

(
∥uj∥Wj

|uj|p∗s

)p

. (1.4)

In this paper we will work in the reflexive Banach space W = W1 × · · · × Wk endowed with
the norm

∥u∥W =
(
∥u1∥

p
W1

+ · · ·+ ∥uk∥
p
Wk

) 1
p

, ∀u = (u1, . . . , uk) ∈ W.

The variational functional of system (1.1) is

J(u) =
1

θp
∥u∥θp

W − 1
q

k

∑
j=1

λj|uj|
q
q −

1
1 − m

k

∑
j=1

∑
i<j

βij|uiuj|1−m
1−m, (1.5)
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for u = (u1, . . . , uk) ∈ W. Note that J /∈ C1(W, R), and classical variational methods are not
applicable. Moreover, we say that function u = (u1, . . . , uk) ∈ W is a weak solution of system
(1.1), if

∥u∥(θ−1)p
W

k

∑
j=1

∫∫
RN×RN

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(wj(x)− wj(y))
|x − y|n+ps dxdy

=
k

∑
j=1

λj

∫
Ω
|uj|q−2ujwjdx +

k

∑
j=1

∑
i ̸=j

βij

∫
Ω
|ui|1−m|uj|−mwjdx,

for any w = (w1, . . . , wk) ∈ W. It is easy to see that solutions of system (1.1) correspond to the
critical points of J.

Set

Λ =
θp − 2 + 2m

q − θp

(
q − 2 + 2m

q − θp

) 2−2m−q
θp−2+2m

(
k

∑
j=1

∑
i<j

βij

) θp−q
θp−2+2m

|Ω|
(2m−2+q)(θp−p∗s )

p∗s (θp−2+2m) S
θ(2m−2+q)
θp−2+2m ,

Λ0 =

(
θp

2 − 2m

) θp−q
θp−2+2m

Λ,

ΘΛ =

(λ1, λ2, . . . , λk) ∈ (R+)k : 0 <

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp

< Λ


and

ΘΛ0 =

(λ1, λ2, . . . , λk) ∈ (R+)k : 0 <

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp

< Λ0

 .

Obviously, ΘΛ0 ⊂ ΘΛ. Our main result is the following.

Theorem 1.1. Suppose that (λ1, λ2, . . . , λk) ∈ ΘΛ0 . Then system (1.1) has two distinct solutions.

The remainder of this paper is organized as follows. In Section 2, we state some prelimi-
nary results. Section 3 is devoted to the proof of Theorem 1.1.

2 Preliminaries

In this section, we state some basic results. Define the constraint set (Nehari maniflod)

N = {u ∈ W\{0} : ⟨J′(u), u⟩ = 0}.

Thus, u ∈ N if and only if

∥u∥θp
W =

k

∑
j=1

λj

∫
Ω
|uj|qdx + 2

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx. (2.1)

Fix u ∈ W and define the function of the form Ku : t → J(tu) for t > 0. Such maps are famous
fibering maps, which were discussed by Brown and Wu in [4]. Precisely,

Ku(t) = J(tu) =
tθp

θp
∥u∥θp

W − tq

q

k

∑
j=1

λj

∫
Ω
|uj|qdx − t2−2m

1 − m

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx.
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Therefore,

K′
u(t) = tθp−1∥u∥θp

W − tq−1
k

∑
j=1

λj

∫
Ω
|uj|qdx − 2t1−2m

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx

and

K′′
u(t) = (θp − 1)tθp−2∥u∥θp

W − (q − 1)tq−2
k

∑
j=1

λj

∫
Ω
|uj|qdx

− 2(1 − 2m)t−2m
k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx.

Lemma 2.1. Let u ∈ W\{0} and t > 0. Then tu ∈ N if and only if K′
u(t) = 0.

Proof. Note that

tK′
u(t) = ∥tu∥θp

W −
k

∑
j=1

λj

∫
Ω
|tuj|qdx − 2

k

∑
j=1

∑
i<j

βij

∫
Ω
|tuituj|1−mdx.

By (2.1), we can easily draw the conclusion of the lemma.

Using methods similar to those used in [15], we split N into three sets. Accordingly, we
define

N+ = {tu ∈ W : K′
u(t) = 0, K′′

u(t) > 0} = {u ∈ N : K′′
u(1) > 0};

N− = {tu ∈ W : K′
u(t) = 0, K′′

u(t) < 0} = {u ∈ N : K′′
u(1) < 0};

N 0 = {tu ∈ W : K′
u(t) = 0, K′′

u(t) = 0} = {u ∈ N : K′′
u(1) = 0}.

In the next, we state some basic properties of submanifold.

Lemma 2.2. Let u0 be a local minimizer for J such that u0 /∈ N 0. Then u0 is a critical point for J.

Proof. Since u0 is a local minimizer of J on N , it is a solution of the optimization problem

minimize J subject to F(u) = 0,

where

F(u) = ∥u∥θp
W −

k

∑
j=1

λj

∫
Ω
|uj|qdx − 2

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx.

Then, applying the theory of Lagrange multipliers, we can find a µ ∈ R such that J′(u0) =

µF′(u0) which implies

0 = ⟨J′(u0), u0⟩ = µ⟨F′(u0), u0⟩.

Further, from u0 ∈ N and u0 /∈ N 0 it is easy to know ⟨F′(u0), u0⟩ ̸= 0. So we obtain µ = 0
and the proof is complete.

Lemma 2.3. The functional J is coercive and bounded below on N .
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Proof. For any u ∈ N , by (1.4), (2.1), the Young and Hölder inequalities, we obtain

J(u) =
(

1
θp

− 1
q

)
∥u∥θp

W −
(

1
1 − m

− 2
q

) k

∑
j=1

∑
i<j

βij|uiuj|1−m
1−m

≥
(

1
θp

− 1
q

)
∥u∥θp

W − 1
2

(
1

1 − m
− 2

q

) k

∑
j=1

∑
i<j

βij
(
|ui|2−2m

2−2m + |uj|2−2m
2−2m

)
≥
(

1
θp

− 1
q

)
∥u∥θp

W − 1
2

(
1

1 − m
− 2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W ,

which together with 2 − 2m < θp yields that J is coercive and bounded below on N .

Set

Iu(t) = tθp−q∥u∥θp
W − 2t2−2m−q

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx.

Clearly, tu ∈ N if and only if

Iu(t) =
k

∑
j=1

λj

∫
Ω
|uj|qdx. (2.2)

Moreover, Iu satisfies the following properties.

Lemma 2.4. Suppose that u ∈ W\{0}. One has

(i) the function Iu possesses a unique maximum at

t = tmax =


2(q − 2 + 2m)

k
∑

j=1
∑
i<j

βij
∫

Ω |uiuj|1−mdx

(q − θp)∥u∥θp
W


1

θp−2+2m

;

(ii) I ′u(t) > 0 for t ∈ (0, tmax) and I′u(t) < 0 for t ∈ (tmax,+∞);

(iii) limt→0+ Iu(t) = −∞, limt→+∞ Iu(t) = 0.

Proof. Note that

I′u(t) = (θp − q)tθp−q−1∥u∥θp
W − 2(2 − 2m − q)t1−2m−q

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx.

Set I′u(t) = 0. Obviously, I′u(tmax) = 0 and I′′u (tmax) < 0, with unique

tmax =


2(q − 2 + 2m)

k
∑

j=1
∑
i<j

βij
∫

Ω |uiuj|1−mdx

(q − θp)∥u∥θp
W


1

θp−2+2m

.

Moreover, it is easy to see that (ii) and (iii) follow from the structure of Iu.

Lemma 2.5. Suppose that tu ∈ N . Then tu ∈ N+ or (N−) if and only if I ′u(t) > 0 or (< 0).
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Proof. If tu ∈ N , by (2.1), we get

K′′
u(t) = (θp − q)tθp−2∥u∥θp

W − 2(2 − 2m − q)t−2m
k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx.

Note that
t1−q I′u(t) = K′′

u(t),

which yields that tu ∈ N+ or (N−) if and only if I′u(t) > 0 or (< 0).

Lemma 2.6. Suppose that u ∈ W\{0}. Then for (λ1, λ2, . . . , λk) ∈ ΘΛ, there exist t+, t− > 0 such
that t+ < tmax < t−, t+u ∈ N+, t−u ∈ N− and

J(t+u) = inf
0≤t≤tmax

J(tu), J(t−u) = sup
t≥0

J(tu).

Proof. By (1.4), the Young and Hölder inequalities, we have

Iu(tmax) =
θp − 2 + 2m

q − θp

(
q − 2 + 2m

q − θp

) 2−2m−q
θp−2+2m

(
2

k
∑

j=1
∑
i<j

βij
∫

Ω |uiuj|1−mdx

) θp−q
θp−2+2m

(
∥u∥θp

W

) 2−2m−q
θp−2+2m

≥ θp − 2 + 2m
q − θp

(
q − 2 + 2m

q − θp

) 2−2m−q
θp−2+2m

(
k
∑

j=1
∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W

) θp−q
θp−2+2m

(
∥u∥θp

W

) 2−2m−q
θp−2+2m

=
θp − 2 + 2m

q − θp

(
q − 2 + 2m

q − θp

) 2−2m−q
θp−2+2m

(
k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p

) θp−q
θp−2+2m

∥u∥q
W .

It follows from (λ1, λ2, . . . , λk) ∈ ΘΛ that

0 <
k

∑
j=1

λj

∫
Ω
|uj|qdx ≤ |Ω|

p∗s −q
p∗s

k

∑
j=1

λj|uj|
q
p∗s

≤ |Ω|
p∗s −q

p∗s S− q
p

k

∑
j=1

λj∥uj∥
q
Wj

≤ |Ω|
p∗s −q

p∗s S− q
p

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp
(

k

∑
j=1

∥uj∥
θp
Wj

) q
θp

≤ |Ω|
p∗s −q

p∗s S− q
p

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp

∥u∥q
W < Iu(tmax),

which implies that there exist t+, t− > 0 such that t+ < tmax < t−,

Iu(t+) =
k

∑
j=1

λj

∫
Ω
|uj|qdx = Iu(t−),

I′u(t+) > 0 and I′u(t−) < 0. Then, by (2.2) and Lemma 2.5, we obtain t+u ∈ N+ and t−u ∈ N−.
Combining Lemma 2.4 and

K′
u(t) = tq−1

(
Iu(t)−

k

∑
j=1

λj

∫
Ω
|uj|qdx

)
,
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we get that J(tu) is strictly decreasing on (0, t+), strictly increasing on (t+, t−) and strictly
decreasing on (t−,+∞). Hence

J(t+u) = inf
0≤t≤tmax

J(tu), J(t−u) = sup
t≥0

J(tu).

The proof is completed.

Lemma 2.7. Suppose that (λ1, λ2, . . . , λk) ∈ ΘΛ. Then N 0 = ∅.

Proof. Arguing by contradiction, we assume that N 0 ̸= ∅. Then for u ∈ N 0, we have by (2.1)
that

0 = K′′
u(1) = (θp − q)∥u∥θp

W − 2(2 − 2m − q)
k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx

= (θp + 2m − 2)∥u∥θp
W − (q + 2m − 2)

k

∑
j=1

λj

∫
Ω
|uj|qdx.

Hence, by (1.4), the Young and Hölder inequalities, we get

∥u∥θp
W =

2(2 − 2m − q)
θp − q

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx

≤ 2 − 2m − q
θp − q

k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W ,

which implies that

∥u∥W ≤
(

2 − 2m − q
θp − q

k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p

) 1
θp−2+2m

. (2.3)

Moreover, by (1.4) and the Hölder inequality, we get

∥u∥θp
W =

q + 2m − 2
θp + 2m − 2

k

∑
j=1

λj

∫
Ω
|uj|qdx

≤ q + 2m − 2
θp + 2m − 2

|Ω|
p∗s −q

p∗s S− q
p

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp

∥u∥q
W ,

which implies that

∥u∥W ≥

 q + 2m − 2
θp + 2m − 2

|Ω|
p∗s −q

p∗s S− q
p

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp


1
θp−q

. (2.4)

Combining (2.3) and (2.4), we obtain(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp

≥ θp − 2 + 2m
q − θp

(
q − 2 + 2m

q − θp

) 2−2m−q
θp−2+2m

(
k

∑
j=1

∑
i<j

βij

) θp−q
θp−2+2m

|Ω|
(2m−2+q)(θp−p∗s )

p∗s (θp−2+2m) S
θ(2m−2+q)
θp−2+2m ,



Fractional p-Kirchhoff system 9

which contradicts

0 <

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp

< Λ.

This ends the proof.

3 Proof of Theorem 1.1

By Lemmas 2.3 and 2.7, for (λ1, λ2, . . . , λk) ∈ ΘΛ, we obtain N = N+ ∪N− and J is bounded
from below on N+ and N−. Set

α+ = inf
u∈N+

J(u) and α− = inf
u∈N−

J(u).

Lemma 3.1. α+ < 0.

Proof. For u ∈ N+, we have K′
u(1) = 0 and K′′

u(1) > 0. Then

(θp − q)∥u∥θp
W > 2(2 − 2m − q)

k

∑
j=1

∑
i<j

βij

∫
Ω
|uiuj|1−mdx.

This yields that

J(u) =
(

1
θp

− 1
q

)
∥u∥θp

W −
(

1
1 − m

− 2
q

) k

∑
j=1

∑
i<j

βij|uiuj|1−m
1−m

≤
[(

1
θp

− 1
q

)
−
(

1
1 − m

− 2
q

)
q − θp

2(q − 2 + 2m)

]
∥u∥θp

W

=
(θp − q)(θp − 2 + 2m)

(2 − 2m)qθp
∥u∥θp

W < 0,

due to 0 < 2 − 2m < θp < q. Therefore α+ < 0 follows from the definition α+.

Lemma 3.2. The minimization problem

α+ = inf
u∈N+

J(u)

is achieved at a point u+ ∈ N+.

Proof. Let {un} be a minimizing sequence of the minimization problem, i.e. {un} ⊂ N+ and
limn→∞ J(un) = α+. By Lemma 2.3, it is easy to see that {un} is bounded, we can find a u+

such that un ⇀ u+ weakly in W, un → u+ strongly in Lr(Ω), 1 ≤ r < p∗s . Now, we prove

lim
n→∞

k

∑
j=1

∑
i<j

βij

∫
Ω
|(un)i(un)j|1−mdx =

k

∑
j=1

∑
i<j

βij

∫
Ω
|(u+)i(u+)j|1−mdx (3.1)

and

lim
n→∞

k

∑
j=1

λj

∫
Ω
|(un)j|qdx =

k

∑
j=1

λj

∫
Ω
|(u+)j|qdx. (3.2)

By the Vitali theorem, we claim that

lim
n→∞

∫
Ω
|(un)i(un)j|1−mdx =

∫
Ω
|(u+)i(u+)j|1−mdx.
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In fact, by the Young inequality, we have∫
Ω
|(un)i(un)j|1−mdx ≤ 1

2

∫
Ω
|(un)i|2−2mdx +

1
2

∫
Ω
|(un)j|2−2mdx.

By the Sobolev embedding theorem and boundedness of {(un)i}, we can find a constant C > 0
such that |(un)i|p∗s ≤ C. Moreover, it follows from the Hölder inequality that∫

Ω
|(un)i|2−2mdx ≤ |Ω|

p∗s +2m−2
p∗s |(un)i|2−2m

p∗s
. (3.3)

From (3.3), for every ϵ > 0, setting

δ =
( ϵ

C2−2m

) p∗s
p∗s +2m−2 ,

when A ⊂ Ω with meas A < δ, we obtain∫
A
|(un)i|2−2mdx ≤ |A|

p∗s +2m−2
p∗s C2−2m < ϵ.

Similarly,
∫

A |(un)j|2−2mdx < ϵ. This yields that{∫
Ω
|(un)i(un)j|1−mdx, n ∈ N

}
is equi-absolutely-continuous. Thus, our claim is true. This implies that (3.1) holds. On the
other hand, for 1 ≤ j ≤ k, it follows from the Hölder inequality and un → u+ strongly in
Lq(Ω) that∫

Ω

∣∣|(un)j|q − |(u+)j|q
∣∣ dx = q

∫
Ω
(|(u+)j|+ τ(|(un)j − (u+)j|))q−1|(un)j − (u+)j|dx

≤ q|(un)j + (u+)j|
q−1
q |(un)j − (u+)j|q

≤ C|(un)j − (u+)j|q → 0,

as n → ∞, where τ ∈ (0, 1) and C > 0 denotes various constants. Therefore,

lim
n→∞

∫
Ω

∣∣|(un)j|q − |(u+)j|q
∣∣ dx = 0, ∀j ∈ {1, 2, , . . . k},

which implies that (3.2) holds. Furthermore, we can prove that un → u+ strongly in W.
Arguing by contradiction, we assume un ↛ u+ strongly in W. Then,

∥u+∥θp
W < lim

n→∞
inf ∥un∥θp

W .

By Lemma 2.6, there exists t+ > 0 such that t+u+ ∈ N+. Then, for un ∈ N+, one has

lim
n→∞

K′
un
(t+)

= lim
n→∞

(
(t+)θp−1∥un∥θp

W − (t+)q−1
k

∑
j=1

λj

∫
Ω
|(un)j|qdx−2(t+)1−2m

k

∑
j=1

∑
i<j

βij

∫
Ω
|(un)i(un)j|1−mdx

)

> (t+)θp−1∥u+∥θp
W − (t+)q−1

k

∑
j=1

λj

∫
Ω
|(u+)j|qdx − 2(t+)1−2m

k

∑
j=1

∑
i<j

βij

∫
Ω
|(u+)i(u+)j|1−mdx

= K′
u+(t+) = 0.
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This yields K′
un
(t+) > 0 for large enough n. Note that K′

un
(1) = 0 for each n and K′

un
(t) < 0

for t ∈ (0, 1). It follows that t+ > 1. Moreover, from that fact that Ku+(t) is decreasing on
(0, t+), we have

J(t+u+) ≤ J(u+) < lim
n→∞

J(un) = α+,

which contradicts the fact that α+ = infu∈N+ J(u). Thus, we conclude that un → u+ strongly
in W. By K′

un
(1) = 0 and K′′

un
(1) > 0, we get that K′

u+(1) = 0 and K′′
u+(1) ≥ 0. Note that

N 0 = ∅. Then K′′
u+(1) > 0, which implies u+ ∈ N+. Above all, by J(u+) = infu∈N+ J(u) < 0,

u+ is a minimizer of J on N+. The proof is completed.

Lemma 3.3. Suppose that (λ1, λ2, . . . , λk) ∈ ΘΛ0 . Then α− > α0 for some α0 > 0.

Proof. For u ∈ N−, we have K′
u(1) = 0 and K′′

u(1) < 0. Then

(θp − 2 + 2m)∥u∥θp
W < (q − 2 + 2m)

k

∑
j=1

λj

∫
Ω
|uj|qdx.

By (1.4) and the Hölder inequality, we have

k

∑
j=1

λj

∫
Ω
|uj|qdx ≤ |Ω|

p∗s −q
p∗s S− q

p

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp

∥u∥q
W .

Hence,

∥u∥W >

 q − 2 + 2m
θp − 2 + 2m

|Ω|
p∗s −q

p∗s S− q
p

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp


1
θp−q

. (3.4)

Then we obtain

J(u) =
(

1
θp

− 1
q

)
∥u∥θp

W −
(

1
1 − m

− 2
q

) k

∑
j=1

∑
i<j

βij|uiuj|1−m
1−m

≥
(

1
θp

− 1
q

)
∥u∥θp

W − 1
2

(
1

1 − m
− 2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p ∥u∥2−2m
W

= ∥u∥2−2m
W

[(
1

θp
− 1

q

)
∥u∥θp−2+2m

W − 1
2

(
1

1 − m
− 2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p

]

> ∥u∥2−2m
W


(

1
θp

− 1
q

) q − 2 + 2m
θp − 2 + 2m

|Ω|
p∗s −q

p∗s S− q
p

(
k

∑
j=1

λ
θp

θp−q
j

) θp−q
θp


θp−2+2m
θp−q

−1
2

(
1

1 − m
− 2

q

) k

∑
j=1

∑
i<j

βij|Ω|
p∗s +2m−2

p∗s S
2m−2

p

 ≥ α0 > 0,

thanks to (λ1, λ2, . . . , λk) ∈ ΘΛ0 and (3.4).

Lemma 3.4. The minimization problem

α− = inf
u∈N−

J(u)

is achieved at a point u− ∈ N−.
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Proof. Let {un} be a minimizing sequence of the minimization problem, i.e. {un} ⊂ N− and
limn→∞ J(un) = α−. By Lemma 2.3, it is easy to see that {un} is bounded, we can find a u−

such that un ⇀ u− weakly in W, un → u− strongly in Lr(Ω), 1 ≤ r < p∗s . Similar to Lemma
3.2, we have

lim
n→∞

k

∑
j=1

∑
i<j

βij

∫
Ω
|(un)i(un)j|1−mdx =

k

∑
j=1

∑
i<j

βij

∫
Ω
|(u−)i(u−)j|1−mdx

and

lim
n→∞

k

∑
j=1

λj

∫
Ω
|(un)j|qdx =

k

∑
j=1

λj

∫
Ω
|(u−)j|qdx.

Furthermore, we can prove that un → u− strongly in W. Arguing by contradiction, we assume
un ↛ u− strongly in W. Then,

∥u−∥θp
W < lim

n→∞
inf ∥un∥θp

W .

By Lemma 2.6, there exists t− > 0 such that t−u− ∈ N−. Thus, since {un} ⊂ N− and
J(tun) ≤ J(un), for all t > 0 we have

J(t−u−) < lim
n→∞

J(t−un) ≤ lim
n→∞

J(un) = α−,

which contradicts the fact that α− = infu∈N− J(u). Thus, we conclude that un → u− strongly
in W. By K′

un
(1) = 0 and K′′

un
(1) < 0, we get that K′

u−(1) = 0 and K′′
u−(1) ≤ 0. Note that

N 0 = ∅. Then K′′
u+(1) < 0, which implies u− ∈ N+. Above all, by J(u−) = infu∈N− J(u), u−

is a minimizer of J on N−. The proof is completed.

Proof of Theorem 1.1. For all (λ1, λ2, . . . , λk) ∈ ΘΛ0 , by Lemmas 3.2 and 3.4, we conclude that
there exist u+ ∈ N+ and u− ∈ N− satisfying J(u+) = infu∈N+ J(u) and J(u−) = infu∈N− J(u).
In view of Lemma 2.2, u+ and u− are two solutions of system (1.1). Moreover, since J(u+) =

J(|u+|) and |u+| ∈ N+ and similarly J(u−) = J(|u−|) and |u−| ∈ N+, so we may assume
u± ≥ 0. Since N+ ∩N− = ∅, two solutions of system (1.1) are distinct. And by Lemmas 3.1
and 3.3, we have J(u+) < 0 and J(u−) > 0. Hence we provided the existence of two nontrivial
nonnegative solutions to our system (1.1).
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