Measurability of linear operators in the
Skorokhod topology

Wiebe R. Pestman

Abstract

It is proved that bounded linear operators on Banach spaces of “cadlag” func-
tions are measurable with respect to the Borel o-algebra associated with the
Skorokhod topology.

1 Introduction and notation.

Throughout this paper C™ is understood to be equipped with an inner product
(-,+) , defined by

=1

forall x = (z1,...,2,) and y = (y1,...,y,) in C". We shall write |z| = /(z,x)
for all z € C™.
A function f:[0,1] — C" is said to be a cadlag function (“continu & droite, limite
a gauche”) if for all ¢ € [0,1] one has:

ligl f(s) = f(t+) = f(t) and lim f(s) = f(t—) exists

st

As can be proved in an elementary way, for every cadlag function f and every
€ >0 the set

{t€[0,1]: [f(t) = F(t=)] = €}
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is finite. It follows from this that a cadlag function can be uniformly approximated
by step functions on [0, 1]. Consequently, every cadlag function is a bounded Borel
function. The linear space of all cadlag functions assuming values in C™ will be
denoted by ®(C™) or, if there can be no confusion, simply by .

Now 9 is equipped with the supremum norm |[e]| :

1FIl = sup{[f(#)] - t € [0, 1]}

In this way ® becomes a non-separable Banach space, we shall denote it by ®p.
In [8] and [9] Skorokhod introduced on ® a weaker topology which turns it into a
Polish space. We shall refer to this topology as the Skorokhod topology. The space
® , equipped with this topology, will be denoted by ®g.

It can be proved (see Billingsley [1]) that the identity map [ : Dg — Dp is
continuous in every f which is continuous on [0, 1]. In particular I is continuous
in the origin.

The map [ is of course not continuous everywhere on ®g. It thus appears that the
topology on ®g is not translation invariant; consequently ®g is not a topological
vector space.

Although the Skorokhod topology is not compatible with the linear structure on
D, the corresponding Borel o-algebra is. In fact we shall see (theorem 3) that it
presents the “cylindrical” o-algebra on the Banach space ®p.

In the sequel the only thing that we shall need in connection to the Skorokhod
topology is that for all ¢ € [0,1] the map

f—=r@)

is a Borel function on ®g (see Billingsley [1]).
It follows from this that for all ¢ € [0,1] the map

n—oo

) 1
£ = f(t=) = Jim f(t—)

being the pointwise limit of a sequence of Borel functions, is also a Borel function
on Dg.

2 The dual space of the Banach space ©Dp

In this section we are going to study the structure of continuous linear forms on
Dp(C"), that is, we are going to describe the dual space D} of Dp (see also
Corson [2]).

For any index set I and any ¢ : 1 — C" we define:

Z |o(a)| = sup{ Z |p(a)] : F a finite subset of I}

acl acF

If Y.crle(a)] < +oo, then the limit

lim »  @(a) =>_ ¢(a)

acF acl
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exists in C" | where the filtration on the collection of finite sets F' is understood
to be defined by inclusion.

The set of all ¢ : I — C™ such that > ,c;|¢(a)] < +oo will be denoted by
(I, Cm).

If my,...,m, are complex Borel measures on [0,1] then we shall write:

m= (my,...,my,)

For all m and all ¢ € ¢*([0,1],C") we define a map [m,¢]: D — C by:

m, () = [ fidmi+ 3 (fla) = flam), pla))
=1 a€l0,1]

where f = (f1,...,fn) € D(C").
The following theorem is stated in the notations introduced above:
Theorem 1. (i) For all m = (my,...,m,) and ¢ € ¢*([0,1],C") the map
m, ] : ®5(C") — C is a continuous linear form.
(ii) For every continuous linear form [ on the Banach space D p(C") there exists
a unique m = (my,...,m,) and a unique ¢ € ¢!([0,1],C") such that [ = [m,¢].

Proof. The proof of (i) is left to the reader.

We prove statement (ii) in the case where n = 1. The general case can easily be
deduced from this, for ©p(C™) is in an obvious way the direct sum of copies of
D5(C).

Let [ be an arbitrary continuous linear form on ®p = Dp(C). By Riesz’s
representation theorem the restriction of [ to the subspace C([0,1]) of continuous
functions on [0, 1] defines a complex Borel measure on [0, 1]. This measure will be
denoted by m.

The continuous linear form [ on D B is defined by

Z(f):l(f)—/fdm for all f €D

Now one has [(f) =0 for every f e C(][0,1]).
For every finite set F' C [0,1] we define the linear subspace 9y by:

Mp={feD : fla)— fla—)=0 ifaé¢ F}

In other words, 9z comprises those f € © which have a possible jump in the
points of F' only.
For every a € (0,1] and sufficiently small § >0 we define the function 12 by:

19(t) = 5(t—a+0)  ift € (a—0,a)
=0 elsewhere on [0, 1]
If fe Mg, then for sufficiently small 6 > 0 the function

f+ 2 Af(a) = fla=)} 1g

acF
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is an element of C/([0,1]). Therefore:

1+ S0 - fta ) ~o

acF

Consequently we have for all f € Mg

= > {f(a) = fla=)} [(13)

acF

Keeping a fixed, the difference of two functions of type 12 isin C]0,1]. We see
in this way that the expression [(12) 'does not depend on 4.
For every a € [0, 1], define ¢(a) = — 1(1%). We then have:

= > ¢(a){f(a)— fla=)}  forall f€Mp

acF

Our next goal is to prove that ¢ € ¢(]0,1],C). For every finite F C [0,1] we
define the “complex saw tooth function” f5 in the following way:

° a) = p(a) if a an a
fr(a) [o(a)] faeF and ¢(a)#0

e fr(la)= 1 if a€ F and ¢(a) =0

e [ is a linear function on each connected component of F° such that for all
a € F one has fp(a+) = fr(a) and fp(a—) =0

Now || fr| <1 for all F. Therefore we have:

sup 3 f(a)] = sup [I(f)] < +oo
acF F

It follows from this that ¢ € ¢'([0,1],C) , so the map

f— > {fa) - fla=)}e(a)

a€(0,1]

is continuous on Dpg.
For all f e UMr we have
F

= > {f(a) = fla=)}¢(a) (*)

a€(0,1]

The linear space UMp being dense in D p , this implies that () holds for all
f € ©p. In this way we see, by definition of [, that | = [m, ).
Unicity of m and ¢ can be proved easily; this is left to the reader.
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Next, let €2 be an arbitrary set, F a o-algebra of subsets of  and M a
topological space. A map X : Q — M is said to be F-measurable (or simply
measurable if no confusion can arise) if X~'(A) € F for all Borel sets A in M.
If M is a Banach space then a map X : Q — M is said to be scalarly measurable
if for every continuous linear form [ on M the composition [o X : ) — C is
measurable. A well-known theorem in functional analysis (due to B.J. Pettis [6])
states that in case of a separable Banach space, measurability is equivalent to scalar
measurability. If M is non-separable then this statement is in general not true. In
fact, it is easy to construct a counterexample in case M = Dp(C):

Example. Let ©Q =[0,1] and let F be the o-algebra consisting of all Borel sets
in [0,1]. Define X :Q — ®p(C) by:

X(s) =1p, for all s € [0, 1]
For any continuous linear form [ = [m, ¢] we have:
1(X(s)) =m{[0,5)} + ¢(s) for all s € [0, 1]

The condition that Y, |¢(a)| < +oo implies that the set of points s for which
©(s) # 0 is at most countably infinite. Keeping this in mind, measurability of the
map s — [(X(s)) can be proved by easy verification. It thus appears that X is
scalarly measurable.

Next we are going to prove that X : {2 — ®p is not measurable.

Let A C [0,1] be a set which is not Borel. Define

Ql:{]_[()@ : SGA} C®Op

Denote the convex hull of 2 by €. It is not hard to prove that for all ¢t € A

1
Moo= fll =5
for every f € ¢ , and consequently also for every f in the closure € of € in Dg.
In this way it turns out that X~1(€) = A. This shows that X is neither measurable
in the norm, nor in the weak topology associated with the Banach space ®p. (To
the author it is not known whether the Borel o-algebras corresponding to the norm
and the weak topology on ®p really differ (see also Edgar [3]). Talagrand proved
in [10] and [11] the existence of Banach spaces where both o-algebras are different).

3 Measurability in the Skorokhod topology.

As announced earlier, the linear space ® equipped with the Skorokhod topology
will be denoted by ®g. A map X : ®g — M , where M is a topological space, is
said to be measurable if it is measurable with respect to the Borel o-algebra of ®g.

Theorem 2. Let [ be a continuous linear form on the Banach space ®p(C").
Then [:®g(C") — C is measurable.
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Proof. The proof is split up into three steps.
If f=~(0,...,fm €9C" and m = (my,...,m,) where my,...,m, are
complex Borel measures on [0, 1], then we shall write

Jor.am) =3 [ 1, am,

step 1: If §, is the Dirac measure in the point a and if ¢ = (c1,...,¢,) € C",
then we denote
m = cd, = (€104, - - -, Cnda)

It is known that the map f — f(a) is measurable on Dg (see Billingsley [1]), so
it follows that, in case m = ¢d, , the map

f = [(f.dm) = (f(a).c)

is also measurable on ®g.

step 2: Next we are going to prove that for arbitrary complex measures my, ..., m,
on [0,1] the map

f— [(f.dm)

is measurable on ®g.
For every k € N we define the 2% intervals I by

If =i —1)/2% i/2%) i=1,2,... 2k

1

Moreover, for every f € ® a sequence fr € ® is defined by:

fr= (i f(i/Qk)lfge) + /(1) 1y

Now if k£ — oo one has (because f(t+) = f(t) ) that fi(t) — f(t) for every
t €[0,1].
For all Borel sets A C [0,1] we write

m(A) = (mi(A),...,my(A))
and we define

m,. = (Z m(I}) aim) +m({1})d

Then
21€

J{fdmi) = S (£6/2), m(2) + (F(1).m{1}) = [ (fi.dm)

=1
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So by Lebesgue’s bounded convergence theorem, we have for all f € ®

Jfodm) = lim [ (f.dmy)
By step 1 the maps
f = [(fdme)

are measurable on ®g. It follows from this that the map

f— [(f.dm).

being the pointwise limit of a sequence of measurable maps, is measurable on Dg.
step 3: If ¢ € £*(]0,1],C") then the map

f— > (fla) = fla—), ¢(a))
a€l0,1]
is measurable on Dg.
To prove this, we observe that the set {a | ¢(a) # 0} is at most countably infinite.
Measurability is now easily verified, for the maps

f—fla) and  f— f(a—)
are measurable on g .

Finally, by step 2, step 3, and theorem 1 we conclude that every continuous linear
form on ®p is measurable on ®g. This proves the theorem.

The following theorem gives a characterization of the Borel o-algebra of ®g.

Theorem 3. The Borel g-algebra of ®g is generated by the maps [: Dg — C
where [ € D7%.

Proof. This is a direct consequence of theorem 2 and the fact that the maps of
type f — f(a) generate the Borel o-algebra of ©g (see Billingsley [1] or apply
Fernique’s theorem, see Schwartz [7]).

The theorem above enables us to prove:

Theorem 4. If T : ®p(C™) — Dp(C") is a bounded linear operator then
T:95(C™) — Dg(C™) is measurable.

Proof. To prove that T : Dg(C™) — Dg(C") is measurable it is, by theorem 3,
sufficient to prove that for all | € ©%(C") the composition [oT : Dg(C™) — C
is measurable. This is trivial, because [oT € ©%(C™).

Closing remarks

In stochastic analysis one is sometimes encountered with variables assuming values
in ®g. By theorem 3, measurability of such variables is equivalent to scalar mea-
surability with respect to the Banach space ® g. There is no loss of measurability if
bounded linear transformations are applied (see for example J. Kormos e.a. [4] or
T. van der Meer [5]).
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