Equivariant Homotopy Epimorphisms, Homotopy Monomorphisms and Homotopy Equivalences

Goutam Mukherjee

1 Introduction

Recall that a morphism $f: A \longrightarrow B$ in a category \mathcal{C} is an epimorphism (in short epi) if for any two morphisms $g, h: B \longrightarrow C$, $g \circ f = h \circ f$ implies g = h. The dual notion of a monomorphism (in short mono) is defined in the evident way.

In [4] E. Dyer and J. Roitberg proved the following result

Theorem 1.1 If $f: X \longrightarrow Y$ is both an epimorphism and a monomorphism in \mathcal{HCW}^* , the homotopy category of pointed path connected CW-spaces, then f is an equivalence in \mathcal{HCW}^* .

The above result is interesting because a morphism in a category which is simultaneously epi and mono need not be an equivalence. Let \mathcal{HCW}° be the homotopy category of pointed CW-spaces. If $f: X \longrightarrow Y$ is a morphism in \mathcal{HCW}^{*} such that when considered as a morphism in \mathcal{HCW}° , f is a monomorphism, then f is also a monomorphism in \mathcal{HCW}^{*} . As a consequence we get a variant of Theorem 1.1

Theorem 1.2 If $f: X \longrightarrow Y$ is a morphism in \mathcal{HCW}^* such that f is an epimorphism in \mathcal{HCW}^* and a monomorphism in \mathcal{HCW}° , then f is an equivalence in \mathcal{HCW}^* .

Received by the editors May 1994

Communicated by Y. Félix

AMS Mathematics Subject Classification :55 N91, 55 N25.

Keywords: Equivariant Cohomology, Local coefficients, Homotopy epimorphism, Homotopy equivalence.

In the present paper we shall find conditions on a morphism $f: X \longrightarrow Y$ in $G\mathcal{HCW}^*$, the G-homotopy category of pointed G-path connected G-complexes, where G is a finite group, to be an equivalence.

Let $GHCW^{\circ}$ be the G-homotopy category of pointed G-complexes. Then $GHCW^{*}$ is a full subcategory of $GHCW^{\circ}$. We shall prove the following result.

Theorem 1.3 If $f: X \longrightarrow Y$ is an epimorphism in $GHCW^*$ and a monomorphism in $GHCW^\circ$ and X, Y are A-admissible then f is an equivalence in $GHCW^*$.

See Definition 1.4 below for A-admissible space.

Let O_G be the category of canonical orbits [1]. If $f: X \longrightarrow Y$ represents a morphism in $G\mathcal{H}\mathcal{C}\mathcal{W}^*$, then f induces a natural transformation $f_*: \underline{\pi}_*X \longrightarrow \underline{\pi}_*Y$, where $\underline{\pi}_*X$ is the O_G -group defined by setting $\underline{\pi}_*(X)(G/H) = \pi_*(X^H)$ for every object G/H in O_G , and $\underline{\pi}_*(X)(\hat{g}) = \pi_*(g)$ for every morphism $\hat{g}: G/H \longrightarrow G/K$ in O_G , f_* is given by $f_*(G/H) = \pi_*(f^H): \pi_*(X^H) \longrightarrow \pi_*(Y^H)$.

Definition 1.4 Let \mathcal{A} denote the subcategory of \mathcal{G} (the category of groups) with ob $\mathcal{A} = ob \ \mathcal{G}$ and $Mor_{\mathcal{A}}(A, B) = Iso_{\mathcal{G}}(A, B)$, the set of isomorphisms from A to B. An O_G -group $T: O_G \longrightarrow \mathcal{G}$ is said to be \mathcal{A} -admissible if it is a functor from $O_G \longrightarrow \mathcal{A}$, that is, $T(\hat{g})$ is invertible for every morphism \hat{g} in O_G . A G-complex X is said to be \mathcal{A} -admissible if $\underline{\pi}_1 X$ is \mathcal{A} -admissible.

Note that when $G = \{e\}$, the \mathcal{A} -admissibility condition is trivially satisfied for any space X, hence Theorem 1.2 follows from Theorem 1.3 by taking $G = \{e\}$.

If X is an object in $G\mathcal{HCW}^*$ such that X is G-simply connected then X is \mathcal{A} -admissible. Also if X is an object in $G\mathcal{HCW}^*$ such that the equivariant 1-cells of X are of the type G/G, then X is \mathcal{A} -admissible.

Let $\mathcal{C}(\mathcal{G})$ denote the category whose objects are O_G -groups and morphisms are natural transformations between O_G -groups. It is easy to see that a morphism $f: S \longrightarrow T$ in $\mathcal{C}(\mathcal{G})$ is a monomorphism in $\mathcal{C}(\mathcal{G})$ if and only if $f(G/H): S(G/H) \longrightarrow T(G/H)$ is a monomorphism in \mathcal{G} for every object G/H in O_G . For suppose f(G/H) is 1-1 for each G/H in O_G . Let $Z: O_G \longrightarrow \mathcal{G}$ be an O_G -group and $\alpha, \beta: Z \longrightarrow S$ be natural transformations such that $f \circ \alpha = f \circ \beta$. Let H be a subgroup of G and $x \in Z(G/H)$. Then $f(G/H)\alpha(G/H)(x) = f(G/H)\beta(G/H)(x)$ implies $\alpha(G/H)(x) = \beta(G/H)(x)$. Thus f is a monomorphism in $\mathcal{C}(\mathcal{G})$.

Conversely, suppose that f is a monomorphism. Now $Ker\ f$ is an O_G -group defined by $(Ker\ f)(G/H) = Ker\ (f(G/H))$. We have natural transformations $i, c: Ker\ f \longrightarrow S$, where i(G/H) is the inclusion and c(G/H) is the zero homomorphism. Moreover, we have $f \circ i = f \circ c$. Since f is a monomorphism, i = c and therefore f(G/H) is a monomorphism for every object G/H in O_G .

If a morphism $f: S \longrightarrow T$ in $\mathcal{C}(\mathcal{G})$ satisfies f(G/H) is onto for every object G/H in O_G , then f is an epimorphism in $\mathcal{C}(\mathcal{G})$. To see this, let $U: O_G \longrightarrow \mathcal{G}$ be an O_G -group and $\alpha, \beta: T \longrightarrow U$ be natural transformations such that $\alpha \circ f = \beta \circ f$. Let $x \in T(G/H)$, find $y \in S(G/H)$ such that f(G/H)(y) = x. Now

$$\alpha(G/H)(x) = \alpha(G/H)f(G/H)(y) = \beta(G/H)f(G/H)(y) = \beta(G/H)(x).$$

This implies that $\alpha = \beta$, thus f is an epimorphism in $\mathcal{C}(\mathcal{G})$.

Proposition 1.5 If $f: S \longrightarrow T$ is an epimorphism in $C(\mathcal{G})$ and S and T are A-admissible, then $f(G/H): S(G/H) \longrightarrow T(G/H)$ is onto for every object G/H in O_G .

Proof Let $S_1: O_G \longrightarrow \mathcal{G}$ be the O_G -group defined by

$$S_1(G/H) = f(G/H)(S(G/H))$$

for any object G/H in O_G and for a morphism $\hat{g}: G/H \longrightarrow G/K$ in O_G , $S_1(\hat{g}) = T(\hat{g})/S_1(G/K)$. Note that S_1 is \mathcal{A} -admissible. We have to show that S_1 coincides with T. Since f can be decomposed into $S \longrightarrow S_1 \longrightarrow T$, the natural transformation $i: S_1 \longrightarrow T$ is an epimorphism. Define an O_G -group P as follows.

$$P(G/H) = Perm(T(G/H)/S_1(G/H) \cup \infty),$$

the group of permutations of the union of $T(G/H)/S_1(G/H)$ with a disjoint set of one element. For any morphism $\hat{g}: G/H \longrightarrow G/K$ in O_G , $P(\hat{g}): P(G/K) \longrightarrow P(G/H)$ is given by $T(\hat{g})^{-1}$ as follows; let

$$\alpha: T(G/K)/S_1(G/K) \cup \{\infty\} \longrightarrow T(G/K)/S_1(G/K) \cup \{\infty\}$$

be a permutation. Let $x \in T(G/H)/S_1(G/H) \cup \{\infty\}$. Suppose $x = a S_1(G/H)$, $a \in T(G/H)$, then define

$$P(\hat{g})(\alpha)(x) = \begin{cases} \infty & \text{if } \alpha(T(\hat{g})^{-1} \ (a)S_1(G/K)) = \infty \\ T(\hat{g})(b)S_1(G/H) & \text{if } \alpha(T(\hat{g})^{-1} \ (a)S_1(G/K)) = b \ S_1(G/K). \end{cases}$$

If $x = \infty$, define $P(\hat{g})(\alpha)(x) = \infty$ when $\alpha(\infty) = \infty$, and $P(\hat{g})(\alpha)(x) = T(\hat{g})(a)S_1(G/H)$ when $\alpha(\infty) = aS_1(G/K)$. It is easy to check that this defines an O_G group $P: O_G \longrightarrow \mathcal{G}$. Let $\sigma_H \in P(G/H)$ be the permutation which exchanges $S_1(G/H)$ and ∞ , and leaves fixed all other elements. Then $\sigma_H^2 = id$. Define a natural transformation $t: T \longrightarrow P$ as follows.

$$t(G/H)(u)(v S_1(G/H)) = uv S_1(G/H), u, v \in T(G/H),$$

 $t(G/H)(u)(\infty) = \infty.$

Let $s: T \longrightarrow P$ be the natural transformation defined by

$$s(G/H)(u) = \sigma_H t(G/H)(u)\sigma_H, \qquad u \in T(G/H).$$

To see that s is natural first note that for any morphism $\hat{g}: G/H \longrightarrow G/K$ in O_G , $P(\hat{g})(\sigma_K) = \sigma_H$. Thus for $\hat{g}: G/H \longrightarrow G/K$, and $u \in T(G/K)$

$$P(\hat{g})s(G/K)(u) = P(\hat{g})(\sigma_K t(G/K)(u)\sigma_K)$$

$$= P(\hat{g})(\sigma_K)P(\hat{g})(t(G/K)(u))P(\hat{g})(\sigma_K)$$

$$= \sigma_H t(G/H)T(\hat{g})(u)\sigma_H \text{ (by naturality of } T)$$

$$= s(G/H)T(\hat{g})(u)$$

It is easy to see that $s \circ i = t \circ i$. Since $i : S_1 \longrightarrow T$ is an epimorphism it follows that s = t. Thus for each G/H, we have

$$a S_1(G/H) = t(G/H)(a)(S_1(G/H)) = s(G/H)(a)(S_1(G/H))$$

= $(\sigma_H t(G/H)(a)\sigma_H)(S_1(G/H)) = \sigma_H t(G/H)(a)(\infty)$
= $\sigma_H(\infty) = S_1(G/H)$.

Thus $S_1(G/H) = T(G/H)$.

We shall obtain Theorem 1.3 as a corollary to the following result.

Theorem 1.6 If a morphism $f: X \longrightarrow Y$ in $GHCW^*$ with X, Y A-admissible, satisfies

- 1. $f_*: \underline{\pi}_1 X \longrightarrow \underline{\pi}_1 Y$ is an epi
- 2. $f_*: \underline{\pi}_* X \longrightarrow \underline{\pi}_* Y$ is a mono
- 3. $f^*: H^*_G(Y; M) \longrightarrow H^*_G(X; f^*M)$ is a mono for all equivariant local coefficients system M on Y,

then f is an equivalence in $GHCW^*$.

Here $H_G^*(Y; M)$ denotes the Bredon-Illman cohomology with equivariant local coefficients system M on Y. Before proceeding further let us recall ([8], [7]) the definition of $H_G^*(Y; M)$, and its properties.

2 Definition of $H_G^*(Y; M)$

For a G-space X, let ΠX denote the category whose objects are G-maps $x_H:G/H\longrightarrow X$, and a morphism from $x_H:G/H\longrightarrow X$ to $y_K:G/K\longrightarrow X$ is a pair $(\alpha,[\phi])$, where $\alpha:G/H\longrightarrow G/K$ is a G-map and $\phi:G/H\times I\longrightarrow X$ is a G-homotopy from x_H to $y_K\circ\alpha$, $[\phi]$ is the G-homotopy class rel end points of the G-homotopy ϕ . Recall that we have a homeomorphism $a:Map_G(G/H,X)\longrightarrow X^H$ given by a(f)=f(eH). Therefore we may identify an object $x_H:G/H\longrightarrow X$ in ΠX with the point $x_H(eH)$ in X^H so that, if $\alpha:G/H\longrightarrow G/K$ is a morphism in O_G and $y_K:G/K\longrightarrow X$ is an object in ΠX , then the point in X^H which corresponds to $y_K\circ\alpha:G/H\longrightarrow X$ is given by $y_K\circ\alpha(eH)=\eta_X(\alpha)(y_K(eK))$, where $\eta_X:O_G\longrightarrow \mathcal{T}$ (category of spaces) is the functor such that $\eta_X(G/H)=X^H$, and for a G-map $\alpha:G/H\longrightarrow G/K$, given by a subconjugacy relation $g^{-1}Hg\subset K$, $\eta_X(\alpha):X^K\longrightarrow X^H$ is the left translation by g. Thus a morphism $(\alpha,[\phi]):x_H\longrightarrow y_K$ in ΠX corresponds to a homotopy class $<\alpha,[\phi]>$ rel end points of paths in X^H from $x_H(eH)$ to $\eta_X(\alpha)(y_K(eK))$.

Note that for a fixed H, the objects x_H together with morphisms $x_H \longrightarrow y_H$, which are given by the identity in the first factor and a G-homotopy class (rel $G/H \times \partial I$) of G-homotopies $\phi : G/H \times I \longrightarrow X$ from x_H to y_H in the second factor, constitute a subcategory of ΠX which is precisely the fundamental groupoid πX^H of X^H .

Definition 2.1 An equivariant local coefficients system on a G-space X is a contravariant functor M from ΠX to the category Ab of abelian groups.

Note that for every H < G (H is a subgroup of G) $M_H = M/\pi X^H$ is a local coefficients system on X^H and for a morphism $\hat{g}: G/H \longrightarrow G/K$ in O_G there exists a natural transformation $\underline{M}(\hat{g}): M_K \longrightarrow g^*M_H$ defined as follows: Let $k: G/H \times I \longrightarrow X$ denote the constant G-homotopy at $x_K \circ \hat{g}$. Then $(\hat{g}, [k]): x_K \circ \hat{g} \longrightarrow x_K$ is a morphism in ΠX . For $x \in X^K$ we define $\underline{M}(\hat{g})(x) = M(\hat{g}, [k])$. Conversely, given a local coefficients system M_H on X^H for every H < G, along with a natural transformation $\underline{M}(\hat{g}): M_K \longrightarrow g^*M_H$ for every $\hat{g}: G/H \longrightarrow G/K$, we may obtain an equivariant local coefficients system M on X as follows. For $x_H: G/H \longrightarrow X$ define $M(x_H) = M_H(x_H(eH))$ and for a morphism $(\hat{g}, [\phi]): x_H \longrightarrow y_K$ in ΠX define

$$M((\hat{g}, [\phi])) = \underline{M}(\hat{g}) \circ M_H(\langle \hat{g}, [\phi] \rangle) : M(y_K) \longrightarrow M(x_H).$$

Clearly the above correspondence is a bijection.

Let X be a G-space and $x^{\circ} \in X^{G}$. Let $M: \Pi X \longrightarrow \mathcal{A}b$ be an equivariant local coefficients system on X. For every H < G, the point $x^{\circ} \in X^{G}$ corresponds under the homeomorphism $A: X^{H} \longrightarrow Map_{G}(G/H, X)$ (which is the inverse of 'a') to the constant map $A(x^{\circ}): G/H \longrightarrow x^{\circ}$, which we shall denote by x_{H}° . Then, for every morphism $\hat{g}: G/H \longrightarrow G/K$ in O_{G} , there is a morphism $(\hat{g}, [k]): x_{H}^{\circ} \longrightarrow x_{K}^{\circ}$ in ΠX , where k is the constant homotopy. Define an O_{G} -group $M_{0}: O_{G} \longrightarrow \mathcal{A}b$ by $M_{0}(G/H) = M(x_{H}^{\circ})$ and $M_{0}(\hat{g}) = M(\hat{g}, [k])$.

An element $\alpha \in \pi_1(X^H, x^\circ)$ gives rise to an equivalence $A\alpha : x_H^\circ \longrightarrow x_H^\circ$ in ΠX , and therefore an automorphism $M(A\alpha)$ of $M_0(G/H)$.

Definition 2.2 An O_G -group T is said to act on an O_G -group S (respectively O_G -space) if there is a natural transformation $\rho: T \times S \longrightarrow S$ such that, for every H < G, $\rho(G/H)$ is an action of the group T(G/H) on S(G/H).

The above consideration shows that if $M: \Pi X \longrightarrow \mathcal{A}b$ is an equivariant local coefficients system on X, then there exists an action $\rho: \underline{\pi}_1 X \times M_0 \longrightarrow M_0$ given by $\rho(G/H)(\alpha, m) = M(A\alpha)(m)$.

Conversely, given an O_G -group $M_0: O_G \longrightarrow \mathcal{A}b$ along with an action of $\underline{\pi}_1 X$ we can define an equivariant local coefficients system on X and this correspondence is bijective [7].

Definition 2.3 Let X, Y be G-spaces, and M an equivariant local coefficients system on Y. Then a G-map $f: X \longrightarrow Y$ defines a covariant functor $\Pi(f): \Pi X \longrightarrow \Pi Y$ by $\Pi(f)(x_H) = f \circ x_H$ and $\Pi(f)(\alpha, [\phi]) = (\alpha, [f \circ \phi])$. The functor $M \circ \Pi f$ is an equivariant local coefficients system on X, which we shall denote by f^*M .

We shall denote vertices of the standard *n*-simplex Δ_n by e_0, e_1, \ldots, e_n and the j-th face operator $\Delta_{n-1} \longrightarrow \Delta_n$ by d_n^j , $0 \le j \le n$.

Let X be a G-space and M an equivariant local coefficients system on X. If $\sigma: \triangle_n \times G/H \longrightarrow X$ is an equivariant singular simplex in X, then σ_H will denote the G-map $G/H \longrightarrow X$ defined by $\sigma_H(gH) = \sigma(e_0, gH)$.

We define $C_G^n(X; M)$ to be the group of all functions c on equivariant singular n-simplexes $\sigma: \triangle_n \times G/H \longrightarrow X$ such that $c(\sigma) \in M(\sigma_H)$.

If $u: \triangle_q \longrightarrow \triangle_n$ is a singular q-simplex in \triangle_n , and $\sigma: \triangle_n \times G/H \longrightarrow X$ is an equivariant singular n-simplex in X, then $\sigma(u): \triangle_q \times G/H \longrightarrow X$ will denote the equivariant singular q-simplex $\sigma \circ (u \times id)$, and $\sigma(u)_*: \sigma_H \longrightarrow \sigma(u)_H$ will denote the morphism $(id, [\phi])$, where $\phi: G/H \times I \longrightarrow X$ is the G-homotopy given by $\phi(gH, t) = (tu(e_0) + (1 - t)e_0, gH)$.

Then $\sigma(d_n^i): \triangle_{n-1} \times G/H \longrightarrow X$ is the j-th face $\sigma^{(j)}$ of σ . Note that $\sigma_H^{(j)} = \sigma_H$ for j > 0 and $\sigma(d_n^0)_* = \sigma_*^{(0)}$ is a morphism $\sigma_H \longrightarrow \sigma_H^{(0)}$.

We define coboundary $\delta: C_G^n(X; M) \longrightarrow C_G^{n+1}(X; M)$ by

$$(\delta c)(\sigma) = M(\sigma_*^{(0)})(c(\sigma^{(0)})) + \sum_{j=1}^{n+1} (-1)^j c(\sigma^{(j)}),$$

where σ is an equivariant singular (n+1)-simplex in X. Thus we have a cochain complex $C_G(X; M) = \{C_G^n(X; M); \delta\}$.

Let $\sigma: \triangle_n \times G/H \longrightarrow X$ and $\tau: \triangle_n \times G/K \longrightarrow X$ be two equivariant singular n- simplexes in X. Consider $\triangle_n \times G/H$ and $\triangle_n \times G/K$ as trivial fiber bundles over \triangle_n , and suppose that $h: \triangle_n \times G/H \longrightarrow \triangle_n \times G/K$ is a fiber preserving G-map such that $\sigma = \tau \circ h$. In this case we say that σ and τ are compatible under h.

The map h induces a G-map $\bar{h}: G/H \longrightarrow G/K$ given by $\bar{h}(gH) = pr_2 \circ h(e_0, gH)$, where pr_2 is the projection onto the second factor. Then $\sigma = \tau \circ h$ implies $\sigma_H = \tau_K \circ \bar{h}$. Therefore, if $k: G/H \times I \longrightarrow X$ is the constant homotopy from σ_H to $\tau_K \circ \bar{h}$, then we have a morphism $(\bar{h}, [k]): \sigma_H \longrightarrow \tau_K$ in ΠX . We shall denote this induced morphism by h_* .

We define $S_G^n(X; M)$ to be the subgroup of $C_G^n(X; M)$ consisting of all those cochain c such that if σ and τ are equivariant singular n-simplexes in X which are compatible under h, then $c(\sigma) = M(h_*)(c(\tau))$.

It is easy to check that if $c \in S_G^n(X; M)$, then $\delta c \in S_G^{n+1}(X; M)$. Thus we have a cochain complex $S_G(X; M) = \{S_G^n(X; M); \delta\}$.

Definition 2.4 The Bredon-Illman cohomology of X with equivariant local coefficients M is defined by $H_G^n(X;M) = H^n(S_G(X;M))$.

It may be noted that $H_G^*(X; M)$ reduces to the Steenrod cohomology with the classical local coefficients system [10], when G is trivial.

If X is a G-map and M an equivariant local coefficients on Y, then f^*M is an equivariant local coefficients system on X and we have a cochain map

$$f^{\sharp}: C_G^n(Y; M) \longrightarrow C_G^n(X; f^*M),$$

defined as follows. For $c \in C_G^n(Y; M)$ and $\sigma : \triangle_n \times G/H \longrightarrow X$, $f^{\sharp}(c)(\sigma) = c(f \circ \sigma)$. It is straightforward to check that if $c \in S_G^n(Y; M)$, then $f^{\sharp}(c) \in S_G^n(X; f^*M)$. Thus f induces a homomorphism $f^* : H_G^n(Y; M) \longrightarrow H_G^n(X; f^*M)$.

An interesting feature of the Steenrod cohomology of topological space X with local coefficients M is that it can be realized as certain coholmology of its universal

covering \widetilde{X} . If $p:\widetilde{X} \longrightarrow X$ is the covering projection, then $\pi = \pi_1(X, x^0)$ acts on \widetilde{X} , and $M_0 = M(x^0)$ is a π -module. Let $C^n_{\pi}(\widetilde{X}; M_0)$ be the group of π invariant singular n-cochains, and $H^n_{\pi}(\widetilde{X}; M_0)$ be the corresponding cohomology. Then a classical theorem of Eilenberg [5] [10], says that p induces an isomorphism

$$H^n(X;M) \cong H^n_{\pi}(\widetilde{X};M_0).$$

We next give a similar alternative description of the Bredon-Illman cohomology. Let X be a G-space such that, for every H < G, the fixed point set X^H is connected, locally path connected and semilocally simply connected. For example X may be G-connected G-complex. Let $x^{\circ} \in X^G$, and $p_H : \widetilde{X}^H \longrightarrow X^H$ denote the universal covering of X^H . For a G-map $\hat{g} : G/H \longrightarrow G/K$ in O_G , the left translation $g : X^K \longrightarrow X^H$ induces $\tilde{g} : \widetilde{X}^K \longrightarrow \widetilde{X}^H$ such that $p_H \circ \tilde{g} = g \circ p_K$. Then we have an O_G -space $\mathcal{U}(X)$ defined by $\mathcal{U}(X)(G/H) = \widetilde{X}^H$ and $\mathcal{U}(X)(\hat{g}) = \tilde{g}$. The O_G -space $\mathcal{U}(X)$ will be called the universal O_G -covering space of X. The O_G -group $\underline{\pi}_1 X$ acts on $\mathcal{U}(X)$. This action comes from the identification of $\underline{\pi}_1 X(G/H) = \pi_1(X^H, x^{\circ})$ with the deck transformation group $D(p_H)$ of $p_H : \widetilde{X}^H \longrightarrow X^H$, and the action of $D(p_H)$ on \widetilde{X}^H . Note that if $\alpha \in \pi_1(X^H, x^{\circ})$ corresponds to $\gamma_{\alpha} \in D(p_H)$ and if $u : I \longrightarrow \widetilde{X}^H$ is a path from \tilde{x}_H° to $\gamma_{\alpha}(\tilde{x}_H^{\circ})$, where $\tilde{x}_H^{\circ} \in p_H^{-1}(x^{\circ})$, then the path $p_H \circ u$ represents α .

Let M be an equivariant local coefficients system on X and $M_0: O_G \longrightarrow \mathcal{A}b$ be the associated O_G -group. Recall that $\underline{\pi}_1 X$ acts on M_0 .

Let

$$\{C^n_{\pi_1X(G/H)}(\widetilde{X}^H; M_0(G/H)), d^n_H\}$$

be the cochain complex of Eilenberg, where $C^n_{\underline{\pi}_1X(G/H)}(\widetilde{X^H};M_0(G/H))$ is the subgroup of the singular cochain group $C^n(\widetilde{X^H};M_0(G/H))$ consisting of cochains c which are equivariant with respect to the action $\underline{\pi}_1X(G/H)$ in the sense that if $\alpha \in \pi_1(X^H,x^\circ)$, then $c(\gamma_\alpha \ \sigma) = M(A\alpha)(c(\sigma))$, for every singular n-simplex $\sigma: \Delta_n \longrightarrow \widetilde{X^H}$, where γ_α is the deck transformation corresponding to α . Now define the cochain complex

$$C_{\pi_1 X,G}(\mathcal{U}(X); M_0) = \{C_{\pi_1 X,G}^n(\mathcal{U}(X); M_0), d^n\}$$

by

$$C^n_{\underline{\pi}_1 X, G}(\mathcal{U}(X); M_0) = \bigoplus_{H < G} C^n_{\underline{\pi}_1 X(G/H)}(\widetilde{X^H}; M_0(G/H)), \ d^n = \bigoplus_{H < G} d^n_H.$$

Define $S^n_{\underline{\pi}_1X,G}(\mathcal{U}(X);M_0)$ to be the subgroup of $C^n_{\underline{\pi}_1X,G}(\mathcal{U}(X);M_0)$ consisting of cochains $\{c_H\}_{H< G}$ such that, for every $\hat{g}:G/H\longrightarrow G/K$ and singular n-simplexes $\sigma:\triangle_n\longrightarrow \widetilde{X}^H,\,\tau:\triangle_n\longrightarrow \widetilde{X}^K$ with $\tilde{g}\circ\tau=\sigma$, the equation $M_0(\hat{g})(c_K(\tau))=c_H(\sigma)$ holds in $M_0(G/H)$. We then have a cochain complex

$$S_{\underline{\pi}_1 X, G}(\mathcal{U}(X); M_0) = \{S_{\underline{\pi}_1 X, G}^n(\mathcal{U}(X); M_0), d^n\}.$$

Definition 2.5 We define the $\underline{\pi}_1X$ -equivariant cohomology group of $\mathcal{U}(X)$ with coefficients M_0 by

$$H^n_{\underline{\pi}_1 X, G}(\mathcal{U}(X); M_0) = H^n(S^n_{\underline{\pi}_1 X, G}(\mathcal{U}(X); M_0)).$$

Theorem 2.6 Let X is a G-space, such that for each H < G the fixed point set X^H is connected, locally path connected, and semilocally simply connected. If M is an equivariant local coefficients system on X then

$$H_G^n(X;M) \cong H_{\pi_1X,G}^n(\mathcal{U}(X);M_0))$$

where M_0 is the O_G -group induced by M and $H_G^n(X;M)$ is the Bredon-Illman cohomology.

Sketch of the Proof. We need to introduce some notations. If $\sigma: \triangle_n \times G/H \longrightarrow X$ is an equivariant singular simplex, then $N\sigma$ will denote the corresponding non-equivariant simplex $\triangle_n \longrightarrow X^H$, $N\sigma(x) = \sigma(x, eH)$. Conversely, if $\tau: \triangle_n \longrightarrow X^H$ is a singular simplex, then $E\tau$ will denote the corresponding equivariant simplex $E\tau(x, gH) = g \ \tau(x)$. Note that we have $E(N\sigma) = \sigma$ and $N(E\tau) = \tau$. Next if $x, y \in \widetilde{X}^H$, then we shall denote by $\tilde{\xi}_H(x, y)$ a homotopy class of paths in \widetilde{X}^H from x to y, and write $\xi_H(x, y)$ for $p_H\tilde{\xi}_H(x, y)$. Then $\xi_H(x, y)$ is a homotopy class of paths in X^H from $p_H(x)$ to $p_H(y)$. We shall suppose that each \widetilde{X}^H comes equipped with a base point \tilde{x}_H^0 such that $p_H(\tilde{x}_H^0) = x^0$. When $x = \tilde{x}_H^0$ we write $\tilde{\xi}_H(y)$ and $\xi_H(y)$ instead of $\tilde{\xi}_H(\tilde{x}_H^0, y)$ and $\xi_H(\tilde{x}_H^0, y)$. Since \widetilde{X}^H is simply connected, for every $y \in \widetilde{X}^H$ there is a unique class $\tilde{\xi}_H(y)$.

Define a homomorphism $\phi: C_G^n(X; M) \longrightarrow C_{\underline{\pi}_1 X, G}^n(\mathcal{U}(X); M_0)$ as follows. If $c \in C_G^n(X; M)$ then $\phi(c) = \{c_H\}_{H < G}$ with $c_H \in C_{\pi_1 X(G/H)}^n(\widetilde{X}^H; M_0(G/H))$ is given by $c_H(\sigma) = M(A(\xi_H(\sigma(e_0)))(c(Ep_H\sigma))$, for every $\sigma: \Delta_n \longrightarrow \widetilde{X}^H$, where $A(\xi_H(\sigma(e_0)))$ is the morphism $x_H^0 \longrightarrow (Ep_H\sigma)_H$ corresponding to the homotopy class $\widetilde{\xi}_H(\sigma(e_0))$ of paths in X^H from x^0 to $p_H\sigma(e_0)$. Note that we have

$$A(p_H \sigma(e_0))(gH) = g \ p_H \sigma(e_0) = (Ep_H \sigma)(e_0, gH) = (Ep_H \sigma)_H (gH),$$

and therefore $A(p_H\sigma(e_0)) = (Ep_H\sigma)_H$. That ϕ is well defined can be checked using the fact that c_H is $\underline{\pi}_1X(G/H)$ equivariant for every subgroup H of G. It is straightforward to check that ϕ is a cochain map and that ϕ maps $S_G^n(X; M)$ into $S_{\underline{\pi}_1X,G}^n(\mathcal{U}(X); M_0)$.

Now define a homomorphism $\psi: C^n_{\underline{\pi}_1 X, G}(\mathcal{U}(X); M_0) \longrightarrow C^n_G(X; M)$ as follows. Let $c = \{c_H\}_{H < G} \in C^n_{\underline{\pi}_1 X, G}(\mathcal{U}(X); M_0)$, and $\sigma: \triangle_n \times G/H \longrightarrow X$ be an equivariant simplex. Let $\tilde{\sigma}: \triangle_n \longrightarrow \widetilde{X}^H$ be the lifting of $N\sigma$ so that $p_H \tilde{\sigma} = N\sigma$. Then set

$$\psi(c)(\sigma) = M(A\xi_H(\tilde{\sigma}(d_0)))^{-1}(c_H(\tilde{\sigma})).$$

It can be verified that ψ maps $S^n_{\underline{\pi}_1X,G}(\mathcal{U}(X);M_0)$ into $S^n_G(X;M)$ and is the cochain inverse of ϕ .

Next we define another cohomology group of $\mathcal{U}(X)$ with coefficients in an O_G -group $\lambda: O_G \longrightarrow \mathcal{A}b$, forgetting the action of $\underline{\pi}_1 X$ on $\mathcal{U}(X)$.

Let \mathcal{R} denote the category of rings, and $\Gamma: O_G \longrightarrow \mathcal{R}$ be the contravariant functor defined by $\Gamma(G/H) = \mathbf{Z}[\pi_1 X^H]$, the integral group ring of $\pi_1 X^H$, for object G/H in O_G and $\Gamma(\hat{g}) = g_* : \mathbf{Z}[\pi_1 X^K] \longrightarrow \mathbf{Z}[\pi_1 X^H]$ for a morphism $\hat{g}: G/H \longrightarrow G/K$ in O_G . Note that the O_G -chain complex $C_*\mathcal{U}(X)$, defined by $C_*\mathcal{U}(X) = C_*(\widetilde{X}^H)$ is equipped with a Γ action.

Now define the cochain complex

$$C_G(\mathcal{U}(X);\lambda) = \{C_G^n(\mathcal{U}(X);\lambda);d^n\}$$

by

$$C_G^n(\mathcal{U}(X);\lambda) = \bigoplus_{H < G} Hom_{\mathbf{Z}}(C_*\widetilde{X}^H \otimes_{\Gamma(G/H)} \Gamma(G/H);\lambda(G/H)), \quad d^n = \bigoplus_{H < G} d_H^n.$$

where

$$d_H^n : Hom_{\mathbf{Z}}(C_n\widetilde{X}^H \otimes_{\Gamma(G/H)} \Gamma(G/H); \lambda(G/H)) \longrightarrow Hom_{\mathbf{Z}}(C_{n+1}\widetilde{X}^H \otimes_{\Gamma(G/H)} \Gamma(G/H); \lambda(G/H))$$

is induced from the boundary $\partial_H: C_{n+1}\widetilde{X^H} \longrightarrow C_n\widetilde{X^H}$. Define

$$S_G(\mathcal{U}(X);\lambda) = \{S_G^n(\mathcal{U}(X);\lambda);d^n\}$$

where $S_G^n(\mathcal{U}(X); \lambda)$ is the subgroup of $C_G^n(\mathcal{U}(X); \lambda)$ consisting of cochains $\{c_H\}_{H < G}$ such that for every $\hat{g} : G/H \longrightarrow G/K$ and singular n-simplexes $\sigma : \triangle_n \longrightarrow \widetilde{X}^H$ and $\tau : \triangle_n \longrightarrow \widetilde{X}^K$ with $\tilde{g} \circ \tau = \sigma$, the equation $\lambda(\hat{g})(c_K(\tau)) = c_H(\sigma)$ holds in $\lambda(G/H)$. Define

$$H_G^n(\mathcal{U}(X);\lambda) = H^n(S_G(\mathcal{U}(X);\lambda)).$$

Let $\underline{H}_*\mathcal{U}(X)$ be the O_G -group defined by

$$\underline{H}_*\mathcal{U}(X)(G/H) = H_*(\widetilde{X^H})$$

and

$$\underline{H}_*\mathcal{U}(X)(\hat{g}) = g_* : H_*(\widetilde{X^K}) \longrightarrow H_*(\widetilde{X^H}).$$

Let \mathcal{C}_G denote the abelian category of abelian O_G -groups, and Hom(S,T) denote the morphism set in \mathcal{C}_G between objects S and T.

We define the Kronecker homomorphism

$$\kappa: H_G^n(\mathcal{U}(X); \lambda) \longrightarrow Hom(\underline{H}_n\mathcal{U}(X); \lambda)$$

as follows. For $[\{c_H\}_{H < G}] \in H^n_G(\mathcal{U}(X); \lambda), \{c_H\}_{H < G} \in S^n_G(\mathcal{U}(X); \lambda)$ define

$$\kappa[\{c_H\}_{H< G}](G/H)([\beta_H]) = c_H(\beta_H), [\beta_H] \in H_n(\widetilde{X}^H).$$

We shall show that κ is a surjection by constructing a homomorphism

$$\mu^*: Hom(\underline{H}_n\mathcal{U}(X); \lambda) \longrightarrow H^n_G(\mathcal{U}(X); \lambda)$$

such that $\kappa \circ \mu^*$ is the identity.

Let $\underline{B}_n \mathcal{U}(X)$, $\underline{Z}_n \mathcal{U}(X)$, and $\underline{C}_n \mathcal{U}(X)$ denote the O_G -groups: $\underline{B}_n \mathcal{U}(X)(G/H) = B_n(\widetilde{X}^H)$, $\underline{Z}_n \mathcal{U}(X)(G/H) = Z_n(\widetilde{X}^H)$, and $\underline{C}_n \mathcal{U}(X)(G/H) = C_n(\widetilde{X}^H)$, where $C_n(\widetilde{X}^H)$ is the n-th chain group of \widetilde{X}^H and $B_n(\widetilde{X}^H)$, and $Z_n(\widetilde{X}^H)$ are the boundaries and cycles respectively. We have a natural transformation $\pi : \underline{Z}_n \mathcal{U}(X) \longrightarrow \underline{H}_n \mathcal{U}(X)$ and an exact sequence

$$0 \longrightarrow \underline{Z}_n \mathcal{U}(X) \longrightarrow \underline{C}_n \mathcal{U}(X) \longrightarrow \underline{B}_{n-1} \mathcal{U}(X) \longrightarrow 0$$

in C_G . Thus the natural transformation π extends to a natural transformation μ : $\underline{C}_n \mathcal{U}(X) \longrightarrow \underline{H}_n \mathcal{U}(X)$. Define a chain complex E_* in C_G by setting $E_n = \underline{H}_n \mathcal{U}(X)$ and the boundary homomorphism to be the zero natural transformation. Then $\mu: \underline{C}_*\mathcal{U}(X) \longrightarrow E_*$ is a chain map. This induces a cochain map

$$\mu^{\sharp}: Hom(E_*; \lambda) \longrightarrow Hom(\underline{C}_*\mathcal{U}(X); \lambda).$$

Next define $\nu: Hom(\underline{C}_n\mathcal{U}(X); \lambda) \longrightarrow S^n_G(\mathcal{U}(X); \lambda)$ as follows. Given $f \in Hom(\underline{C}_n\mathcal{U}(X); \lambda)$, $\nu f = \{f_H\}_{H < G} \in C^n_G(\mathcal{U}(X); \lambda)$ is given by $f_H(\sigma) = f(G/H)(\sigma)$, for $\sigma: \triangle_n \longrightarrow \widetilde{X}^H$. We claim that $\nu f = \{f_H\}_{H < G} \in S^n_G(\mathcal{U}(X); \lambda)$. For if $\sigma: \triangle_n \longrightarrow \widetilde{X}^H$, and $\tau: \triangle_n \longrightarrow \widetilde{X}^K$ and $\hat{g}: G/H \longrightarrow G/K$ are such that $\tilde{g} \circ \tau = \sigma$, then

$$\lambda(\hat{g})(f_K(\tau)) = \lambda(\hat{g})f(G/K)(\tau) = f(G/H)(\tilde{g} \circ \tau) = f(G/H)(\sigma) = f_H(\sigma)$$

by naturality of f. It is easy to see that ν is a cochain map. Thus $\nu \circ \mu^{\sharp}$ induces a homomorphism

$$\mu^*: Hom(\underline{H}_n\mathcal{U}(X); \lambda) \longrightarrow H_G^n(\mathcal{U}(X); \lambda)$$

in the cohomology such that $\kappa \circ \mu^*$ is identity.

Let X be an object in $G\mathcal{HCW}^*$ and $x^{\circ} \in X^G$ be the base point. We may assume that x° is a zero cell. Fix $\tilde{x}_G^{\circ} \in p_G^{-1}(x^{\circ})$ and let $\tilde{x}_H^{\circ} = \mathcal{U}(X)(\hat{i})(\tilde{x}_G^{\circ})$ where $\hat{i} : G/H \longrightarrow G/G$. Then $\mathcal{U}(X)$ is a functor from O_G to \mathcal{HCW}^* . Let $f: X \longrightarrow Y$ be a morphism in $G\mathcal{HCW}^*$. The map f induces a natural transformation $\tilde{f}: \mathcal{U}(X) \longrightarrow \mathcal{U}(Y)$, given by $\tilde{f}(G/H) = \tilde{f}^H$. We have a 'cofibration sequence'

$$\mathcal{U}(X) \xrightarrow{\tilde{f}} \mathcal{U}(Y) \xrightarrow{q} C_{\tilde{f}} \longrightarrow \Sigma \mathcal{U}(X) \xrightarrow{\Sigma \tilde{f}} \Sigma \mathcal{U}(Y) \longrightarrow \dots$$

where $C_{\widetilde{f}}(G/H)=C_{\widetilde{f}^H}$ is the mapping cone of $\widetilde{f}^H:\widetilde{X^H}\longrightarrow \widetilde{Y^H}$ and $\Sigma(\mathcal{U}X)(G/H)=\Sigma\widetilde{X^H}$, is the suspension of $\widetilde{X^H}$. Then we may deduce a long exact cohomology sequence

$$\ldots \longrightarrow H^n_G(\mathcal{U}(Y);\lambda) \xrightarrow{\tilde{f}^*} H^n_G(\mathcal{U}(X);\lambda) \longrightarrow H^{n+1}_G(C_{\tilde{f}};\lambda) \xrightarrow{q^*} H^{n+1}_G(\mathcal{U}(Y);\lambda) \xrightarrow{\tilde{f}^*} \ldots$$

We shall refer to this sequence as the long exact cohomology sequence associated to \tilde{f} .

3 Proof of Theorem 1.6

Let λ be an abelian O_G -group and

$$\Gamma: O_G \longrightarrow \mathcal{R}, \qquad \Gamma(G/H) = \mathbf{Z}[\pi_1 Y^H].$$

be the functor as defined in the previous section. We shall define an equivariant local coefficients system $Hom(\Gamma, \lambda)$ on Y as follows. For every H < G, we have a local coefficients system $Hom(\Gamma, \lambda)_H$ on Y^H defined by the $\pi_1 Y^H$ -module $Hom_{\mathbf{Z}}(\Gamma(G/H), \lambda(G/H))$ as in [4]. Let $\hat{g}: G/H \longrightarrow G/K$ be a morphism in O_G . Then $g^*Hom(\Gamma, \lambda)_H$ is a local coefficients system on Y^K and is given by the $\pi_1 Y^K$ -module $Hom_{\mathbf{Z}}(\Gamma(G/H), \lambda(G/H))$ by virtue of the isomorphism $g_*: \pi_1 Y^K \longrightarrow \pi_1 Y^H$. Note that this $\pi_1 Y^K$ -module is same as the $\pi_1 Y^K$ -module $Hom_{\mathbf{Z}}(\Gamma(G/K), \lambda(G/H))$. Thus we have a $\pi_1 Y^K$ -module homomorphism

$$\operatorname{Hom}_{\mathbf{Z}}(\Gamma(G/K),\lambda(G/K)) \longrightarrow \operatorname{Hom}_{\mathbf{Z}}(\Gamma(G/K),\lambda(G/H))$$

given by $\alpha \mapsto \lambda(\hat{g}) \circ \alpha$. This induces a natural transformation

$$\underline{Hom}(\Gamma,\lambda)(\hat{g}): Hom(\Gamma,\lambda)_K \longrightarrow g^*Hom(\Gamma,\lambda)_H.$$

As explained in the previous section this defines an equivariant local coefficients system on Y. Moreover note that for every H < G, $Hom_{\mathbf{Z}}(\Gamma(G/H), \lambda(G/H))$ can be regarded as a $\pi_1 X^H$ -module by virtue of the isomorphism

$$f_*^H: \pi_1 X^H \longrightarrow \pi_1 Y^H$$

(by 1, 2 of Theorem 1.6, and Prop 1.5). Thus $Hom(\Gamma, \lambda)$ can be regarded as an equivariant local coefficients on X so that $f^*Hom(\Gamma, \lambda)$ is isomorphic to $Hom(\Gamma, \lambda)$. According to ([2], Prop. 5.2') there exists a natural isomorphism

$$\bigoplus_{H < G} Hom_{\Gamma(G/H)}(C_*\widetilde{Y^H}, Hom_{\mathbf{Z}}(\Gamma(G/H), \lambda(G/H)) \longrightarrow \bigoplus_{H < G} Hom_{\mathbf{Z}}(C_*\widetilde{Y^H} \otimes_{\Gamma(G/H)} \Gamma(G/H), \lambda(G/H)).$$

Hence we have a commutative diagram

where the horizontal maps are isomorphisms and vertical maps are induced by $\tilde{f}: \mathcal{U}(X) \longrightarrow \mathcal{U}(Y)$. It is easy to see that the horizontal maps pass into the subcomplexes S. Hence in view of Theorem 2.6 we have a commutative diagram of cohomology groups

Now, by 3 of Theorem 1.6 $\tilde{f}^*: H_G^*(\mathcal{U}(Y); \lambda) \longrightarrow H_G^*(\mathcal{U}(X); \lambda)$ is a monomorphism for any O_G -group λ . Hence from the long exact cohomology sequence associated to \tilde{f} we deduce that $q^*: H_G^n(C_{\tilde{f}}; \lambda) \longrightarrow H_G^n(\mathcal{U}(Y); \lambda)$ is zero for every n. By naturality of κ we have the following commutative diagram

$$H_{G}^{*}(C_{\tilde{f}};\lambda) \xrightarrow{\kappa} Hom(\underline{H}_{n}C_{\tilde{f}};\lambda)$$

$$q^{*} = 0$$

$$H_{G}^{n}(\mathcal{U}(Y);\lambda) \xrightarrow{\kappa} Hom(\underline{H}_{n}\mathcal{U}(Y);\lambda)$$

Taking $\lambda = \underline{H}_n C_{\tilde{f}}$ we deduce that $q_* : \underline{H}_n \mathcal{U}(Y) \longrightarrow \underline{H}_n C_{\tilde{f}}$ is the zero natural transformation. From the long exact sequence

$$\ldots \longrightarrow \underline{H}_n \mathcal{U}(X) \xrightarrow{\hat{f}_*} \underline{H}_n \mathcal{U}(Y) \xrightarrow{q_*} \underline{H}_n C_{\tilde{f}} \longrightarrow \ldots$$

in \mathcal{C}_G , it follows that $\widetilde{f}_*: \underline{H}_*\mathcal{U}(X) \longrightarrow \underline{H}_*\mathcal{U}(Y)$ is an epi. Thus for each H < G, $\widetilde{f}_*^H: H_*\widetilde{X^H} \longrightarrow H_*\widetilde{Y^H}$ is an epi. By 2 of Theorem 1.6 $f_*^H: \pi_*X^H \longrightarrow \pi_*Y^H$ is a

mono, hence $\widetilde{f}_*^H: \pi_*\widetilde{X^H} \longrightarrow \pi_*\widetilde{Y^H}$ is a mono. Now proceeding as in [4] we see that $f_*^H: \pi_*X^H \longrightarrow \pi_*Y^H$ is an isomorphism and hence f^H is a homotopy equivalence for every H < G. Consequently by ([9], Prop 2.7) f is a G-homotopy equivalence.

4 Proof of Theorem 1.3

Enough to prove that $f: X \longrightarrow Y$ satisfies hypothesis of Theorem 1.6. First we note that if $f: X \longrightarrow Y$ is a mono in $G\mathcal{HCW}^{\circ}$ then $f_*^H: \pi_*X^H \longrightarrow \pi_*Y^H$ is a monomorphism for every H < G. For suppose $\alpha, \beta: S^n \longrightarrow X^H$ represent any two elements of π_nX^H such that $f^H \circ \alpha \sim f^H \circ \beta$. Let $E\alpha: S^n \times G/H \longrightarrow X$ be defined by $E\alpha(u, aH) = a\alpha(u)$ as in the proof of Theorem 2.6. Similarly define $E\beta$. Then $E(f^H \circ \alpha) = f \circ E\alpha$ and $E(f^H \circ \beta) = f \circ E\beta$. Let F be a homotopy from $f^H \circ \alpha$ to $f^H \circ \beta$. Then $EF: S^n \times G/H \times I \longrightarrow Y$, defined by EF(u, aH, t) = aF(u, t) is a G-homotopy from $f \circ E\alpha$ to $f \circ E\beta$. Since f is a mono in $G\mathcal{HCW}^{\circ}$, it follows that $E\alpha$ is G-homotopic to $E\beta$. Thus $\alpha \sim \beta$ and 2 of Theorem 1.6 is satisfied.

Next we show that if $f: X \longrightarrow Y$ is an epi in $G\mathcal{HCW}^*$ then 1 of Theorem 1.6 is satisfied. First note that for any G-path connected G-complex X and $\lambda: O_G \longrightarrow \mathcal{G}$, there is an adjunction equivalence

$$[X, K(\lambda, 1)]_G \leftrightarrow Hom(\underline{\pi}_1 X, \lambda)$$
 (*)

where $K(\lambda,1)$ is the equivariant Eilenberg-MacLane complex of the type $(\lambda,1)$ [6]. Our assertion follows from this as in [4]. To prove (*) we proceed as follows. If $f: X \longrightarrow K(\lambda,1)$ represents an element of $[X,K(\lambda,1)]_G$, then the corresponding element in $Hom(\underline{\pi}_1X,\lambda)$ is given by $f_*:\underline{\pi}_1X\longrightarrow\lambda$. Conversely, a natural transformation $T:\underline{\pi}_1X\longrightarrow\lambda$ induces a G-homotopy class of G-maps $T_*:K(\underline{\pi}_1X,1)\longrightarrow K(\lambda,1)$ [6]. Note that X can be regarded as a G-subcomplex of $K(\underline{\pi}_1X,1)$. For we may obtain $K(\underline{\pi}_1X,1)$ from X by attaching suitable equivariant cells to X to kill the higher homotopy groups of the fixed point sets of X. The element T_*/X in $[X,K(\lambda,1)]_G$ is then the element which corresponds to T.

In case, $\lambda: O_G \longrightarrow \mathcal{A}b$ is an abelian O_G -group we may give an alternative argument for the validity of (*) as follows. Recall from [1] that there exists a spectral sequence whose E_2 term is

$$E_2^{p,q} = Ext^p(\underline{H}_qX, \lambda) \Longrightarrow H_G^{p+q}(X; \lambda).$$

There is an edge homomorphism

$$H_G^n(X;\lambda) \longrightarrow Hom(\underline{H}_nX,\lambda)$$

which is an isomorphism if each \underline{H}_qX is projective for q < n. We claim that \underline{H}_0X is projective. This can be seen as follows. We consider an epimorphism $\eta: S \longrightarrow T$ and an arbitrary morphism $\mu: \underline{H}_0X \longrightarrow T$ in \mathcal{C}_G . Orient the cells of X in such a way that G preserves the orientation. Since X is G-path connected,

$$\underline{H}_0X(G/H) = H_0(X^H) \cong \mathbf{Z}\langle x^{\circ} \rangle,$$

 $\langle x^{\circ} \rangle$ being the homology class of the fixed point x° . Let $\bar{\eta}_G : \underline{H}_o X(G/G) \longrightarrow S(G/G)$ be a solution for the corresponding problem for $\underline{H}_0 X(G/G)$. Define

$$\bar{\eta}: \underline{H}_0 X \longrightarrow S$$

by

$$\bar{\eta}(G/H)(\langle x^{\circ} \rangle) = S(\hat{i})\bar{\eta}_G(\langle x^{\circ} \rangle),$$

where $\hat{i}: G/H \longrightarrow G/G$ is the morphism in O_G corresponding to the inclusion $H \subset G$. Note that since G preserves orientation, for any $\hat{g}: G/H \longrightarrow G/K$, $\underline{H}_0X(\hat{g})$ is the identity. It is easy to check that $\bar{\eta}$ is natural and a solution for η and μ in \mathcal{C}_G . Thus \underline{H}_0X is projective. Hence

$$[X, K(\lambda, 1)]_G \cong H^1_G(X; \lambda) \cong Hom(\underline{H}_1X; \lambda).$$

Let $\rho: \underline{\pi}_1 X \longrightarrow \underline{H}_1 X$ denote the natural transformation such that $\rho(G/H)$ is the Hurewicz homomorphism. Then ρ induces an isomorphism

$$Hom(\underline{H}_1X,\lambda) \cong Hom(\underline{\pi}_1X,\lambda)$$

and the result follows.

To prove epis in $GHCW^*$ satisfy 3 of Theorem 1.6 we need a homotopy theoretical interpretation of $H^n_G(Y; \lambda)$ and $f^*: H^n_G(Y; M) \longrightarrow H^n_G(X; f^*M)$. As mentioned in section 2 an equivariant local coefficients system M on Y may be viewed as a $\underline{\pi}_1Y$ -module M_0 . Then as in [7] there exists a sectioned G-fibration

$$K(M_0, n) \longrightarrow L(\underline{\pi}_1 Y, M_0, n) \stackrel{p}{\longrightarrow} K(\underline{\pi}_1 Y, 1) \stackrel{s}{\leftarrow} K(\underline{\pi}_1 Y, 1).$$

This yields a sectioned G-fibration $p: E \longrightarrow Y$ with fiber $K(M_0, n)$. Then $H^n_G(Y; M)$ may be identified with the vertical G-homotopy classes of equivariant sections of $p: E \longrightarrow Y$. If now $u: Y \longrightarrow E$ is such a section and $p^*: E^* \longrightarrow X$ is the sectioned G-fibration over X induced from p via $f: X \longrightarrow Y$, then $f^*(u) \in H^n_G(X; f^*M)$ may be identified with the section $u^*: X \longrightarrow E^*$ of p^* defined by $u^*(x) = (x, u(f(x)))$. Then $f^*(u) = f^*(v)$ implies $u \circ f \sim_G v \circ f$, hence $(f \text{ being epi in } GHCW^*)$ $u \sim_G v$, that is, $f^*: H^n_G(Y; M) \longrightarrow H^n_G(X; f^*M)$ is a monomorphism.

Corollary 4.1 If X, Y are G-simply connected G-complexes and $f: X \longrightarrow Y$ is an epi in $GHCW^*$ and a mono in $GHCW^\circ$, then f is a G-homotopy equivalence.

In [3] the author has given an alternative proof of Theorem 1.1. The results in [3] can be generalized to equivariant setting in a functorial way by using the notion of universal O_G -covering space to obtain

Theorem 4.2 If $f: X \longrightarrow Y$ is an epimorphism in $GHCW^*$ where X, Y are A-admissible, and $\underline{\pi}_k(f): \underline{\pi}_k X \longrightarrow \underline{\pi}_k Y$ is a monomorphism for all $k \geq 0$ then f is an equivalence in $GHCW^*$.

Then Theorem 1.3 also follows from Theorem 4.2.

ACKNOWLEDGEMENT: I would like to thank the referee for bringing to my notice the work of J. Dydak.

References

- [1] G. E. Bredon. Equivariant cohomology theories. Lecture Notes in Mathematics 34, Springer, Berlin, 1967.
- [2] H. Cartan and S. Eilenberg. Homological algebra. Princeton Univ. Press, 1957.
- [3] J. Dydak. Epimorphisms and monomorphisms in homotopy. *Proc. Amer. Math. Soc.*, 116:1171–1173,1992.
- [4] E. Dyer and J. Roitberg. Homotopy epimorphisms, homotopy monomorphisms and homotopy equivalences. *Top and its Appl.*, 46:119–124, 1992.
- [5] S. Eilenberg. Homology of spaces with operators I. Trans. Amer. Math. Soc., 6:378–417, 1947.
- [6] A. D. Elmendorf. Systems of fixed point sets. Trans. Amer. Math. Soc., 227:275–284, 1983.
- [7] J. M. Møller. On equivariant function spaces. Pacific J, Math., 142:103–119, 1990.
- [8] G. Mukherjee. Equivariant cohomology with local coefficients. *Thesis.*, I. S. I, 1992.
- [9] T. tom Dieck. Transformation groups, Walter de Gruyter, 1987.
- [10] G. W. Whitehead. Elements of Homotopy Theory. Graduate Texts in Mathematics 61, Springer, Berlin, 1978.

Goutam Mukherjee Stat-Math Division Indian Statistical Institute 203 B. T. Road Calcutta, India.