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Goutam Mukherjee

1 Introduction

Recall that a morphism f : A — B in a category C is an epimorphism (in short
epi) if for any two morphisms g,h: B — C, go f = ho f implies ¢ = h. The dual
notion of a monomorphism (in short mono) is defined in the evident way.

In [4] E. Dyer and J. Roitberg proved the following result

Theorem 1.1 If f : X — Y s both an epimorphism and a monomorphism in
HCW?*, the homotopy category of pointed path connected CW -spaces, then f is an
equivalence in HCW*. [ |

The above result is interesting because a morphism in a category which is simul-
taneously epi and mono need not be an equivalence. Let HCW?® be the homotopy
category of pointed C'W-spaces. If f : X — Y is a morphism in HCW?* such that
when considered as a morphism in HCW?°, f is a monomorphism, then f is also a
monomorphism in HCW?*. As a consequence we get a variant of Theorem 1.1

Theorem 1.2 If f : X — Y is a morphism in HCW* such that f is an epi-
morphism in HCW* and a monomorphism in HCW?®, then f is an equivalence in

HCW*. |
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In the present paper we shall find conditions on a morphism f : X — Y
in GHCW?*, the G-homotopy category of pointed G-path connected G-complexes,
where G is a finite group, to be an equivalence.

Let GHCW? be the G-homotopy category of pointed G-complexes. Then GHCW*
is a full subcategory of GHCW?°. We shall prove the following result.

Theorem 1.3 If f : X — Y is an epimorphism in GHCW?* and a monomorphism
in GHCW?® and X,Y are A-admissible then f is an equivalence in GHCW?*.

See Definition 1.4 below for A-admissible space.

Let O¢ be the category of canonical orbits [1]. If f : X — Y represents a
morphism in GHCW?*, then f induces a natural transformation f, : 7, X — x,Y,
where 7, X is the Og-group defined by setting ,(X)(G/H) = m.(X) for every
object G/H in Og, and m,(X)(g) = m«(g) for every morphism g : G/H — G/K in
Og, f«is given by f.(G/H) = 7. (f7) : m.(XH) — m (V).

Definition 1.4 Let A denote the subcategory of G (the category of groups) with
ob A =0b G and Mors(A, B) = Isog(A, B), the set of isomorphisms from A to
B. An Og-group T : Og — G s said to be A-admissible if it is a functor from
O¢ — A, that is, T'(g) is invertible for every morphism g in Og. A G-compler X
is said to be A-admissible if T, X is A-admissible.

Note that when G = {e}, the A-admissibility condition is trivially satisfied for
any space X, hence Theorem 1.2 follows from Theorem 1.3 by taking G = {e}.

If X is an object in GHCW* such that X is G-simply connected then X is A-
admissible. Also if X is an object in GHCW?* such that the equivariant 1-cells of X
are of the type G/G, then X is A-admissible.

Let C(G) denote the category whose objects are Og-groups and morphisms are
natural transformations between Og-groups. It is easy to see that a morphism
f:S — T inC(G) is a monomorphism in C(G) if and only if f(G/H) : S(G/H) —
T(G/H) is a monomorphism in G for every object G/H in O¢. For suppose f(G/H)
is 1 — 1 for each G/H in Og. Let Z : O — G be an Og-group and «, (3 : Z —
S be natural transformations such that f oa = f o 3. Let H be a subgroup
of G and v € Z(G/H). Then f(G/H)a(G/H)(z) = f(G/H)B(G/H)(x) implies
a(G/H)(x) = (G/H)(zx). Thus f is a monomorphism in C(G).

Conversely, suppose that f is a monomorphism. Now Ker f is an Og-group
defined by (Ker f)(G/H) = Ker (f(G/H)). We have natural transformations ¢, ¢ :
Ker f — S, where i(G/H) is the inclusion and ¢(G/H) is the zero homomorphism.
Moreover, we have f oi = f oc. Since f is a monomorphism, ¢ = ¢ and therefore
f(G/H) is a monomorphism for every object G/H in Og.

If a morphism f : S — T in C(G) satisfies f(G/H) is onto for every object
G/H in Og, then f is an epimorphism in C(G). To see this, let U : O¢ — G be an
Og-group and «, 3 : T' — U be natural transformations such that o f = Fo f.
Let z € T(G/H), find y € S(G/H) such that f(G/H)(y) = z. Now

a(G/H)(z) = a(G/H)f(G/H)(y) = B(G/H) f(G/H)(y) = B(G/H)(x).
This implies that o = 3, thus f is an epimorphism in C(G).
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Proposition 1.5 If f : S — T is an epimorphism in C(G) and S and T are A-
admissible, then f(G/H) : S(G/H) — T(G/H) is onto for every object G/H in
Og.

Proof Let S;: Og — G be the Og-group defined by
SI(G/H) = f(G/H)(S(G/H))

for any object G/H in O¢ and for a morphism ¢ : G/H — G/K in Og, S1(g) =
T(9)/S1(G/K). Note that Sy is A-admissible. We have to show that S; coincides
with T'. Since f can be decomposed into S — S; — T', the natural transformation
1 : 581 — T is an epimorphism. Define an Og-group P as follows.

P(G/H) = Perm(T(G/H)/S:1(G/H) U o),

the group of permutations of the union of T(G/H)/S1(G/H) with a disjoint set of
one element. For any morphism ¢ : G/H — G/K in O¢g, P(g9) : P(G/K) —
P(G/H) is given by T'(§)™" as follows; let

T(G/K)/51(G/K) U{oo} — T(G/K)/S51(G/K) U{oo}

be a permutation. Let x € T(G/H)/S1(G/H) U {oco}. Suppose z = a S1(G/H),
a € T(G/H), then define

A [ if o(T(§)7" (a)S1(G/K)) = oo
PO ={ T/ o) (996110 = (6K,

If x = o0, define P(g)(«)(x) = oo when a(co) = oo, and P(§)(«)(z) = T(§)(a)S1(G/H)
when a(oco) = aSi(G/K). It is easy to check that this defines an Og group
P:0Og — G. Let oy € P(G/H) be the permutation which exchanges S1(G/H)
and oo, and leaves fixed all other elements. Then ¢% = id. Define a natural trans-
formation ¢ : T — P as follows.

t(G/H)(u)(v S1(G/H)) = wv S1(G/H), u,veT(G/H),
t(G/H)(u)(c0) = oc.

Let s : T'— P be the natural transformation defined by
s(G/H)(u) = oyt(G/H)(u)on, ueT(G/H).

To see that s is natural first note that for any morphism ¢ : G/H — G/K in Og,
P(g)(ok) = og. Thus for g: G/H — G/K, and u € T(G/K)

P(g)s(G/K)(u) = P(g)(oxt(G/K)(u)ok)
= P(9)(ox)P(9)(H(G/K)(u)P(g) (oK)
= opt(G/H)T(§)(u)oy (by naturality of T')

= s(G/H)T(9)(u)
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It is easy to see that soi =t o4. Since i : S; — T is an epimorphism it follows
that s =¢. Thus for each G/H, we have

a S(G/H) = HG/H)(a)(5:(G/H)) = s(G/H)(a)(5:(G/H))
= (ou t(G/H)(a)ou)(51(G/H)) = out(G/H)(a)(0)

Thus Si1(G/H) =T(G/H). |
We shall obtain Theorem 1.3 as a corollary to the following result.

Theorem 1.6 If a morphism f : X — Y in GHCW* with X,Y A-admissible,
satisfies

1. fo:mX — mY is an epi
2. fo ., X —mY is a mono

3. f* T HE(Y; M) — HE(X; f*M) is a mono for all equivariant local coefficients
system M on'Y,

then f is an equivalence in GHCW*.

Here H{(Y; M) denotes the Bredon-Illman cohomology with equivariant local
coefficients system M on Y. Before proceeding further let us recall ([8], [7]) the
definition of HE(Y'; M), and its properties.

2 Definition of H:(Y; M)

For a G-space X, let 11X denote the category whose objects are G-maps xpy :
G/H — X, and a morphism from zy : G/H — X toyx : G/K — X is a
pair («,[¢]), where a : G/H — G/K is a G-map and ¢ : G/H x I — X is a
G-homotopy from xg to yx o «, [¢] is the G-homotopy class rel end points of the
G-homotopy ¢. Recall that we have a homeomorphism a : Map,(G/H, X) — X
given by a(f) = f(eH). Therefore we may identify an object xy : G/H — X in
IIX with the point xy(eH) in X so that, if « : G/H — G/K is a morphism
in Og and yx : G/K — X is an object in I1X, then the point in X which
corresponds to yx o a : G/H — X is given by yx o a(eH) = nx(a)(yx(eK)),
where nx : Og — 7T (category of spaces) is the functor such that nx(G/H) = X
and for a G-map o : G/H — G/K, given by a subconjugacy relation g™*Hg C K,
nx(a) : X% — X is the left translation by g. Thus a morphism (o, [¢]) : x5 —
yx in I1X corresponds to a homotopy class < «, [¢] > rel end points of paths in X#
from zg(eH) to nx(a)(yx(eK)).

Note that for a fixed H, the objects xy together with morphisms ry — yp,
which are given by the identity in the first factor and a G-homotopy class (rel
G/H x 0I) of G-homotopies ¢ : G/H x I — X from zy to yy in the second factor,
constitute a subcategory of IIX which is precisely the fundamental groupoid =X
of XH.



Equivariant Homotopy Epimorphisms, Monomorphisms and Equivalences 451

Definition 2.1 An equivariant local coefficients system on a G-space X is a con-
travariant functor M from I1X to the category Ab of abelian groups.

Note that for every H < G (H is a subgroup of G) My = M/mX* is a local
coefficients system on X and for a morphism g : G/H — G/K in Og there exists
a natural transformation M(g) : Mx — ¢*Mpy defined as follows: Let k : G/H x
I — X denote the constant G-homotopy at xzx o g. Then (g, [k]) : zx 0§ — zk
is a morphism in IIX. For z € X* we define M(9)(z) = M(g,[k]). Conversely,
given a local coefficients system My on X for every H < G, along with a natural
transformation M(g) : Mx — g*Mpy for every g : G/H — G/K, we may obtain
an equivariant local coefficients system M on X as follows. For 2y : G/H — X
define M (xy) = My(xy(eH)) and for a morphism (g, [¢]) : g — yx in IIX define

M((9,10])) = M(g) o Mu(< §,[¢] >) : M(yx) — M(zu).

Clearly the above correspondence is a bijection.

Let X be a G-space and z° € XY. Let M : ILX — Ab be an equivariant local
coefficients system on X. For every H < G, the point 2° € X% corresponds under
the homeomorphism A : X# — Mapg(G/H, X) (which is the inverse of ‘a’) to the
constant map A(z°) : G/H — z°, which we shall denote by z%,. Then, for every
morphism ¢ : G/H — G/K in Og, there is a morphism (g, [k]) : 4% — z% in
I1X, where k is the constant homotopy. Define an Og-group M, : O — Ab by
My(G/H) = M(5,) and Mo(g) = M(g, [K]).

An element o € 1 (X#, 2°) gives rise to an equivalence A« : 23, — x% in 11X,
and therefore an automorphism M (Aa) of My(G/H).

Definition 2.2 An Og-group T is said to act on an Og-group S (respectively Og
-space) if there is a natural transformation p : T x S — S such that, for every
H < G, p(G/H) is an action of the group T(G/H) on S(G/H).

The above consideration shows that if M : [IX — Ab is an equivariant local
coefficients system on X, then there exists an action p : m; X x My — M, given by
p(G/H)(o,m) = M(Aa)(m).

Conversely, given an Og-group My : Og — Ab along with an action of m; X we
can define an equivariant local coefficients system on X and this correspondence is
bijective [7].

Definition 2.3 Let X, Y be G-spaces, and M an equivariant local coefficients sys-
tem on'Y. Then a G-map f: X — Y defines a covariant functor II(f) : IIX —
1Y by I(f)(zn) = foxy and II(f)(a, [¢]) = (o, [f o @]). The functor M oI1f is
an equivariant local coefficients system on X, which we shall denote by f*M.

We shall denote vertices of the standard n-simplex A, by eg, e, ..., e, and the
j-th face operator A, | — A by di, 0 < j <n.

Let X be a G-space and M an equivariant local coefficients system on X. If
o: A, xG/H — X is an equivariant singular simplex in X, then oy will denote
the G-map G/H — X defined by oy (gH) = o(eo, gH).
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We define CZ(X; M) to be the group of all functions ¢ on equivariant singular
n-simplexes o : A, x G/H — X such that c¢(o) € M(op).

Ifu:A, — A, is a singular g-simplex in A, and 0 : A, x G/H — X is an
equivariant singular n-simplex in X, then o(u) : A, x G/H — X will denote the
equivariant singular g-simplex o o (u X id), and o(u) : o — o(u)y will denote
the morphism (id, [¢]), where ¢ : G/H x I — X is the G-homotopy given by
o(gH,t) = (tu(eo) + (1 — t)eo, gH).

Then o(d) : A,y x G/H — X is the j-th face ¢U) of 0. Note that ag) =opy

for j >0 and o(d2), = o is a morphism oy — ag).

We define coboundary § : C&(X; M) — C&tH(X; M) by

n+1

(d¢)(o) = M (o) (e(o™™)) + 3 (=1)7 c(o),

j=1

where o is an equivariant singular (n + 1)-simplex in X. Thus we have a cochain
complex Cg(X; M) = {CL(X; M); 6}

Let o : A, xG/H — X and 7 : A, x G/K — X be two equivariant singular
n— simplexes in X. Consider A, x G/H and A, x G/K as trivial fiber bundles over
A\, and suppose that h: A, x G/H — A, x G/K is a fiber preserving G-map
such that ¢ = 7 o h. In this case we say that ¢ and 7 are compatible under h.

The map h induces a G-map h : G/H — G/K given by h(gH) = pryoh(eg, gH),
where pr, is the projection onto the second factor. Then o = Toh implies oy = Tx0h.
Therefore, if k : G/H x I — X is the constant homotopy from oy to 7x o h, then
we have a morphism (h,[k]) : oy — 7k in IIX. We shall denote this induced
morphism by h,.

We define SZ(X; M) to be the subgroup of C&(X; M) consisting of all those
cochain ¢ such that if o and 7 are equivariant singular n-simplexes in X which are
compatible under h, then ¢(o) = M(h,)(c(7)).

It is easy to check that if ¢ € S&(X; M), then éc € Sz (X; M). Thus we have
a cochain complex Sg(X; M) = {SE(X; M);6}.

Definition 2.4 The Bredon-Illman cohomology of X with equivariant local coeffi-
cients M is defined by HEA(X; M) = H"(Sq(X; M)).

It may be noted that HE(X; M) reduces to the Steenrod cohomology with the
classical local coefficients system [10], when G is trivial.

If X is a G-map and M an equivariant local coefficients on Y, then f*M is an
equivariant local coefficients system on X and we have a cochain map

JP Ca(Yi M) — CE(X f*M),

defined as follows. For c € C&(Y; M) and o : A, x G/H — X, f*(c)(0) = c(fo0).
It is straightforward to check that if c € S&(Y'; M), then f*(c) € S&(X; f*M). Thus
f induces a homomorphism f*: HA(Y; M) — HE(X; f*M).

An interesting feature of the Steenrod cohomology of topological space X with
local coefficients M is that it can be realized as certain coholmology of its universal



Equivariant Homotopy Epimorphisms, Monomorphisms and Equivalences 453

covering X. If D X — X is the covering projection, then m = (X, 2°) acts on
X, and My = M(2°) is a m-module. Let C™(X; M) be the group of 7 invariant
singular n-cochains, and HZ}(Y ; My) be the corresponding cohomology. Then a
classical theorem of Eilenberg [5] [10], says that p induces an isomorphism

H™(X; M) = H2(X; M).

We next give a similar alternative description of the Bredon-Illman cohomology. Let
X be a G-space such that, for every H < G, the fixed point set X¥ is connected,
locally path connected and semilocally simply connected. For example X may be
G-connected G-complex. Let 2° € X¢, and py : X — XH denote the universal
covering of X, For a G-map ¢ : G/H — G/K in Og, the left translation

g: XK — XH induces § : XK — XH such that py o § = g o px. Then we have
an Og-space U(X) defined by U(X)(G/H) = XH and U(X)(g) = g. The Og-space
U(X) will be called the universal Og-covering space of X. The Og-group 7, X acts
on U(X). This action comes from the identification of =, X(G/H) = 71 (X z°)
with the deck transformation group D(pg) of py : XH — xH , and the action
of D(py) on XH. Note that if o € m(XH 2°) corresponds to v, € D(py) and if

w: I — XH is a path from 7% to Ya(T%), where 7% € pp'(z°), then the path
P © u represents «.

Let M be an equivariant local coefficients system on X and My : Og — Ab be
the associated Og-group. Recall that m; X acts on M.

Let

{3 x(ym (X Mo(G/H)), djy}

be the cochain complex of Eilenberg, where C&X(G/H)(ﬁ; My(G/H)) is the sub-

group of the singular cochain group C”(ﬁ ; Mo(G/H)) consisting of cochains ¢
which are equivariant with respect to the action w3 X(G/H) in the sense that
if @ € m(X¥,2°), then c¢(y, 0) = M(Aa)(c(0)), for every singular n-simplex

oA, — XH , where 7, is the deck transformation corresponding to a.
Now define the cochain complex

Cr, x.cU(X); Mo) = {Cy x o(U(X); M), d"}

CrxaUX); Mo) =D, _.Cr xio/m (X My(G/H)), d" =D, _.di.

Define St x (U(X); Mo) to be the subgroup of CF x o(U(X); My) consisting of
cochains {cg} < such that, for every g : G/H — G//K and singular n-simplexes

oA, — XH, 1 A, — XK with §oT = o, the equation Moy(9)(ck (1)) = cu(o)
holds in My(G/H). We then have a cochain complex

S, x.aU(X); Mo) = {57, x,6(UX); M), d"}.
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Definition 2.5 We define the m X -equivariant cohomology group of U(X) with co-
efficients My by

Hy x oU(X); Mo) = H" (S x o(U(X); My)).

Theorem 2.6 Let X is a G-space, such that for each H < G the fixed point set
X1 is connected, locally path connected, and semilocally simply connected. If M is
an equivariant local coefficients system on X then

He (X5 M) = Hy oy o(UX); Mo))

where My is the Og-group induced by M and HX(X; M) is the Bredon-Illman coho-
mology.

Sketch of the Proof. We need to introduce some notations. If 0 : A, x G/H — X
is an equivariant singular simplex, then No will denote the corresponding non-
equivariant simplex A, — X No(z) = o(z,eH). Conversely, if 7: A, — X
is a singular simplex, then F7 will denote the corresponding equivariant simplex
Er(z,gH) = g 7(x). Note that we have E(No) = ¢ and N(E7T) = 7. Next if

T,y € ﬁ, then we shall denote by gH(x, y) a homotopy class of paths in XH from
x to y, and write £y (z,y) for pu&u(x,y). Then gy (z,y) is a homotopy class of paths

in X# from py(z) to py(y). We shall suppose that each XH comes equipped with

a base point %, such that py(7%) = 2°. When = = &%, we write £4(y) and Ex(y)

instead of &y (2%, ) and &g (7Y, y). Since XH is simply connected, for every y € XH
there is a unique class &g (y).
Define a homomorphism ¢ : Ci(X; M) — CF x o(U(X); Mo) as follows. If ¢ €

CE(X; M) then ¢(c) = {cu}tu<c with cy € CﬁlX(G/H)(ﬁ;MO(G/H)) is given by

cr(0) = M(A(En(0(e0)))(c(Bpro)), for every o : A, — XH, where A(&m(o(eo))
is the morphism 2% — (Epgo)y corresponding to the homotopy class £x (o (eo))

of paths in X# from 2° to pyo(eg). Note that we have

A(pro(eo))(gH) = g pao(eo) = (Epuo)(eo, gH) = (Epro)u(gH),

and therefore A(pro(eg)) = (Epgo)y. That ¢ is well defined can be checked us-
ing the fact that cy is m; X(G/H) equivariant for every subgroup H of G. It is
straightforward to check that ¢ is a cochain map and that ¢ maps S (X; M) into
SE U (X): M)

Now define a homomorphism ¢ : CF x o(U(X); Mo) — Cg(X; M) as follows.
Let ¢ = {cutu<c € CF x,c(U(X); Mo), and 0 : A, x G/H — X be an equivariant

simplex. Let 7 : A,, — XH be the lifting of No so that pyd = No. Then set
b(e)(o) = M(A&n(5(do))) " (cu(5)).

It can be verified that ¢ maps S¢ y (U(X); Mo) into Sg;(X; M) and is the cochain
inverse of ¢. |
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Next we define another cohomology group of U(X) with coefficients in an Og-
group A : Og — Ab, forgetting the action of m; X on U(X).

Let R denote the category of rings, and I' : Og — R be the contravariant
functor defined by I'(G/H) = Z[m X "], the integral group ring of m X, for object
G/H in Og and T'(§) = g. : Z[mX"*] — Z[mX*¥] for a morphism § : G/H —
G/K in Og. Note that the Og-chain complex C,U(X), defined by C.U(X) =

C, (ﬁ) is equipped with a I' action.
Now define the cochain complex

CaU(X); ) ={CEUX); A);d"}
by
CEUX)N) = D, Homz(C.XH @rem T(G/H); NG/H)),  d" = Du<adyy.
where

4y : Homz(CoXH @pm D(G/H); NG/H)) —
Hom 7 (Cooin XH @rym T(G/H); MG/ H))

is induced from the boundary Oy : Cn+1ﬁ — C,XH. Define

SaU(X); A) = {56 U(X); A);d"}

where SE&(U(X); A) is the subgroup of C&(U(X); A) consisting of cochains {cy}r<a
such that for every g : G/H — G/K and singular n-simplexes o : A, — XH and

TN, — XK with §oT = o, the equation M) (ck (1)) = cu(o) holds in A(G/H).
Define
HEUX); A) = H"(Sa(U(X); A))-

Let H U(X) be the Og-group defined by
HU(X)(G/H) = H.(XH)

and
HUX)(G) = go : HA(XK) — H.(XH).

Let Cs denote the abelian category of abelian Og-groups, and Hom(S,T') denote
the morphism set in Cs between objects S and T
We define the Kronecker homomorphism

K HAEUX); N) — Hom(H,U(X); \)

as follows. For [{cu}tu<c| € HEU(X); N), {catu<c € SEU(X); \) define

kl{cntu<c)(G/H)([Br]) = cu(Bu). [Br] € Ha(XT).
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We shall show that x is a surjection by constructing a homomorphism
u*: Hom(H,U(X); \) — HEUX): )

such that x o u* is the identity.
Let B,U(X), Z,U(X), and C,U(X) denote the Og-groups: B, U(X)(G/H) =

Bo(XT), ZU(X)(G/H) = Zo(XH), and C,U(X)(G/H) = Co(XH), where Cp(XH)

is the n-th chain group of X7 and Bn(ﬁ ), and Zn(ﬁ ) are the boundaries and
cycles respectively. We have a natural transformation 7 : Z,U(X) — H,U(X)
and an exact sequence

in Cg. Thus the natural transformation 7 extends to a natural transformation pu :
C,U(X) — H,U(X). Define a chain complex FE, in Cg by setting E,, = H,U(X)
and the boundary homomorphism to be the zero natural transformation. Then
w: CU(X) — FE, is a chain map. This induces a cochain map

@t Hom(E,; \) — Hom(C U(X); \).

Next define v : Hom(C,U(X);\) — SEU(X); ) as follows. Given f e
Hom(C,U(X); ), vf = {frkir<c € CBU(X); ) is given by fu(o) = £(G/H)(o),

for o : A, — XH. We claim that vf = {fu}ucc € SELU(X);N). For if o

A, — XH and 7: A, — X and § : G/H — G/K are such that jor = o,
then

M@ (fr(r)) = M F(G/K)(r) = f(G/H)(goT) = f(G/H)(0) = fu(0)

by naturality of f. It is easy to see that v is a cochain map. Thus v o xf induces a
homomorphism

p s Hom(H,U(X); A) — HgU(X); \)

in the cohomology such that o y* is identity.

Let X be an object in GHCW* and 2° € X be the base point. We may assume
that 2° is a zero cell. Fix %, € pgt(2°) and let 2, = U(X)(1)(2%) where i : G/H —
G/G. Then U(X) is a functor from Og to HCW*. Let f: X — Y be a morphism
in GHCW?*. The map f induces a natural transformation f : (X)) — U(Y), given

by f(G/H) — fH. We have a ‘cofibration sequence’

UX) L U(Y) 5 C; — SUX) 25 suUy) — .

where C'¢(G//H) = Cjx is the mapping cone of FH . XH 5 YH and Y(UX)(G/H)

SXH , is the suspension of XH. Then we may deduce a long exact cohomology se-
quence

*

L HAUY )N L5 HEU(X);0) — HER (O 0) Lo HE WY ) 0) L

We shall refer to this sequence as the long exact cohomology sequence associated to

3
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3 Proof of Theorem 1.6

Let A be an abelian Og-group and
I':0O¢ — R, ['(G/H) = Z[mY"].

be the functor as defined in the previous section. We shall define an equivari-
ant local coefficients system Hom(I',A) on Y as follows. For every H < G, we
have a local coefficients system Hom(T',\)g on Y# defined by the mY#-module
Hom 7z (I(G/H),\(G/H)) as in [4]. Let g : G/H — G/K be a morphism in Og.
Then g*Hom(T', \)y is a local coefficients system on Y and is given by the m V-
module Hom z(I'(G/H),\(G/H)) by virtue of the isomorphism g, : mY* —
m Y. Note that this mY*-module is same as the 7Y *-module Hom »(I'(G/K),
MG/H)). Thus we have a m Y ®-module homomorphism

Hom z(I(G/K), MG/ K)) — Hom z(I(G/K), N(G/H))
given by a — A(g) o a. This induces a natural transformation
Hom(T',\)(g) : Hom(I',\)k — g*Hom(I', \) g.

As explained in the previous section this defines an equivariant local coefficients
system on Y. Moreover note that for every H < G, Hom »(I'(G/H), \(G/H)) can
be regarded as a m; X -module by virtue of the isomorphism

H H H
f. mX® — mY

(by 1, 2 of Theorem 1.6, and Prop 1.5). Thus Hom(I',\) can be regarded as an
equivariant local coefficients on X so that f*Hom(I', \) is isomorphic to Hom(I', A).
According to ([2], Prop. 5.2") there exists a natural isomorphism

@ Homrym(C.YH, Hom 7 (T(G/H), N(G/H)) —

H<G

@ Hom 7 (C.YH@pq/mI(G/H), \(G/H)).

H<G

Hence we have a commutative diagram

CryvaU(Y); Hom(L, A)g) ——— CaU(Y); N)

f* f*

Co, x.c(UX); Hom(T, \)g) ————» Ca(U(X);A)
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where the horizontal maps are isomorphisms and vertical maps are induced by
f:UX) — UY). Ttis easy to see that the horizontal maps pass into the
subcomplexes S. Hence in view of Theorem 2.6 we have a commutative diagram of
cohomology groups

I

Heg (Y Hom(I', A)) —  HUN)N)

I I

H(X; Hom(T', \)) —= He(UX);A)

Now, by 3 of Theorem 1.6 f* : H5(U(Y); \) — HE(U(X); \) is a monomorphism
for any Og-group A. Hence from the long exact cohomology sequence associated to
f we deduce that ¢* : HE(Cq 3 A) — HE(U(Y); A) is zero for every n. By naturality
of kK we have the following commutative diagram

HE(CF 3 M) — "+ Hom(H,Cj:\)
q¢ =0
HLUY); N) — Hom(H,U(Y); \)

Taking A = ﬂan we deduce that ¢, : H,U(Y) — ﬂan; is the zero natural
transformation. From the long exact sequence

s HUX) 25 HU(Y) 2 H,Cf— ..

in Cg, it follows that f, : HU(X) — HU(Y) is an epi. Thus for each H < G,
f*H : H*ﬁ — H*?ﬁ is an epi. By 2 of Theorem 1.6 f*H X" — 1, YH is a
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mono, hence ¥ : . XH — 7, YH is a mono. Now proceeding as in [4] we see that
2, X% — 1, YH is an isomorphism and hence f is a homotopy equivalence
for every H < (. Consequently by ([9], Prop 2.7) f is a G-homotopy equivalence.

4 Proof of Theorem 1.3

Enough to prove that f : X — Y satisfies hypothesis of Theorem 1.6. First we
note that if f : X — Y is a mono in GHCW? then fZ : m,.X# — 1,YH is a
monomorphism for every H < G. For suppose «, 3 : S — X represent any two
elements of m, X such that ffoa ~ ffof. Let Fa: S" x G/H — X be defined
by Ea(u,aH) = ac(u) as in the proof of Theorem 2.6. Similarly define £3. Then
E(ffoa)=foFEaand E(ff o) = foEB. Let F be a homotopy from f7 oa to
ffopB. Then EF : S" x G/H x I — Y, defined by EF (u,aH,t) = aF(u,t) is a
G-homotopy from f o Fa to f o ES. Since f is a mono in GHCW?, it follows that
FEa is G-homotopic to E3. Thus a ~ 3 and 2 of Theorem 1.6 is satisfied.

Next we show that if f: X — Y is an epi in GHCW" then 1 of Theorem 1.6 is
satisfied. First note that for any G-path connected G-complex X and A : Og — G,
there is an adjunction equivalence

(X, K(\ 1)]g <> Hom(m X, \) (%)

where K (A 1) is the equivariant Eilenberg-MacLane complex of the type (A, 1)
[6]. Our assertion follows from this as in [4]. To prove (*) we proceed as fol-
lows. If f: X — K(\ 1) represents an element of [X, K (), 1)]g, then the cor-
responding element in Hom(m; X, \) is given by f, : m;yX — A Conversely, a
natural transformation 7' : 7y X —— X induces a G-homotopy class of G-maps
T, : K(m X, 1) — K(A, 1) [6]. Note that X can be regarded as a G-subcomplex of
K(mX,1). For we may obtain K (z;X,1) from X by attaching suitable equivariant
cells to X to kill the higher homotopy groups of the fixed point sets of X. The
element 7, /X in [X, K (), 1)]¢ is then the element which corresponds to T

In case, A : Og — Ab is an abelian Og-group we may give an alternative
argument for the validity of (*) as follows. Recall from [1] that there exists a
spectral sequence whose Fs term is

EP? = Ext?(H, X, \) = HZM(X;)\).
There is an edge homomorphism
HE(X;\) — Hom(H, X, \)

which is an isomorphism if each H X is projective for ¢ < n. We claim that HyX
is projective. This can be seen as follows. We consider an epimorphism n: .S — T
and an arbitrary morphism u : HyX — T in Cq. Orient the cells of X in such a
way that GG preserves the orientation. Since X is G-path connected,

HoX(G/H) = Ho(X") = Z(2°),
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(z°) being the homology class of the fixed point z°. Let ¢ : H X(G/G) —
S(G/G) be a solution for the corresponding problem for Hy X (G/G). Define

by

n(G/H)((x%)) = S(1)na((z)),
where 7 : G/H — G/G is the morphism in Og corresponding to the inclusion
H C G. Note that since G preserves orientation, for any ¢ : G/H — G/K,
HyX(g) is the identity. It is easy to check that 7 is natural and a solution for 1 and
i in Cg. Thus HyX is projective. Hence

(X, K\ 1)]e & HL(X; M) =2 Hom(H X \).

Let p: myX — H;X denote the natural transformation such that p(G/H) is the
Hurewicz homomorphism. Then p induces an isomorphism

Hom(H X, \) = Hom(m X, \)

and the result follows.

To prove epis in GHCW* satisfy 3 of Theorem 1.6 we need a homotopy theoretical
interpretation of HZ(Y;\) and f* : HL(Y; M) — HZA(X; f*M). As mentioned in
section 2 an equivariant local coefficients system M on Y may be viewed as a m;Y -
module M. Then as in [7] there exists a sectioned G-fibration

K(Mo,n) — L(m,Y, Mo, n) == K(m,Y,1) < K(mY,1).

This yields a sectioned G-fibration p : E — Y with fiber K(Mp,n). Then
HZ(Y; M) may be identified with the vertical G-homotopy classes of equivariant
sections of p: K — Y. If now u : Y — FE is such a section and p* : E* — X
is the sectioned G-fibration over X induced from p via f : X — Y, then f*(u) €
HE(X; f*M) may be identified with the section u* : X — E* of p* defined by
u*(z) = (z,u(f(x))). Then f*(u) = f*(v) implies u o f~gv o f, hence (f being epi
in GHCW?*) u~qu, that is, f* : HA(Y; M) — HZ(X; f*M) is a monomorphism.

u

Corollary 4.1 If X, Y are G-simply connected G-complexes and f : X — Y is
an epi in GHCW?* and a mono in GHCW?®, then f is a G-homotopy equivalence. B

In [3] the author has given an alternative proof of Theorem 1.1.The results in [3]
can be generalized to equivariant setting in a functorial way by using the notion of
universal Og-covering space to obtain

Theorem 4.2 If f : X — Y is an epimorphism in GHCW* where X, Y are A-
admissible, and w,(f) : m,X — m,Y is a monomorphism for all k > 0 then f is
an equivalence in GHCW*. [ |

Then Theorem 1.3 also follows from Theorem 4.2.
ACKNOWLEDGEMENT : [ would like to thank the referee for bringing to my
notice the work of J. Dydak.
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