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1 Introduction

Recall that a morphism f : A −→ B in a category C is an epimorphism (in short
epi) if for any two morphisms g, h : B −→ C , g ◦ f = h ◦ f implies g = h. The dual
notion of a monomorphism (in short mono) is defined in the evident way.

In [4] E. Dyer and J. Roitberg proved the following result

Theorem 1.1 If f : X −→ Y is both an epimorphism and a monomorphism in
HCW∗, the homotopy category of pointed path connected CW -spaces, then f is an
equivalence in HCW∗.

The above result is interesting because a morphism in a category which is simul-

taneously epi and mono need not be an equivalence. Let HCW◦ be the homotopy
category of pointed CW -spaces. If f : X −→ Y is a morphism in HCW∗ such that
when considered as a morphism in HCW◦, f is a monomorphism, then f is also a
monomorphism in HCW∗. As a consequence we get a variant of Theorem 1.1

Theorem 1.2 If f : X −→ Y is a morphism in HCW∗ such that f is an epi-

morphism in HCW∗ and a monomorphism in HCW◦, then f is an equivalence in
HCW∗.
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In the present paper we shall find conditions on a morphism f : X −→ Y
in GHCW∗, the G-homotopy category of pointed G-path connected G-complexes,

where G is a finite group, to be an equivalence.
Let GHCW◦ be the G-homotopy category of pointed G-complexes. Then GHCW∗

is a full subcategory of GHCW◦. We shall prove the following result.

Theorem 1.3 If f : X −→ Y is an epimorphism in GHCW∗ and a monomorphism

in GHCW◦ and X, Y are A-admissible then f is an equivalence in GHCW∗.

See Definition 1.4 below for A-admissible space.
Let OG be the category of canonical orbits [1]. If f : X −→ Y represents a

morphism in GHCW∗, then f induces a natural transformation f∗ : π∗X −→ π∗Y ,

where π∗X is the OG-group defined by setting π∗(X)(G/H) = π∗(X
H) for every

object G/H in OG, and π∗(X)(ĝ) = π∗(g) for every morphism ĝ : G/H −→ G/K in
OG, f∗ is given by f∗(G/H) = π∗(f

H) : π∗(X
H) −→ π∗(Y

H).

Definition 1.4 Let A denote the subcategory of G (the category of groups) with
ob A = ob G and MorA(A, B) = IsoG(A, B), the set of isomorphisms from A to

B. An OG-group T : OG −→ G is said to be A-admissible if it is a functor from
OG −→ A, that is, T (ĝ) is invertible for every morphism ĝ in OG. A G-complex X
is said to be A-admissible if π1X is A-admissible.

Note that when G = {e}, the A-admissibility condition is trivially satisfied for

any space X, hence Theorem 1.2 follows from Theorem 1.3 by taking G = {e}.
If X is an object in GHCW∗ such that X is G-simply connected then X is A-

admissible. Also if X is an object in GHCW∗ such that the equivariant 1-cells of X

are of the type G/G, then X is A-admissible.
Let C(G) denote the category whose objects are OG-groups and morphisms are

natural transformations between OG-groups. It is easy to see that a morphism
f : S −→ T in C(G) is a monomorphism in C(G) if and only if f(G/H) : S(G/H) −→
T (G/H) is a monomorphism in G for every object G/H in OG. For suppose f(G/H)
is 1 − 1 for each G/H in OG. Let Z : OG −→ G be an OG-group and α, β : Z −→
S be natural transformations such that f ◦ α = f ◦ β. Let H be a subgroup
of G and x ∈ Z(G/H). Then f(G/H)α(G/H)(x) = f(G/H)β(G/H)(x) implies

α(G/H)(x) = β(G/H)(x). Thus f is a monomorphism in C(G).
Conversely, suppose that f is a monomorphism. Now Ker f is an OG-group

defined by (Ker f)(G/H) = Ker (f(G/H)). We have natural transformations i, c :
Ker f −→ S, where i(G/H) is the inclusion and c(G/H) is the zero homomorphism.

Moreover, we have f ◦ i = f ◦ c. Since f is a monomorphism, i = c and therefore
f(G/H) is a monomorphism for every object G/H in OG.

If a morphism f : S −→ T in C(G) satisfies f(G/H) is onto for every object

G/H in OG, then f is an epimorphism in C(G). To see this, let U : OG −→ G be an
OG-group and α, β : T −→ U be natural transformations such that α ◦ f = β ◦ f .
Let x ∈ T (G/H), find y ∈ S(G/H) such that f(G/H)(y) = x. Now

α(G/H)(x) = α(G/H)f(G/H)(y) = β(G/H)f(G/H)(y) = β(G/H)(x).

This implies that α = β, thus f is an epimorphism in C(G).
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Proposition 1.5 If f : S −→ T is an epimorphism in C(G) and S and T are A-
admissible, then f(G/H) : S(G/H) −→ T (G/H) is onto for every object G/H in

OG.

Proof Let S1 : OG −→ G be the OG-group defined by

S1(G/H) = f(G/H)(S(G/H))

for any object G/H in OG and for a morphism ĝ : G/H −→ G/K in OG, S1(ĝ) =
T (ĝ)/S1(G/K). Note that S1 is A-admissible. We have to show that S1 coincides
with T . Since f can be decomposed into S −→ S1 −→ T , the natural transformation

i : S1 −→ T is an epimorphism. Define an OG-group P as follows.

P (G/H) = Perm(T (G/H)/S1(G/H) ∪∞),

the group of permutations of the union of T (G/H)/S1(G/H) with a disjoint set of

one element. For any morphism ĝ : G/H −→ G/K in OG, P (ĝ) : P (G/K) −→
P (G/H) is given by T (ĝ)−1 as follows; let

α : T (G/K)/S1(G/K) ∪ {∞} −→ T (G/K)/S1(G/K) ∪ {∞}

be a permutation. Let x ∈ T (G/H)/S1(G/H) ∪ {∞}. Suppose x = a S1(G/H),
a ∈ T (G/H), then define

P (ĝ)(α)(x) =

{
∞ if α(T (ĝ)−1 (a)S1(G/K)) =∞
T (ĝ)(b)S1(G/H) if α(T (ĝ)−1 (a)S1(G/K)) = b S1(G/K).

If x =∞, define P (ĝ)(α)(x) =∞ when α(∞) =∞, and P (ĝ)(α)(x) = T (ĝ)(a)S1(G/H)
when α(∞) = aS1(G/K). It is easy to check that this defines an OG group

P : OG −→ G. Let σH ∈ P (G/H) be the permutation which exchanges S1(G/H)
and ∞, and leaves fixed all other elements. Then σ2

H = id. Define a natural trans-
formation t : T −→ P as follows.

t(G/H)(u)(v S1(G/H)) = uv S1(G/H), u, v ∈ T (G/H),

t(G/H)(u)(∞) = ∞.

Let s : T −→ P be the natural transformation defined by

s(G/H)(u) = σHt(G/H)(u)σH , u ∈ T (G/H).

To see that s is natural first note that for any morphism ĝ : G/H −→ G/K in OG,

P (ĝ)(σK) = σH. Thus for ĝ : G/H −→ G/K, and u ∈ T (G/K)

P (ĝ)s(G/K)(u) = P (ĝ)(σKt(G/K)(u)σK)

= P (ĝ)(σK)P (ĝ)(t(G/K)(u))P (ĝ)(σK)

= σHt(G/H)T (ĝ)(u)σH (by naturality of T )

= s(G/H)T (ĝ)(u)
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It is easy to see that s ◦ i = t ◦ i. Since i : S1 −→ T is an epimorphism it follows
that s = t. Thus for each G/H, we have

a S1(G/H) = t(G/H)(a)(S1(G/H)) = s(G/H)(a)(S1(G/H))

= (σH t(G/H)(a)σH)(S1(G/H)) = σHt(G/H)(a)(∞)

= σH(∞) = S1(G/H).

Thus S1(G/H) = T (G/H).

We shall obtain Theorem 1.3 as a corollary to the following result.

Theorem 1.6 If a morphism f : X −→ Y in GHCW∗ with X, Y A-admissible,
satisfies

1. f∗ : π1X −→ π1Y is an epi

2. f∗ : π∗X −→ π∗Y is a mono

3. f∗ : H∗G(Y ; M) −→ H∗G(X; f∗M) is a mono for all equivariant local coefficients
system M on Y ,

then f is an equivalence in GHCW∗.

Here H∗G(Y ; M) denotes the Bredon-Illman cohomology with equivariant local

coefficients system M on Y . Before proceeding further let us recall ([8], [7]) the
definition of H∗G(Y ; M), and its properties.

2 Definition of H∗G(Y ;M )

For a G-space X, let ΠX denote the category whose objects are G-maps xH :
G/H −→ X, and a morphism from xH : G/H −→ X to yK : G/K −→ X is a
pair (α, [φ]), where α : G/H −→ G/K is a G-map and φ : G/H × I −→ X is a
G-homotopy from xH to yK ◦ α, [φ] is the G-homotopy class rel end points of the

G-homotopy φ. Recall that we have a homeomorphism a : MapG(G/H, X) −→ XH

given by a(f) = f(eH). Therefore we may identify an object xH : G/H −→ X in
ΠX with the point xH(eH) in XH so that, if α : G/H −→ G/K is a morphism

in OG and yK : G/K −→ X is an object in ΠX, then the point in XH which
corresponds to yK ◦ α : G/H −→ X is given by yK ◦ α(eH) = ηX(α)(yK(eK)),
where ηX : OG −→ T (category of spaces) is the functor such that ηX(G/H) = XH ,
and for a G-map α : G/H −→ G/K, given by a subconjugacy relation g−1Hg ⊂ K,

ηX(α) : XK −→ XH is the left translation by g. Thus a morphism (α, [φ]) : xH −→
yK in ΠX corresponds to a homotopy class < α, [φ] > rel end points of paths in XH

from xH(eH) to ηX(α)(yK(eK)).

Note that for a fixed H, the objects xH together with morphisms xH −→ yH,
which are given by the identity in the first factor and a G-homotopy class (rel

G/H×∂I) of G-homotopies φ : G/H×I −→ X from xH to yH in the second factor,
constitute a subcategory of ΠX which is precisely the fundamental groupoid πXH

of XH .
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Definition 2.1 An equivariant local coefficients system on a G-space X is a con-
travariant functor M from ΠX to the category Ab of abelian groups.

Note that for every H < G (H is a subgroup of G) MH = M/πXH is a local
coefficients system on XH and for a morphism ĝ : G/H −→ G/K in OG there exists
a natural transformation M(ĝ) : MK −→ g∗MH defined as follows: Let k : G/H ×
I −→ X denote the constant G-homotopy at xK ◦ ĝ. Then (ĝ, [k]) : xK ◦ ĝ −→ xK
is a morphism in ΠX. For x ∈ XK we define M(ĝ)(x) = M(ĝ, [k]). Conversely,
given a local coefficients system MH on XH for every H < G, along with a natural

transformation M (ĝ) : MK −→ g∗MH for every ĝ : G/H −→ G/K, we may obtain
an equivariant local coefficients system M on X as follows. For xH : G/H −→ X
define M(xH) = MH(xH(eH)) and for a morphism (ĝ, [φ]) : xH −→ yK in ΠX define

M((ĝ, [φ])) = M (ĝ) ◦MH(< ĝ, [φ] >) : M(yK) −→M(xH).

Clearly the above correspondence is a bijection.

Let X be a G-space and x◦ ∈ XG. Let M : ΠX −→ Ab be an equivariant local
coefficients system on X. For every H < G, the point x◦ ∈ XG corresponds under
the homeomorphism A : XH −→ MapG(G/H, X) (which is the inverse of ‘a’) to the

constant map A(x◦) : G/H −→ x◦, which we shall denote by x◦H. Then, for every
morphism ĝ : G/H −→ G/K in OG, there is a morphism (ĝ, [k]) : x◦H −→ x◦K in
ΠX, where k is the constant homotopy. Define an OG-group M0 : OG −→ Ab by
M0(G/H) = M(x◦H) and M0(ĝ) = M(ĝ, [k]).

An element α ∈ π1(X
H , x◦) gives rise to an equivalence Aα : x◦H −→ x◦H in ΠX,

and therefore an automorphism M(Aα) of M0(G/H).

Definition 2.2 An OG-group T is said to act on an OG-group S (respectively OG

-space) if there is a natural transformation ρ : T × S −→ S such that, for every
H < G, ρ(G/H) is an action of the group T (G/H) on S(G/H).

The above consideration shows that if M : ΠX −→ Ab is an equivariant local

coefficients system on X, then there exists an action ρ : π1X ×M0 −→ M0 given by
ρ(G/H)(α, m) = M(Aα)(m).

Conversely, given an OG-group M0 : OG −→ Ab along with an action of π1X we
can define an equivariant local coefficients system on X and this correspondence is
bijective [7].

Definition 2.3 Let X, Y be G-spaces, and M an equivariant local coefficients sys-
tem on Y . Then a G-map f : X −→ Y defines a covariant functor Π(f) : ΠX −→
ΠY by Π(f)(xH) = f ◦ xH and Π(f)(α, [φ]) = (α, [f ◦ φ]). The functor M ◦ Πf is

an equivariant local coefficients system on X, which we shall denote by f∗M .

We shall denote vertices of the standard n-simplex 4n by e0, e1, . . . , en and the
j-th face operator 4n−1 −→ 4n by djn, 0 ≤ j ≤ n.

Let X be a G-space and M an equivariant local coefficients system on X. If
σ : 4n ×G/H −→ X is an equivariant singular simplex in X, then σH will denote
the G-map G/H −→ X defined by σH(gH) = σ(e0, gH).
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We define Cn
G(X; M) to be the group of all functions c on equivariant singular

n-simplexes σ : 4n ×G/H −→ X such that c(σ) ∈M(σH).

If u : 4q −→ 4n is a singular q-simplex in 4n, and σ : 4n ×G/H −→ X is an
equivariant singular n-simplex in X, then σ(u) : 4q ×G/H −→ X will denote the
equivariant singular q-simplex σ ◦ (u × id), and σ(u)∗ : σH −→ σ(u)H will denote
the morphism (id, [φ]), where φ : G/H × I −→ X is the G-homotopy given by

φ(gH, t) = (tu(e0) + (1− t)e0, gH).

Then σ(din) : 4n−1 ×G/H −→ X is the j-th face σ(j) of σ. Note that σ
(j)
H = σH

for j > 0 and σ(d0
n)∗ = σ

(0)
∗ is a morphism σH −→ σ

(0)
H .

We define coboundary δ : Cn
G(X; M) −→ Cn+1

G (X; M) by

(δc)(σ) = M(σ(0)
∗ )(c(σ(0))) +

n+1∑
j=1

(−1)j c(σ(j)),

where σ is an equivariant singular (n + 1)-simplex in X. Thus we have a cochain
complex CG(X; M) = {Cn

G(X; M); δ}.
Let σ : 4n×G/H −→ X and τ : 4n×G/K −→ X be two equivariant singular

n− simplexes in X. Consider 4n×G/H and 4n×G/K as trivial fiber bundles over
4n, and suppose that h : 4n × G/H −→ 4n × G/K is a fiber preserving G-map
such that σ = τ ◦ h. In this case we say that σ and τ are compatible under h.

The map h induces a G-map h̄ : G/H −→ G/K given by h̄(gH) = pr2◦h(e0, gH),
where pr2 is the projection onto the second factor. Then σ = τ◦h implies σH = τK◦h̄.
Therefore, if k : G/H × I −→ X is the constant homotopy from σH to τK ◦ h̄, then

we have a morphism (h̄, [k]) : σH −→ τK in ΠX. We shall denote this induced
morphism by h∗.

We define Sn
G(X; M) to be the subgroup of Cn

G(X; M) consisting of all those
cochain c such that if σ and τ are equivariant singular n-simplexes in X which are

compatible under h, then c(σ) = M(h∗)(c(τ )).
It is easy to check that if c ∈ Sn

G(X; M), then δc ∈ Sn+1
G (X; M). Thus we have

a cochain complex SG(X; M) = {Sn
G(X; M); δ}.

Definition 2.4 The Bredon-Illman cohomology of X with equivariant local coeffi-
cients M is defined by Hn

G(X; M) = Hn(SG(X; M)).

It may be noted that H∗G(X; M) reduces to the Steenrod cohomology with the
classical local coefficients system [10], when G is trivial.

If X is a G-map and M an equivariant local coefficients on Y , then f∗M is an

equivariant local coefficients system on X and we have a cochain map

f ] : Cn
G(Y ; M) −→ Cn

G(X; f∗M),

defined as follows. For c ∈ Cn
G(Y ; M) and σ : 4n×G/H −→ X, f ](c)(σ) = c(f ◦σ).

It is straightforward to check that if c ∈ Sn
G(Y ; M), then f ](c) ∈ Sn

G(X; f∗M). Thus

f induces a homomorphism f∗ : Hn
G(Y ; M) −→ Hn

G(X; f∗M).
An interesting feature of the Steenrod cohomology of topological space X with

local coefficients M is that it can be realized as certain coholmology of its universal
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covering X̃. If p : X̃ −→ X is the covering projection, then π = π1(X, x0) acts on
X̃ , and M0 = M(x0) is a π-module. Let Cn

π (X̃ ; M0) be the group of π invariant
singular n-cochains, and Hn

π (X̃ ; M0) be the corresponding cohomology. Then a

classical theorem of Eilenberg [5] [10], says that p induces an isomorphism

Hn(X; M) ∼= Hn
π (X̃; M0).

We next give a similar alternative description of the Bredon-Illman cohomology. Let
X be a G-space such that, for every H < G, the fixed point set XH is connected,

locally path connected and semilocally simply connected. For example X may be
G-connected G-complex. Let x◦ ∈ XG, and pH : X̃H −→ XH denote the universal
covering of XH . For a G-map ĝ : G/H −→ G/K in OG, the left translation

g : XK −→ XH induces g̃ : X̃K −→ X̃H such that pH ◦ g̃ = g ◦ pK . Then we have
an OG-space U(X) defined by U(X)(G/H) = X̃H and U(X)(ĝ) = g̃. The OG-space
U(X) will be called the universal OG-covering space of X. The OG-group π1X acts
on U(X). This action comes from the identification of π1X(G/H) = π1(X

H , x◦)

with the deck transformation group D(pH ) of pH : X̃H −→ XH , and the action

of D(pH ) on X̃H . Note that if α ∈ π1(X
H , x◦) corresponds to γα ∈ D(pH ) and if

u : I −→ X̃H is a path from x̃◦H to γα(x̃
◦
H), where x̃◦H ∈ p−1

H (x◦), then the path
pH ◦ u represents α.

Let M be an equivariant local coefficients system on X and M0 : OG −→ Ab be
the associated OG-group. Recall that π1X acts on M0.

Let
{Cn

π1X(G/H)(X̃
H ; M0(G/H)), dnH}

be the cochain complex of Eilenberg, where Cn
π1X(G/H)(X̃

H ; M0(G/H)) is the sub-

group of the singular cochain group Cn(X̃H ; M0(G/H)) consisting of cochains c
which are equivariant with respect to the action π1X(G/H) in the sense that

if α ∈ π1(X
H , x◦), then c(γα σ) = M(Aα)(c(σ)), for every singular n-simplex

σ : 4n −→ X̃H , where γα is the deck transformation corresponding to α.
Now define the cochain complex

Cπ1X,G
(U(X); M0) = {Cn

π1X,G
(U(X); M0), d

n}

by

Cn
π1X,G

(U(X); M0) =
⊕

H<G
Cn
π1X(G/H)(X̃

H ; M0(G/H)), dn =
⊕

H<G
dnH .

Define Sn
π1X,G

(U(X); M0) to be the subgroup of Cn
π1X,G

(U(X); M0) consisting of
cochains {cH}H<G such that, for every ĝ : G/H −→ G/K and singular n-simplexes

σ : 4n −→ X̃H , τ : 4n −→ X̃K with g̃ ◦ τ = σ, the equation M0(ĝ)(cK(τ )) = cH(σ)
holds in M0(G/H). We then have a cochain complex

Sπ1X,G
(U(X); M0) = {Sn

π1X,G
(U(X); M0), d

n}.
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Definition 2.5 We define the π1X-equivariant cohomology group of U(X) with co-
efficients M0 by

Hn
π1X,G

(U(X); M0) = Hn(Sn
π1X,G

(U(X); M0)).

Theorem 2.6 Let X is a G-space, such that for each H < G the fixed point set
XH is connected, locally path connected, and semilocally simply connected. If M is
an equivariant local coefficients system on X then

Hn
G(X; M) ∼= Hn

π1X,G
(U(X); M0))

where M0 is the OG-group induced by M and Hn
G(X; M) is the Bredon-Illman coho-

mology.

Sketch of the Proof. We need to introduce some notations. If σ : 4n×G/H −→ X
is an equivariant singular simplex, then Nσ will denote the corresponding non-
equivariant simplex 4n −→ XH , Nσ(x) = σ(x, eH). Conversely, if τ : 4n −→ XH

is a singular simplex, then Eτ will denote the corresponding equivariant simplex
Eτ (x, gH) = g τ (x). Note that we have E(Nσ) = σ and N(Eτ ) = τ . Next if

x, y ∈ X̃H , then we shall denote by ξ̃H(x, y) a homotopy class of paths in X̃H from

x to y, and write ξH(x, y) for pH ξ̃H(x, y). Then ξH(x, y) is a homotopy class of paths

in XH from pH(x) to pH(y). We shall suppose that each X̃H comes equipped with
a base point x̃0

H such that pH(x̃0
H) = x0. When x = x̃0

H we write ξ̃H(y) and ξH(y)

instead of ξ̃H(x̃0
H, y) and ξH(x̃0

H, y). Since X̃H is simply connected, for every y ∈ X̃H

there is a unique class ξ̃H(y).

Define a homomorphism φ : Cn
G(X; M) −→ Cn

π1X,G
(U(X); M0) as follows. If c ∈

Cn
G(X; M) then φ(c) = {cH}H<G with cH ∈ Cn

π1X(G/H)(X̃
H ; M0(G/H)) is given by

cH(σ) = M(A(ξH(σ(e0)))(c(EpHσ)), for every σ : 4n −→ X̃H , where A(ξH(σ(e0))
is the morphism x0

H −→ (EpHσ)H corresponding to the homotopy class ξ̃H(σ(e0))

of paths in XH from x0 to pHσ(e0). Note that we have

A(pHσ(e0))(gH) = g pHσ(e0) = (EpHσ)(e0, gH) = (EpHσ)H(gH),

and therefore A(pHσ(e0)) = (EpHσ)H. That φ is well defined can be checked us-
ing the fact that cH is π1X(G/H) equivariant for every subgroup H of G. It is
straightforward to check that φ is a cochain map and that φ maps Sn

G(X; M) into

Sn
π1X,G

(U(X); M0).
Now define a homomorphism ψ : Cn

π1X,G
(U(X); M0) −→ Cn

G(X; M) as follows.
Let c = {cH}H<G ∈ Cn

π1X,G
(U(X); M0), and σ : 4n×G/H −→ X be an equivariant

simplex. Let σ̃ : 4n −→ X̃H be the lifting of Nσ so that pH σ̃ = Nσ. Then set

ψ(c)(σ) = M(AξH(σ̃(d0)))
−1(cH(σ̃)).

It can be verified that ψ maps Sn
π1X,G

(U(X); M0) into Sn
G(X; M) and is the cochain

inverse of φ.
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Next we define another cohomology group of U(X) with coefficients in an OG-
group λ : OG −→ Ab, forgetting the action of π1X on U(X).

Let R denote the category of rings, and Γ : OG −→ R be the contravariant
functor defined by Γ(G/H) = Z[π1X

H ], the integral group ring of π1X
H , for object

G/H in OG and Γ(ĝ) = g∗ : Z[π1X
K ] −→ Z[π1X

H ] for a morphism ĝ : G/H −→
G/K in OG. Note that the OG-chain complex C∗U(X), defined by C∗U(X) =

C∗(X̃H) is equipped with a Γ action.

Now define the cochain complex

CG(U(X); λ) = {Cn
G(U(X); λ); dn}

by

Cn
G(U(X); λ) =

⊕
H<G

HomZ (C∗X̃H ⊗Γ(G/H) Γ(G/H); λ(G/H)), dn = ⊕H<GdnH .

where

dnH : HomZ (CnX̃H ⊗Γ(G/H) Γ(G/H); λ(G/H)) −→

HomZ (Cn+1X̃H ⊗Γ(G/H) Γ(G/H); λ(G/H))

is induced from the boundary ∂H : Cn+1X̃H −→ CnX̃H . Define

SG(U(X); λ) = {Sn
G(U(X); λ); dn}

where Sn
G(U(X); λ) is the subgroup of Cn

G(U(X); λ) consisting of cochains {cH}H<G
such that for every ĝ : G/H −→ G/K and singular n-simplexes σ : 4n −→ X̃H and

τ : 4n −→ X̃K with g̃ ◦ τ = σ, the equation λ(ĝ)(cK(τ )) = cH(σ) holds in λ(G/H).
Define

Hn
G(U(X); λ) = Hn(SG(U(X); λ)).

Let H∗U(X) be the OG-group defined by

H∗U(X)(G/H) = H∗(X̃H)

and

H∗U(X)(ĝ) = g∗ : H∗(X̃K) −→ H∗(X̃H).

Let CG denote the abelian category of abelian OG-groups, and Hom(S, T ) denote
the morphism set in CG between objects S and T .

We define the Kronecker homomorphism

κ : Hn
G(U(X); λ) −→ Hom(HnU(X); λ)

as follows. For [{cH}H<G] ∈ Hn
G(U(X); λ), {cH}H<G ∈ Sn

G(U(X); λ) define

κ[{cH}H<G](G/H)([βH]) = cH(βH), [βH] ∈ Hn(X̃H).
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We shall show that κ is a surjection by constructing a homomorphism

µ∗ : Hom(HnU(X); λ) −→ Hn
G(U(X); λ)

such that κ ◦ µ∗ is the identity.

Let BnU(X), ZnU(X), and CnU(X) denote the OG-groups: BnU(X)(G/H) =

Bn(X̃H), ZnU(X)(G/H) = Zn(X̃H), and CnU(X)(G/H) = Cn(X̃H), where Cn(X̃H)

is the n-th chain group of X̃H and Bn(X̃H), and Zn(X̃H) are the boundaries and
cycles respectively. We have a natural transformation π : ZnU(X) −→ HnU(X)
and an exact sequence

0 −→ ZnU(X) −→ CnU(X) −→ Bn−1U(X) −→ 0

in CG. Thus the natural transformation π extends to a natural transformation µ :
CnU(X) −→ HnU(X). Define a chain complex E∗ in CG by setting En = HnU(X)
and the boundary homomorphism to be the zero natural transformation. Then

µ : C∗U(X) −→ E∗ is a chain map. This induces a cochain map

µ] : Hom(E∗; λ) −→ Hom(C∗U(X); λ).

Next define ν : Hom(CnU(X); λ) −→ Sn
G(U(X); λ) as follows. Given f ∈

Hom(CnU(X); λ), νf = {fH}H<G ∈ Cn
G(U(X); λ) is given by fH(σ) = f(G/H)(σ),

for σ : 4n −→ X̃H . We claim that νf = {fH}H<G ∈ Sn
G(U(X); λ). For if σ :

4n −→ X̃H , and τ : 4n −→ X̃K and ĝ : G/H −→ G/K are such that g̃ ◦ τ = σ,

then

λ(ĝ)(fK(τ )) = λ(ĝ)f(G/K)(τ ) = f(G/H)(g̃ ◦ τ ) = f(G/H)(σ) = fH(σ)

by naturality of f . It is easy to see that ν is a cochain map. Thus ν ◦ µ] induces a
homomorphism

µ∗ : Hom(HnU(X); λ) −→ Hn
G(U(X); λ)

in the cohomology such that κ ◦ µ∗ is identity.
Let X be an object in GHCW∗ and x◦ ∈ XG be the base point. We may assume

that x◦ is a zero cell. Fix x̃◦G ∈ p−1
G (x◦) and let x̃◦H = U(X)(̂i)(x̃◦G) where î : G/H −→

G/G. Then U(X) is a functor from OG to HCW∗. Let f : X −→ Y be a morphism
in GHCW∗. The map f induces a natural transformation f̃ : U(X) −→ U(Y ), given
by f̃(G/H) = f̃H . We have a ‘cofibration sequence’

U(X)
f̃−→ U(Y )

q−→ Cf̃ −→ ΣU(X)
Σf̃−→ ΣU(Y ) −→ . . .

where Cf̃(G/H) = Cf̃H is the mapping cone of f̃H : X̃H −→ Ỹ H and Σ(UX)(G/H) =

ΣX̃H , is the suspension of X̃H . Then we may deduce a long exact cohomology se-
quence

. . . −→ Hn
G(U(Y ); λ)

f̃∗−→ Hn
G(U(X); λ) −→ Hn+1

G (Cf̃ ; λ)
q∗−→ Hn+1

G (U(Y ); λ)
f̃∗−→ . . .

We shall refer to this sequence as the long exact cohomology sequence associated to
f̃ .
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3 Proof of Theorem 1.6

Let λ be an abelian OG-group and

Γ : OG −→ R, Γ(G/H) = Z[π1Y
H ].

be the functor as defined in the previous section. We shall define an equivari-
ant local coefficients system Hom(Γ, λ) on Y as follows. For every H < G, we
have a local coefficients system Hom(Γ, λ)H on Y H defined by the π1Y

H -module

HomZ (Γ(G/H), λ(G/H)) as in [4]. Let ĝ : G/H −→ G/K be a morphism in OG.
Then g∗Hom(Γ, λ)H is a local coefficients system on Y K and is given by the π1Y

K -
module HomZ (Γ(G/H), λ(G/H)) by virtue of the isomorphism g∗ : π1Y

K −→
π1Y

H. Note that this π1Y
K-module is same as the π1Y

K-module HomZ(Γ(G/K),
λ(G/H)). Thus we have a π1Y

K-module homomorphism

HomZ(Γ(G/K), λ(G/K)) −→ HomZ (Γ(G/K), λ(G/H))

given by α 7→ λ(ĝ) ◦ α. This induces a natural transformation

Hom(Γ, λ)(ĝ) : Hom(Γ, λ)K −→ g∗Hom(Γ, λ)H .

As explained in the previous section this defines an equivariant local coefficients
system on Y . Moreover note that for every H < G, HomZ(Γ(G/H), λ(G/H)) can
be regarded as a π1X

H -module by virtue of the isomorphism

fH∗ : π1X
H −→ π1Y

H

(by 1, 2 of Theorem 1.6, and Prop 1.5). Thus Hom(Γ, λ) can be regarded as an
equivariant local coefficients on X so that f∗Hom(Γ, λ) is isomorphic to Hom(Γ, λ).
According to ([2], Prop. 5.2′) there exists a natural isomorphism⊕

H<G

HomΓ(G/H)(C∗Ỹ H , HomZ(Γ(G/H), λ(G/H)) −→

⊕
H<G

HomZ(C∗Ỹ H⊗Γ(G/H)Γ(G/H), λ(G/H)).

Hence we have a commutative diagram

Cπ1Y,G
(U(Y ); Hom(Γ, λ)0) CG(U(Y ); λ)

Cπ1X,G
(U(X); Hom(Γ, λ)0) CG(U(X); λ)

f̃ ] f̃ ]

-

-

? ?
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where the horizontal maps are isomorphisms and vertical maps are induced by
f̃ : U(X) −→ U(Y ). It is easy to see that the horizontal maps pass into the

subcomplexes S. Hence in view of Theorem 2.6 we have a commutative diagram of
cohomology groups

H∗G(Y ; Hom(Γ, λ)) H∗G(U(Y ); λ)

H∗G(X; Hom(Γ, λ)) H∗G(U(X); λ)

f̃∗

∼=

∼=

f̃∗

-

-

? ?

Now, by 3 of Theorem 1.6 f̃∗ : H∗G(U(Y ); λ) −→ H∗G(U(X); λ) is a monomorphism
for any OG-group λ. Hence from the long exact cohomology sequence associated to
f̃ we deduce that q∗ : Hn

G(Cf̃ ; λ) −→ Hn
G(U(Y ); λ) is zero for every n. By naturality

of κ we have the following commutative diagram

H∗G(Cf̃ ; λ) Hom(HnCf̃ ; λ)

Hn
G(U(Y ); λ) Hom(HnU(Y ); λ)

q∗ = 0

κ

κ -

-

? ?

Taking λ = HnCf̃ we deduce that q∗ : HnU(Y ) −→ HnCf̃ is the zero natural
transformation. From the long exact sequence

. . . −→ HnU(X)
f̃∗−→ HnU(Y )

q∗−→ HnCf̃ −→ . . .

in CG, it follows that f̃∗ : H∗U(X) −→ H∗U(Y ) is an epi. Thus for each H < G,

f̃H∗ : H∗X̃H −→ H∗Ỹ H is an epi. By 2 of Theorem 1.6 fH∗ : π∗X
H −→ π∗Y

H is a
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mono, hence f̃H∗ : π∗X̃H −→ π∗Ỹ H is a mono. Now proceeding as in [4] we see that
fH∗ : π∗X

H −→ π∗Y
H is an isomorphism and hence fH is a homotopy equivalence

for every H < G. Consequently by ([9], Prop 2.7) f is a G-homotopy equivalence.

4 Proof of Theorem 1.3

Enough to prove that f : X −→ Y satisfies hypothesis of Theorem 1.6. First we
note that if f : X −→ Y is a mono in GHCW◦ then fH∗ : π∗X

H −→ π∗Y
H is a

monomorphism for every H < G. For suppose α, β : Sn −→ XH represent any two
elements of πnX

H such that fH ◦α ∼ fH ◦β. Let Eα : Sn×G/H −→ X be defined
by Eα(u, aH) = aα(u) as in the proof of Theorem 2.6. Similarly define Eβ. Then
E(fH ◦ α) = f ◦Eα and E(fH ◦ β) = f ◦Eβ. Let F be a homotopy from fH ◦α to

fH ◦ β. Then EF : Sn ×G/H × I −→ Y , defined by EF (u, aH, t) = aF (u, t) is a
G-homotopy from f ◦ Eα to f ◦ Eβ. Since f is a mono in GHCW◦ , it follows that
Eα is G-homotopic to Eβ. Thus α ∼ β and 2 of Theorem 1.6 is satisfied.

Next we show that if f : X −→ Y is an epi in GHCW∗ then 1 of Theorem 1.6 is
satisfied. First note that for any G-path connected G-complex X and λ : OG −→ G,
there is an adjunction equivalence

[X, K(λ, 1)]G ↔ Hom(π1X, λ) (∗)

where K(λ, 1) is the equivariant Eilenberg-MacLane complex of the type (λ, 1)

[6]. Our assertion follows from this as in [4]. To prove (*) we proceed as fol-
lows. If f : X −→ K(λ, 1) represents an element of [X, K(λ, 1)]G, then the cor-
responding element in Hom(π1X, λ) is given by f∗ : π1X −→ λ. Conversely, a
natural transformation T : π1X −→ λ induces a G-homotopy class of G-maps

T∗ : K(π1X, 1) −→ K(λ, 1) [6]. Note that X can be regarded as a G-subcomplex of
K(π1X, 1). For we may obtain K(π1X, 1) from X by attaching suitable equivariant
cells to X to kill the higher homotopy groups of the fixed point sets of X. The
element T∗/X in [X, K(λ, 1)]G is then the element which corresponds to T .

In case, λ : OG −→ Ab is an abelian OG-group we may give an alternative
argument for the validity of (*) as follows. Recall from [1] that there exists a

spectral sequence whose E2 term is

Ep,q
2 = Extp(HqX, λ) =⇒ Hp+q

G (X; λ).

There is an edge homomorphism

Hn
G(X; λ) −→ Hom(HnX, λ)

which is an isomorphism if each HqX is projective for q < n. We claim that H0X
is projective. This can be seen as follows. We consider an epimorphism η : S −→ T
and an arbitrary morphism µ : H0X −→ T in CG. Orient the cells of X in such a
way that G preserves the orientation. Since X is G-path connected,

H0X(G/H) = H0(X
H) ∼= Z〈x◦〉,
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〈x◦〉 being the homology class of the fixed point x◦. Let η̄G : HoX(G/G) −→
S(G/G) be a solution for the corresponding problem for H0X(G/G). Define

η̄ : H0X −→ S

by
η̄(G/H)(〈x◦〉) = S (̂i)η̄G(〈x◦〉),

where î : G/H −→ G/G is the morphism in OG corresponding to the inclusion

H ⊂ G. Note that since G preserves orientation, for any ĝ : G/H −→ G/K,
H0X(ĝ) is the identity. It is easy to check that η̄ is natural and a solution for η and
µ in CG. Thus H0X is projective. Hence

[X, K(λ, 1)]G ∼= H1
G(X; λ) ∼= Hom(H1X; λ).

Let ρ : π1X −→ H1X denote the natural transformation such that ρ(G/H) is the
Hurewicz homomorphism. Then ρ induces an isomorphism

Hom(H1X, λ) ∼= Hom(π1X, λ)

and the result follows.
To prove epis in GHCW∗ satisfy 3 of Theorem 1.6 we need a homotopy theoretical

interpretation of Hn
G(Y ; λ) and f∗ : Hn

G(Y ; M) −→ Hn
G(X; f∗M). As mentioned in

section 2 an equivariant local coefficients system M on Y may be viewed as a π1Y -
module M0. Then as in [7] there exists a sectioned G-fibration

K(M0, n) −→ L(π1Y, M0, n)
p−→ K(π1Y, 1)

s← K(π1Y, 1).

This yields a sectioned G-fibration p : E −→ Y with fiber K(M0, n). Then

Hn
G(Y ; M) may be identified with the vertical G-homotopy classes of equivariant

sections of p : E −→ Y . If now u : Y −→ E is such a section and p∗ : E∗ −→ X
is the sectioned G-fibration over X induced from p via f : X −→ Y , then f∗(u) ∈
Hn
G(X; f∗M) may be identified with the section u∗ : X −→ E∗ of p∗ defined by

u∗(x) = (x, u(f(x))). Then f∗(u) = f∗(v) implies u ◦ f∼Gv ◦ f , hence (f being epi
in GHCW∗) u∼Gv, that is, f∗ : Hn

G(Y ; M) −→ Hn
G(X; f∗M) is a monomorphism.

Corollary 4.1 If X, Y are G-simply connected G-complexes and f : X −→ Y is

an epi in GHCW∗ and a mono in GHCW◦, then f is a G-homotopy equivalence.

In [3] the author has given an alternative proof of Theorem 1.1.The results in [3]
can be generalized to equivariant setting in a functorial way by using the notion of
universal OG-covering space to obtain

Theorem 4.2 If f : X −→ Y is an epimorphism in GHCW∗ where X, Y are A-
admissible, and πk(f) : πkX −→ πkY is a monomorphism for all k ≥ 0 then f is
an equivalence in GHCW∗.

Then Theorem 1.3 also follows from Theorem 4.2.
Acknowledgement : I would like to thank the referee for bringing to my
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